DGIS/DANIDA

BN-858 A-1017(2)

can

PAP-5B

40-5B

GOB

LIBRARY.

DHP

MINISTRY OF WATER RESOURCES

BANGLADESH WATER DEVELOPMENT BOARD

MEGHNA ESTUARY STUDY

TECHNICAL NOTE MES-013

ASSESSMENT OF SEDIMENTATION FIELDS

August 1998

DHV CONSULTANTS BV

in association with

KAMPSAX INTERNATIONAL DANISH HYDRAULIC INSTITUTE DEVELOPMENT DESIGN CONSULTANTS SURFACE WATER MODELLING CENTRE AQUA CONSULTANTS AND ASS. LTD.

DGIS/DANIDA

GOB

MINISTRY OF WATER RESOURCES

BANGLADESH WATER DEVELOPMENT BOARD

MEGHNA ESTUARY STUDY

TECHNICAL NOTE MES-013

ASSESSMENT OF SEDIMENTATION FIELDS

August 1998

DHV CONSULTANTS BV

in association with

KAMPSAX INTERNATIONAL DANISH HYDRAULIC INSTITUTE DEVELOPMENT DESIGN CONSULTANTS SURFACE WATER MODELLING CENTRE AQUA CONSULTANTS AND ASS. LTD. Technical Note on:

SEDIMENTATION FIELDS

Dhaka, June 1998 Project Name : Location : Key words :

Meghna Estuary Study (MES) Meghna Estuary, along southern coast Noakhali, Hatia and Bhola Sedimentation fields, acceleration of sedimentation Design and cost estimates, economic feasibilty

MEGHNA ESTUARY STUDY - FAP 5B IMPLEMENTATION OF SMALL SCALE INTERVENTION

Construction of Sedimentation Trial Fields: Technical Report

- 1. Introduction
- 2. Key Assumptions
- 3. Location of Trials
- 4. Design, Estimating
- 5. Technical Specifications
- 6. Estimated Costs for Construction of Sedimentation Fields
 - i) Char Lakshmi, Noakhali
 - ii) South East of Hatia Island
 - iii) South East of Bhola
- 7. Economic Assessment
- 7.1 Project Cost
- 7.2 Project Benefits
- 7.3 EIRR and NPV
- 7.4 Conclusions and Recommendations

ANNEXES

Annex A.1:	Detailed Estimate (Bill of Quantities) for Construction of Sedimentation Field in Char Lakshmi
Annex A.2:	Abstract of Cost (Cost Estimate) for Construction of Sedimentation Field in Char Lakshmi
Annex B.1:	Detailed Estimate (Bill of Quantities) for Construction of Sedimentation Field in South East of Hatia Island
Annex B.2:	Abstract of Cost (Cost Estimate) for Construction of Sedimentation Field in South East of Hatia Island
Annex C.1:	Detailed Estimate (Bill of Quantities) for Construction of Sedimentation Field in South East of Bhola Island
Annex C.2:	Abstract of Cost (Cost Estimate) for Construction of Sedimentation Field in South East of Bhola Island
Annex D :	Economic analysis for the Sedimentation Trial Fields along the coasts of Bhola, Hatia and Char Lakshmi

MEGHNA ESTUARY STUDY - FAP 5B IMPLEMENTATION OF SMALL SCALE INTERVENTION

Construction of Sedimentation Trial Fields

1. Introduction

a) <u>Background</u>

Reclamation of land is a major component for the development of coastal and estuarine areas. It involves the measures to induce land accretion process. When there is a land mass in the process of natural formation, any small intervention may enhance sediment settlement contributing to raising a larger area of land for reclamation in shorter time.

Construction of sedimentation field is a trial process to induce settlement of silt where there is already a natural process of accretion taking place. Reclamation and development of land mass thus formed will depend on cost involved in the construction of groynes, their maintenance, rate of formation, time taken for formation of land at a desired level and expected benefits accrued out of this to establish economic viability of such intervention.

Under Land Reclamation project(LRP), BWDB carried out a test series on groynes construction starting June 1979 for taking up a large scale test with sedimentation field for accretion trials. The location of the first test was Kumira Ferry Ghat about 30 km from the Chittagong City. The second site for test groyne was at North Kattuli about 13 km from Chittagong City.

BWDB under LRP carried out full scale accretion trial by constructing sedimentation trial fields at two places along Chittagong Coast. The one at North Kattuli about 13 km from Chittagong was completed in December 1980 and the other at Shitakunda about 23 km from Chittagong was completed in March 1981.

Though the sedimentation field trials could not produce the desired results but evaluation of those trials provided information, conclusions and guidelines for future research and implementation.

b) <u>Small Scale Intervention: Accretion Trial</u>

Terms of Reference, Article 5 describes in detail the activities to be performed to realize the required outputs. One of tasks under the TOR for the study (TOR 5.3.9) requires the consultant to develop appropriate measures to accelerate accretion by means of low cost approach using indigenous materials and labour intensive method. It also envisages selecting of small works using local technologies, labour and construction materials which can be rapidly implemented. The consultant will locate and design such works and monitor their effectiveness.

The construction will be the responsibility of BWDB with advice from the consultant (TOR 5.3.10).

As per provision contained in the TOR, upon review of different reports and documents prepared and published by LRP, and discussion with BWDB and other concerned offices, the consultant has located three areas for accretion trial, prepared the outline design, work

specifications, bill of quantities and cost estimates for the construction of sedimentation trial fields.

2. Key assumptions

Economic evaluation to judge cost-effectiveness of construction of sedimentation fields is based on certain assumptions. The key assumptions concerning the sequence of land accretion and use are presented below.

• For the areas south of Bhola the new land reaching a level of +0.7 m PWD will be suitable for planting mangroves and will take about 6 to 8 years to attain the level without project intervention.

The accretion level in this area will not attain +1.5 m PWD and above without project intervention to make it suitable for agriculture.

With project condition, the land level will attain a level of above 1.5 m PWD and will be suitable for agriculture by about 8 years.

• For the areas south of Noakhali coast and Hatia island the new land reaching a level of +1.5 m PWD will be suitable for planting mangroves and will take about 4 to 8 years to attain this level without intervention.

With intervention the land level in these areas will reach +1.5 m PWD in about 4 years time to make it suitable for mangrove plantation. The new land will attain a level of +2.2 m PWD and above within 4 to 8 years and thus make the areas suitable for agriculture.

 it is assumed that all newly accreted land will be first planted in mangroves. Without project situation, mangrove forest will continue on new land as it is practiced now. Under project situation, mangrove forest after a rotation period of 15 years may be cleared for agriculture and other uses.

3. Location of Trials

For selection of trial location several tours and recconnaissance were made around the costal areas of Noakhali and Feni. Different Chars and islands in the estuary areas were also visited by ANWESHA. On the basis of field reconnaissance and consideration of other aspects and in-house discussions among the consultants' team members three tentative potential accretion areas have been selected as suitable for construction of sedimentation trial fields as part of small scale intervention.

- i) to the east of Char Lakshmi opposite Urir Char
- ii) to the south-east coast of Hatia island opposite Damar Char
- iii) to the south-east of Bhola island opposite Char Kukri Mukri

Engineering surveys of the trial areas have not yet been taken up. The present estimates have been based on the type design and experience of spot visits and reconnaissance of the selected locations. It is expected that the present estimate both bill of quantities and abstract of cost should not be much off-the mark.

Locations for construction of sedimentation trial fields have been selected based on field verification and review of various reports, publications, latest maps and satellite imageries. Final locations will be selected after further field visits to the areas and detailed engineering surveys. This will be done after the accretion trial proposed herein are finally accepted and considered for approval. Proposed locations for accretion trials are shown in figure 1.

4. Design, Estimating

Past LRP experiences on design and planning of the sediment accretion trial fields as has been laid down in the various reports and publications have been studied and reviewed while working out the present design.

LRP Technical Report No.8, sedimentation fields: LAND RECLAMATION PROJECT, January 1992, Fig-II: Final design of brush wood groyne; and section 4 of LRP report No. 23, June 1985 : Evaluation of Accretion Trials (sedimentation fields) along the Chittaong Coast in Bangladesh and the report on a study by A.E.R Backer have been given particular consideration in planning and designing the trial fields with certain modifications to suit local requirements.

Available estimates, drawings and some estimates prepared by Survey and Study Division (SSD) Chittagong in connection with the construction and repair of sedimentation field at Kattuli, Chittagong were collected and consulted in preparing the design and estimates. Item framing and unit rates have been mainly based on the schedule of rates (effective from 1st day of July, 1995) of Feni O & M Circle and Bhola O & M Circle with certain modifications in item descriptions and unit rates to suit the requirements. Most of the items in the estimate have come out to be non-scheduled items.

Each sedimentation trial field proposed for implementation will comprise three Compartments measuring 240m x 120m each constructed side by side separated and surrounded by bamboo groynes filled in with brushwood to make it permeable and to allow dissipating of energy and for reducing the possibility of local scour.

In the present design and estimate, few changes have been suggested to adapt to the requirements based on previous experience on stability of sedimentation field. These are summarized below.

- Brush wood bundle in place of Kancha reeds have been provided as the later when put in bundles in water for some days, shrink and lose their permeability which may induce local scour leading to collapse of the structure.
- In fixing the bamboo walling with the piled bamboo pins nylon ropes have been kept as alternative to Gazal(big nail) subject to the decision of the Engineer in charge. If necessary he can also decide to use Gazal and nylon rope in the alternative rows or both Gazal and nylon rope in all rows.

5. Technical Specifications

The Bamboo pins should be straight and thick walled made of ripe bamboo plants. Their top ends should be cut just above a knot and the bottom end should be sharpened from just below a knot about 60° from the plane of the knot.

c.\shaheen economic\sed_cons\sedfield_rep

Piles should remain vertical after driving and care should be taken so that the top knots of the pins are not broken or split apart.

All steel, ropes, threads, G.I.wires etc used as fixing and binding materials should be well soaked or painted by coal tar paint both before and after fixing in place.

Bags should be soaked and dried in coal tar paint before filling in by brick bats and should be sewed properly by nylon thread after being filled in and before laying in place

6. Estimated Cost for Construction of Sedimentation Field

i) Char Lakshmi, Noakhali

		st(Tk) st(US\$)@Tk.46 per US\$ st per Hectare(US\$)	9 1,642,000 35,696 3,966 4,000	
	First Year Second Year	Construction Year O&M Cost per Hectare	,	4000
	Second real	20% of Estimated Cost		800
	Third Year	O&M Cost per Hectare 10% of Estimated Cost		400
	Fourth Year	O&M Cost per Hectare 10% of Estimated Cost		400
	Total Estimat	ed Cost per Hectare(US\$)		5,600
ii)	<u>South East of</u> Area(ha)	Hatia Island	9	
	Estimated Co Estimated Co	st(Tk) st(US\$)@Tk.46 per US\$ st per Hectare(US\$)	1,642,000 35,696 3,966 4,000	
	First Year Second Year	Construction Year O&M Cost per Hectare		4,000
		20% of Estimated Cost		800
	Third Year	O&M Cost per Hectare 10% of Estimated Cost		400
	Fourth Year	O&M Cost per Hectare 10% of Estimated Cost		400
		ted Cost per Hectare(US\$) r Carrying 25% and for Labour 10% of the		5,600
	Total Estimat			1,960
	Total Estima SAY	ted Cost per Hectare(US\$) in Four Years		7,560 8,600

iii) South East of Bhola

	st(Tk) st(US\$)@Tk.46 per US\$ st per Hectare(US\$)	9 1,749,000 38,022 4,225 4,300	
First Year	Construction Year		4,300
Second Year	O&M Cost per Hectare 20%of Estimated Cost		860
Third Year	O&M Cost per Hectare 10% of Estimated Cost		430
Fourth Year	O&M Cost per Hectare 10% of Estimated Cost		430
	ed Cost per Hectare(US\$)		6,020
Add L.S. Extr Carrying and	a 10% of the Total Estimated Cost for Labour		602
Total Estimat SAY	ed Cost per Hectare(US\$) in Four Years		6,622 6,700

7 Economic Assessment

7.1 Project Cost

Economic assessment for sedimentation trial fields at the three proposed locations have been made for each of the trial fields.

Capital cost for the proposed interventions would include the costs of construction of groynes and other works at the sedimentation fields and costs of land development when forested land will be cleared for agriculture after a rotation period of 15 years. Land development cost includes the costs of poldering and construction of necessary water management structures.

A summary of capital costs for the three sedimentation trial fields are presented below.

Table 7.1: Cost Estimates	for ⁻	Trial Fields	and Land	Development	(Financial	prices)
---------------------------	------------------	---------------------	----------	-------------	------------	---------

Trial Field	Trial Field cost (Tk`000)	Per ha Land Development cost (Tk`000)
S-E of Bhola	1749	30
S-E of Hatia	1642	38
Char Lakshmi	1642	38

7.2 Project Benefits

The benefits due the project interventions will accrue from the expansion of production in agriculture, fisheries and forestry. A number of potential benefits, both quantifiable and non-quantifiable, have not been quantified because necessary data are not available to make such estimates. The potential benefits/ disbenefits that are in principle quantifiable, but have not been quantified include potential benefits from improved transportation within the project area and the impacts of the construction of groynes on marine fisheries that are likely to be mildly negative.

7.3 EIRR and NPV

The economic viability of project interventions has been judged by estimation of EIRR and NPV. A summary of analytical results are presented in Table. 7.2 below. (The calculations are shown in annex-D, Table D.5, D.6 and D.7).

Trial Field	EIRR (%)	NPV (Tk million)
S-E of Bhola	-0.91	-1.73
S-E of Hatia	-1.55	-1.65
Char Lakshmi	-1.55	-1.65

Table 7.2: EIRR and NPV for Sedimentation Trial Fields

7.4 Conclusions and Recommendations

The EIRR and NPV for the proposed interventions at three different locations are all negative. Therefore, the proposed interventions are not economically feasible and not recommended for implementation.

Detailed Estimate (Bill of Quantities) for construction of Sedimentation

Field for the purpose of Accretion Trial in Char Lakshmi, Noakhali

- 1		1	1		1	1	MKS Unit	_
	tems	No.	Length	Width	Height	Quantity	Total	Unit
	Supplying, Sizing and placing of thick walled Barak							
	amboo pins and stays in position, average 8.0							
c	m dia and above in size and 3.70 m to 4 m in							
le	ength etc. complete as per specification,							
d	lrawing and direction of Engineer in charge							
C	Groyne no							
		882						
	5	882						
	5	882						
	3	800						
	8	8 800						
	2	2 1600						
	2	1600						
	(5 1600					9046	nos.
	abour Charge for driving average 8.0 cm.							
	and above dia thick walled Barak bamboo pins,							
	by hammer or monkey-hammer,							
	2.2 m to 2.4 m drive as per specification,							
	frawing and direction of Engineer in charge							
a	ı) In dry land	5046	2.5			12615	12615	m
t	b) In water including necessary staging etc.	4000	2.5	1		10000	10000	m
8	as required.							
5	Supplying, Sizing and fitting in position 8.0 cm							
a	and above dia in size full barak bamboo							
1	valling pieces with 200 mm long gazali or 12 mm							
C	dia Nylon rope two fold winding with							
	bamboo poles including supply of all							
1	naterials as per specification, drawing and							
C	lirection of Engineer in charge.							
	a) Longitudinal walling	2	1320			2640		
	b) Cross ties	1516				758	3398	m

NEA A. I

1	Items	1	No.	Length	Width	Height	Quantity	Total	Unit
2	supplying of brush wood compacted in bundle not more than 200 mm dia (or as directed by the			Jongan					
	Engineer in charge)and approximately 180 cm in length tied securely with coir string and								
	dumping the same in position etc complete with supply of all materials and as per specification,								
	drawing and direction of the Engineer in charge								
	Groyne no	1	1	120	0.22	2.5			
		3	1	120 120					
		5	1	120				1	
		7 8	1	120 120				1	
		2	1	240			1	1 0	
		4	1	240	23507-025				
		6	1	240	0.22	2.5	132	726	cum
	Earthwork in excavation in trenches in all kinds of soil including levelling, dressing,								
	placing and removal of soil to a safe distance								
	with all leads and lifts as per specification, drawing and direction of the engineer in charge.								
	Groyne no								
		1	1	120			1		
		5	1	120			1		
		7	1	120					
		8	1	120					
		2	1	240 240					
		6	1	240				1	cum
	Earth work in fill by manual labour in all kinds of soil in putting up back support of the country side of groynes in 1:4 slope with all leads and								
	lifts and throwing the earth in 225mm in layer breaking clods, rough dressing, bailing out water etc. complete as per specification,								
	drawing and direction of engineer in charge Groyne no								
		1	1	120			240		
		35	1	120		2 1	240		
		э 7	1	120		2 1	240		
		8	1	120)	2 1	240	D	
		2	1	240		2 1	48		
		4	1	240	4 .	2 1	48	J	

26

ANNEX A.1

51	Items	N	lo.	Length	Width	Height	Quantity	Total	Unit
<i>.</i>	Supplying and laying in position over the back								
	support earthwork of the groynes 50 kg capacity								
	polytheline bags filled up with average 75 mm								
	drowngraded brick bats including sewing								
	the bags with nylon thread and tieing the bags by								
	3 mm dia G.I. wire with piled bamboo pins								
	including supply of all necessary materials								
	as per specification, drawing and direction								
	of Engineer in charge.								
	Groyne no.								
		1	2.25	120			270		
		3	2.25	120			270		
		5	2.25	120			270		
		7	2.25	120			270		
		8	2.25	120			270		
		2	2.25	240	1		540		
		4	2.25	240			540		
		6	2.25	240			540	2970	nos.
	Supplying Nylon rope of 12 mm dia, tripple fold								
	tieing of piled bamboo pins of each row at the								
	level of bamboo walling								
			3007	2			6014	6014	m

Abstract of Cost (cost estimate) for Construction of sedimentation Field for the purpose of Accretion Trial in Char Lakshmi, Noakhali

51	Item	Quantity	Unit	Rate	Amount	Total Amount
	Supplying, Sizing and placing of thick walled Barak	Quantity	Ont	reace	Tunount	Total / Infoun
	bamboo pins and stays in position, average 8.0 cm					
	dia and above in size and 3.70 m to 4 m in					
	length etc. complete as per specification, drawing and					
	direction of Engineer in Charge	9046	% no	6578	595045.88	
	direction of Engineer in Charge	nos.	20110	0370	575045.00	
		1103.				
	Labour Charge for driving average 8.0 cm and above dia					
	thick walled Barak bamboo pins by hammer or monkey					
	hammer 2.2 m to 2.4 m drive as per specification,					
	drawing and direction of Engineer in charge					
	a) In dry land	12615	% m	2128	268447.2	
		m				
	b) In water including necessary staging etc. as required	10000	% m	1273	127300	
	- 0	m				
3.	Supplying, Sizing and fitting in position 8.0 cm					
	and above dia in size full barak bamboo					
	walling pieces with 200 mm gazali or					1
	12 mm dia Nylon rope four fold winding					
	with bamboo poles including supply of all materials					
	as per specification, drawing and direction of					
	Engineer in charge	3398	% m	4934	167657.32	
		m				
4.	Supplying of brush wood					
	compacted in bundle not more than 200 mm dia					
	(or as directed by the engineer in charge)					
	and approximately 180 cm in length tied					
	securely with coir string and dumping					
	the same in position etc. complete with					
	supply of all materials and as per specification,					
	drawing and direction of the Engineer in charge.	726	cum	111	80586	
		cum				
5.	Earthwork in excavation in trenches in all					
	kinds of soil including, levelling dressing,					
	placing and removal of soils to a safe distance					
	with all leads and lifts as per specification,					
	drawing and direction of Engineer in charge.	264	%cum	2817	7436.88	3
		cum	0			

SI	Item	Quantity	Unit	Rate	Amount	Total Amount
7.	Earthwork by manual labour in all kinds of soils in putting up back support of the country side of groynes in 1:4 slope with all leads and lifts and throwing the earth in 225 mm layer breaking clods, rough dressing, bailing out water etc. complete as per specification, drawing and direction of Engineer in charge. Supplying and laying in position over the back support earthwork of the groynes 50 kg capacity polytheline bags filled up with average 75mm down graded brick bats including sewing the bags with Nylon thread and tieing the bags by 3 mm dia G.I. wire with piled bamboo pins	2640 cum	cum	25	66000	
8.	including supply of all necessary materials as per specification, drawing and direction of Engr. in charge Supplying Nylon rope of 12 mm dia, tripple fold	2970 nos.	each	58	172260	
0.	tieing of piled bamboo pins of each row at the level of bamboo walling	6014 m - Add conti		13	78182 	1562915.2 78145.76
		SAY			e rotar	1641061.04
Tota	Cost computation for Four Years					
Estin	(ha) nated Cost (Tk) nated Cost (USS) @ Tk. 46 per US\$ nated Cost per Hectare (US\$)					1642000 35690 413 4200
Thirc	year Construction year nd year O&M Cost per hectare, 20% of Estimated Cost I year O&M Cost per hectare, 10% of Estimated Cost th year O&M Cost per hectare, 10% of Estimated Cost				4200 840 420 420	
Tota SAY	l Estimated Cost per Hectare (US\$) in Four Years				5880 5900	-

N

Detailed Estimate (Bill of Quantities) for construction of Sedimentation Field for the purpose of Accretion Trial in south east of Hatia Island

All in MKS Unit Height Quantity Total Unit Width Length No. SI Items Supplying, Sizing and placing of thick walled Barak 1. bamboo pins and stays in position, average 8.0 cm dia and above in size and 3.70 m to 4 m in length etc. complete as per specification, drawing and direction of Engineer in charge Groyne no 1 882 5 882 7 882 3 800 8 800 2 1600 1600 4 9046 6 1600 nos. 2. Labour Charge for driving average 8.0 cm and above dia thick walled Barak bamboo pins. by hammer or monkey-hammer, 2.2 m to 2.4 m drive as per specification, drawing and direction of Engineer in charge 12615 12615 5046 2.5 a) In dry land m 10000 10000 b) In water including necessary staging etc. 4000 2.5 m as required. Supplying, Sizing and fitting in position 8.0 cm 3. and above dia in size full barak bamboo walling pieces with 200 mm long gazali or 12 mm dia Nylone rope two fold winding with bamboo poles including supply of all materials as per specification, drawing and direction of Engineer in charge 2 2640 1320 a) Longitudinal walling 758 3398 1516 0.5 b) Cross ties m

77 AI

ANNEX B.1

51	Items	No.	Length	Width	Height	Quantity	Total	Unit
	Supplying of brush wood compacted in bundle							
	not more than 200 mm dia (or as directed by the							
	Engineer in charge)and approximately 180 cm in							
	length tied securely with coir string or Nylone rope		1					
	and dumping the same in position etc complete with							
	supply of all materials and as per specification,							
	drawing and direction of the Engineer in charge							
	Groyne no							
	1	1	120	0.22	2.5	66		
	3	1	120	0.22	2.5	66		
	5	1	120	0.22	2.5	66		
	7	i	120	0.22	2.5	66	e	
	8	i	120	0.22	2.5	66		
	2	1	240	0.22	2.5	132		
	4	1	240	0.22	2.5	132		
	6	1	240	0.22	2.5	132	726	oup
	Earthwork in excavation in trenches in all	1	240	0.22	2.5	152	720	cun
5.	service provide a service of the ser							
	kinds of soil including levelling, dressing,							
	placing and removal of soil to a safe distance							
	with all leads and lifts as per specification,							
	drawing and direction of the engineer in charge.							
	Groyne no							
		1	120		0.9	24		
	3	1	120	0.22	0.9	24		
	5	1	120	0.22	0.9	24		
	7	1	120	0.22	0.9	24		
	8	1	120	0.22	0.9	24		
	2	1	240	0.22	0.9	48		
	4	1	240	0.22	0.9	48		
	6	1	240	0.22	0.9	48	264	cun
6.	Earthwork in fill by manual labour in all kinds of							
	soil in putting up back support of the country side							
	of groynes in 1:4 slope with all leads and							
	lifts and throwing the earth in 225 mm layer							
	breaking clods, rough dressing, bailing							
	out water etc. complete as per specification,							
	drawing and direction of engineer in charge							
	Groyne no							
	1	1	120	2	1	240		
	3	1	120	2	1	240		
	5	1	120	2	1	240		
	7		120		1	240		
	8		120			240		
	2		240			480		
	- 4		240	1		480		
	6		240			480		cur

l

SI	Items	No.	Length	Width	Height	Quantity	Total	Unit
7.	Supplying and laying in position over the back							
	support earthwork of the groynes 50 kg capacity							
	polytheline bags filled up with average 75 mm							
	drowngraded brick bats including sewing							
	the bags with nylon thread and tying the bags by							
	3 mm dia G.I. wire with piled bamboo pins							
	including supply of all necessary materials							
	as per specification, drawing and direction							
	of Engineer in charge.						e	
	Groyne no							
	1	2.25	120			270		
	3	2.25	120			270		
	5	2.25	120			270		
	5	2.25	120			270		
	8	2.25	120			270		
	2	2.25	240			540		
	4	2.25	240			540		
		2.2:	240			540	2970	nos.
8.	Supplying Nylone rope of 12 mm dia and tying							
254.5	tripple fold of piled bamboo pins of each row at the							
	level of bamboo walling as per specification,							
	drawing and direction of engineer in charge	300	2 2			6014	6014	m
	and might and direction of engineer in entry	500	-			0014	0014	

ANNEX B.2

N

Abstract of Cost (cost estimate) for Construction of sedimentation Field for the purpose of Accretion Trial in south east of Hatia Island

SI Item	Quantity	Unit	Rate	Amount	Amount in Tk Total Amount
SI Item 1. Supplying, Sizing and placing of thick walled Barak	Quantity	Unit	Kale	Amount	Total Amount
bamboo pins and stays in position, average 8.0 cm dia and above in size and 3.70 m to 4 m in length etc. complete as per specification, drawing and direction of Engineer in Charge	9046.0 nos	% no	6578.0	595045.9	
2. Labour Charge for driving average 8.0 cm and above of thick walled Barak bamboo pins by hammer or monker hammer, 2.2 m to 2.4 m drive as per specification, drawing and direction of Engineer in charge	1				
a) In dry land	12615.0 m	% m	2128.0	268447.2	
b) In water including necessary staging etc. as required		% m	1273.0	127300.0	
 Supplying, Sizing and fitting in position 8.0 cm and above dia in size full barak bamboo walling pieces with 200 mm long gazali or 12 mm dia Nylone rope two fold winding with bamboo poles including supply of all materials as per specification, drawing and direction of Engineer in charge 	3398.0 m	% m	4934.0	167657.3	
4. Supplying of brush wood compacted in bundle not more than 200 mm dia (or as directed by the engineer in charge) and approximately 180 cm in length tied securely with coir string or Nylone rope and dumping the same in position etc. complete with supply of all materials and as per specification, drawing and direction of the Engineer in charge.		cum	111.0	80586.0	
5. Earthwork in excavation in trenches in all kinds of soil including, levelling dressing, placing and removal of soil to a safe distance with all leads and lifts as per specification, drawing and direction of Engineer in charge.		%cum	2817.0	7436.9	

1	Item	Quantity	Unit	Rate	Amount	Total Amount
	Earthwork in fill by manual labour in all kinds of soil					
	in putting up back support of the country side of					
	groynes in 1:4 slope with all leads and					
	lifts and throwing the earth in 225 mm layer					
	breaking clods, rough dressing, bailing					
	out water etc. complete as per					
	specification, drawing and direction of					
	Engineer in charge.	2640.0	cum	25.0	66000.0	
	Engineer in charge.	2040.0	cum	25.0	00000.0	
	Supplying and laving in position over the healt support	cum				
	Supplying and laying in position over the back support					
	earthwork of the groynes 50 kg capacity polytheline bags					
	filled up with average 75mm down graded brick bats					
	including sewing the bags with Nylon thread and tying the					
	bags by 3 mm dia G.I. wire with piled bamboo pins					
	including supply of all necessary materials as per					
	specification, drawing and direction of Engr. in charge	2970.0	each	58.0	172260.0	
		nos				
	Supplying Nylone rope of 12 mm dia and tying tripple					
	fold of piled bamboo pins of each row at the level					
	of bamboo walling as per specification, drawing and	6014.0	m	13.0	78182.0	
	direction of engineer in charge	m				
						1562915.
		Add Conti	ngency :	5% of Tot	Total	78145.
						1641061.
		SAY				1642000.
	Total Cost Computation for Four Years	1		1	1	1
	Area (ha)					
	Estimated Cost (Tk)					164200
	Estimated Cost (US\$) @Tk.46 per US\$					3569
	Estimated Cost per Hectare (US\$)					413
	SAY					420
	First year Construction Year				4200	
	Second year O&M Cost per hectare 20% of Estimat	ed Cost			840	
	Third year O&M Cost per hectare 10% of Estimat				420	
	Forth year O&M Cost per hectare, 10% of estimat				420	
	Estimated Cost per Hectare(US\$) in Four Years				5880	-
	Add Extra for Carrying 25% and for Labour 10% of the	Total estim	nated Co	st	2058	
	Total Estimated Cost per Hectare(US\$) in Four Yea				7938	
	rotar Estimated Cost per ricctare(035) in rour rea	13			1930	
	SAY				8000	

Detailed Estimate (Bill of Quantities) for construction of Sedimentation Field for the purpose of Accretion Trial in south east of Bhola

All in MKS Unit

SI	Items	No.	Length	Width	Height	Quantity	n MKS (Unit
1.	Supplying, Sizing and placing of thick walled Barak	110.	Lengu	, , , , , , , , , , , , , , , , , , ,	Trongin	Quantity	Total	0
L.,	bamboo pins and stays in position, average 8.0							
	cm dia and above in size and 3.70 m to 4 m in							
	length etc. complete as per specification,							
	drawing and direction of Engineer in charge							
	drawing and direction of Engineer in charge							
	Groyne no							
		882						
	5	882						
	7	882						
	3	800						
	8	800						
	2	1600					•	
	4	1600						
	6	1600					9046	nos
	0	1000					9040	nos.
2	L L Character for this is a supervised 8.0 and							
2.	Labour Charge for driving average 8.0 cm							
	and above dia thick walled Barak bamboo pins,							
	by hammer or monkey-hammer,							
	2.2 m to 2.4 m drive as per specification.							
	drawing and direction of Engineer in charge							
	a) In sheet land	5046	2.5			12615	12615	
	a) In dry land	4000	2.5			12013	10000	m
	b) In water including necessary staging etc.	4000	2.5			10000	10000	m
	as required.							
2	Contrainer of Children in a station 2.0 ser							
3.	Supplying, Sizing and fitting in position 8.0 cm							
	and above dia in size full barak bamboo							
	walling pieces with 200 mm long gazali or 12 mm							
	dia Nylone rope two fold winding with							
	bamboo poles including supply of all							
	materials as per specification, drawing and							
	direction of Engineer in charge							
	a) Longitudinal walling	2		1		2640	2225	
	b) Cross ties	1516	0.5			758	3398	m

ANNEX C.1

51	Items	No		Length	Width	Height	Quantity	Total	Unit
	Supplying of brush wood compacted in bundle			Dengal	- ridin	ineight	Quantity	Total	Onn
	not more than 200 mm dia (or as directed by the								
	Engineer in charge)and approximately 180 cm in								
	length tied securely with coir string or Nylone rope								
	and dumping the same in position etc complete with								
	supply of all materials and as per specification,								
	drawing and direction of the Engineer in charge								
	drawing and direction of the Engineer in charge								
	Groyne no								
		1	1	120	0.22	2.5	66		
		3	1	120	0.22	2.5	66		
		5	1	120	0.22	2.5	66		
		7	1	120	0.22	2.5	66		
		8	1	120	0.22	2.5	66		
		2	1	240	0.22	2.5	132		
		4	1	240	0.22	2.5	132		
		6	1	240	0.22	2.5	132	726	cun
	Earthwork in excavation in trenches in all								
	kinds of soil including levelling, dressing.								
	placing and removal of soil to a safe distance								
	with all leads and lifts as per specification.								
	drawing and direction of the engineer in charge.								
8	Groyne no								
		r	1	120	0.22	0.9	24		
		3	1	120	0.22	0.9	24		
		5	1	120	0.22	0.9	24		
		7	1	120	0.22	0.9	24		
		8	1	120	0.22	0.9	24		
		2	1	240	0.22	0.9			
		4	1	240	0.22	0.9	48		
		6	1	240	0.22	0.9	48 48	264	cun
				210	0.22	0.7	40	204	cun
	Earthwork in fill by manual labour in all kinds of so	iT							
	in putting up back support of the country side of								
	groynes in 1:4 slope with all leads and								
	lifts and throwing the earth 225mm layer								
	breaking clods, rough dressing, bailing								
	out water etc. complete as per specification,	i.							
	drawing and direction of engineer in charge								
	Groyne no								
		1	1	120	2	1	240		
		3	1	120	2	1	240		
		5	1	120	2	1	240		
		7	ī	120	2	1	240		
		8	Ť	120	2	1	240		
		2	1	240	2	1	480		
		4	i i	240		1			
			i T		2		480	2610	
	1	6	1	240	2	1	480	2640	cun

AN	NE	XC	1
1 11 41	Y		1.1

S1	Items	No.	Length	Width	Height	Quantity	Total	Unit
7.	Supplying and laying in position over the back							
	support earthwork of the groynes 50 kg capacity							
	polytheline bags filled up with average 75 mm							
	drowngraded brick bats including sewing							
	the bags with nylon thread and tying the bags by							
	3 mm dia G.I. wire with piled bamboo pins							
	including supply of all necessary materials							
	as per specification, drawing and direction							
	of Engineer in charge.							
	Groyne no							
	1	2.25	120			270		
	3	2.25	120			270		
	5	2.25	120			270		
	7	2.25	120			270		
	8	2.25	120			270		
	2	2.25	240			540		
	4	2.25	240			540		
	6	2.25	240			540	2970	nos
8.	Supplying Nylone rope of 12 mm dia and tying							
	tripple fold of piled bamboo pins of each row at the							
	level of bamboo walling as per specification,							
	drawing and direction of engineer in charge	3007	2			6014	6014	m

ANNEX C.2

28

Abstract of Cost(cost estimate) for Construction of Sedimentation Field for the purpose of Accretion Trial in south east of Bhola

						Amount in Tk.	
SI	Item	Quantity	Unit	Rate	Amount	Total Amount	
1.	Supplying, Sizing and placing of thick walled Barak						
	bamboo pins and stays in position, average 8.0 cm						
	dia and above in size and 3.70 m to 4 m in						
	length etc. complete as per specification, drawing and						
	direction of Engineer in Charge	9046.0	% no	7846.0	709749.2		
		nos					
2.	Labour Charge for driving average 8.0 cm and above dia						
	thick walled Barak bamboo pins by hammer or monkey						
	hammer, 2.2 m to 2.4 m drive as per						
	specification, drawing and direction						
	of Engineer in charge						
	a) In dry land	12615.0	% m	1915.0	241577.3		
		m					
	b) In water including necessary staging etc. as required	10000.0	% m	1151.0	115100.0	R.R.P	:01
		m				AC	1:1
3.	Supplying, Sizing and fitting in position 8.0 cm					LIBRAR	x)
	and above dia in size full barak bamboo					(amount)))
	walling pieces with 200 mm long gazali or					1.1	1
	12 mm dia Nylon rope two fold winding					777	KA /
	with bamboo poles including supply of all materials						/
	as per specification, drawing and direction of						
	Engineer in charge	3398.0	% m	5306.0	180297.9		
		m					
4.	Supplying of brush wood						
	compacted in bundle not more than 200 mm dia						
	(or as directed by the engineer in charge)						
	and approximately 180 cm in length tied						
	securely with coir string or Nylon rope and dumping						
	the same in position etc. complete with						
	supply of all materials and as per specification,						
	drawing and direction of the Engineer in charge.	726.0	cum	138.0	100188.0		
		cum	The Property of the Large P				
5.	Earthwork in excavation in trenches in all						
	kinds of soil including, levelling dressing,						
	placing and removal of soil to a safe distance						
	with all leads and lifts as per specification,						
	drawing and direction of Engineer in charge.	264.0	%cum	2559.0	6755.8		
	and an enterior of Engineer in end bei	cum					
		Cum					

	Item	Quantity	Unit	Rate	Amount	Total Amount			
	Earthwork in fill by manual labour in all kinds of soil	Quantity	Om	Rate	Amount	Total Amount			
	in putting up back support of the country side of								
	groynes in 1:4 slope with all leads and								
	lifts and throwing the earth in 225 mm layer								
	breaking clods, rough dressing, bailing								
	out water etc. complete as per								
	specification, drawing and direction of								
	Engineer in charge.	2640.0	cum	23.0	60720.0				
		cum							
	Supplying and laying in position over the back support								
	earthwork of the groynes 50 kg capacity polytheline bag	S							
	filled up with average 75mm down graded brick bats								
	including sewing the bags with Nylon thread and tying the	ne							
	bags by 3 mm dia G.I. wire with piled bamboo pins								
	including supply of all necessary materials as per								
	specification, drawing and direction of Engr. in charge	2970.0	each	58.0	172260.0				
		nos							
	Supplying Nylon rope of 12 mm dia and tying tripple								
	fold of piled bamboo pins of each row at the level								
	of bamboo walling as per specification, drawing and	6014.0	m	13.0	78182.0				
	direction of engineer in charge	m		-					
						1664830.1			
		Add Contin	ngency :	5% of Tot	total	83241.5			
		0.111				1748071.6			
_		SAY				1749000.0			
	Total cost Computation for Four Years Area (ha) Estimated Cost (Tk) Estimated Cost (US\$)@Tk.46 per US\$ Estimated Cost per Hectare(US\$) SAY					9 1749000 38022 4401 4400			
	First year Construction year				4400				
	Second year O&M Cost per hectare,20% of Estimated Cost 880								
	Third year O&M Cost per hectare, 10% of Estimated Cost 440								
	Fourth year O&M Cost per hectare, 10% of Estimated Cost 440								
	Estimated Cost per Hectare(US\$)in Four Years 6160								
	Add L.S Extra 10% of the Total Estimated Cost for Carrying and Labour 616								
	Add L.S Extra 10% of the Total Estimated Cost for C	arrying and La	ibour		010	-			
	Add L.S Extra 10% of the Total Estimated Cost for C Total Estimated Cost per Hectare(USS) in Four Ye		ibour		6776				

Economic analysis for the Sedimentation Trial Fields along the coasts of Bhola, Hatia and Char Lakshmi.

1 Key Assumptions for Economic Analysis

The project life for economic analysis is 40 years. The discount rate is 12%.

A standard conversion factor of 0.902 is used to convert financial to economic prices, except for agricultural labour. For agricultural labour, a conversion factor of 0.85 has been used in line with other recent studies.

2 Project Costs

2.1 Capital costs

Cost estimate for construction of sedimentation trial fields are based on technical considerations for each of the trial fields. Details are furnished in annex - A,B and C.

Economic costs for construction of sedimentation trial fields are Tk 1.58 million for Bhola location and Tk 1.48 million for both Hatia and Char Lakshmi locations. Cost of land development for Bhola location is based on development cost of newly accreted land estimated for Char Montaz- Kukri Mukri development Project (MES feasibility study,1998) at Tk 30 thousand per ha (financial prices). Cost of land development for Hatia and Char Lakshmi locations are based on per ha development cost of newly accreted land estimated at TK 38.5 thousand (financial prices) under Nijhum Dwip Integrated Development Project (MES feasibility study,1998).

2.2 O&M costs

Maintenance needs would be heavy for three years after construction of trial fields. Maintenance costs have been set at 20% of initial investment cost of construction of trial fields for the second year and at 10% of investment cost for the third and fourth year. Maintenance cost of embankment and water management structure under land development programme is assumed to be 2% of investment cost of the item.

3. Project Benefits

The benefits quantified for the analysis are:

- agricultural production on newly accreted land
- fish pond production
- forest products from thinning and harvesting of mature forests

An important feature of any intervention for the accretion of new land in the Meghna Estuary is that there is a long gap between the investment in infrastructure and accrual of benefits from such investments. Estimation of benefits are based on the assumptions made in MES study.

Agriculture: Agricultural benefits arise from the increase in crop yields and cropping intensity. It is assumed that crop yields would start at 50% of the target level and slowly increase over time. Rabi crop areas would gradually increase as desalinization process continues.

Cropping patterns on new land in trial field areas with and without intervention are given in Table D.1.

Future	e Without	t Project		Future with Project							
Crops	year 9	Year 16	Year 20	Crops	Year 5	Year 10	Year 16				
T.Aman	0.75	0.85	1	LT Aman	0.75	1	0.8				
Pulses (Khesari)	0	0.15	0.2	HYV Aman	0	0	0.2				
G. Nut	0	0.05	0.05	Ground Nut	0	0.1	0.2				
Chilli (Dried)	0	0.05	0.05	Pulses	0.15	0.16	0.25				
Total	0.75	1.1	1.3	Sweet Potato	0	0.05	0.1				
				Chilli Dried)	0	0.04	0.05				
				Total	0.9	1.35	1.6				

Table D.1 : Cropping Patterns for Sedimentation Trial Fields.

Notes:

a) Cropping intensities will increase from 75% to 135% in future without project situation.

b) Cropping intensities will increase from 95% to 160% with project situation.

c) With project situation, land available for agriculture in the project area is estimated at 75% of gross land accreted. The proportion not included covers homestead areas, khals, drainage canals, embankments, protective forests, etc.

d) Under future without project situation, land available for agriculture is estimated at 20% of gross accreted land.

e) At the trial field south east of Bhola, without intervention, no land will accrete to +1.2 m PWD or above level required for agriculture.

f) The above assumptions are based on MES Feasibility Study on Nijhum Dwip Integrated Development Project, April, 1998 and Feasibility Study on Char Montaz-Kukri Mukri development Project, May, 1998.

Total crop income based on net crop income per ha under different cropping patterns are considered in the analysis. Per ha. net crop income of different crops with and without project intervention are given in table D.2.

Table D.2 : Net Crop Inco	ome per Ha.(Tk.)
---------------------------	------------------

Crops	Future Witho	out Project	Future With Project			
	Fin. Price	Eco. Price	Fin. Price	Eco. Price		
LT Aman	3112	3592	6941	7540		
HYV Aman			6514	7137		
Ground Nut	12293	11191	17300	16332		
Sweet Potato	1294	1770	5861	6040		
Pulses	1440	1403	3718	3448		
Chilli(dried)	14534	13484	22627	20874		

Fisheries: It is assumed that 2.5% of gross new agricultural land would be converted to ponds. Fisheries benefits include only production from new fish ponds. Net return from fish culture (1ha. pond) is presented in table D.3.

Table D.3 : Ne	et Revenue of Fish	Culture (1 ha.	pond - future s	ituation)
				72335423

		(Cost/Revenue-Tk.)
Item	Financial	Economic
Total costs	32371	29068
Yield	80000	72160
Revenue	47629	43092

Forestry: Forestry activities considered in the analysis are self-financing type. In other words, forest planting and maintenance would be financed from revenues from the clearing of mature forests after a rotation period of 15 years. Only the net benefit are taken into the analysis. Net revenue of mangrove forest per hectare are presented in table D.4.

shaheenseconomic sedheld rep

Table D.4 : Net Revenue of Mangrove Forest (1ha) by Different Operations (Tk.)

ltem	Pla	antation	Thi	inning	Harvesting			
	Fin. Price	Eco. Price	Fin. Price	Eco. Price	Fin. Price	Eco. Price		
Total costs	14125	12322	4830	4273	108220	92154		
Yield	0	0	6300	5683	200550	180896		
Net Revenue	-14125	-12322	1470	1410	92330	88742		

Source: Feasibility study on Nijhum Dwip Development Project, April, 1998, MES .

Notes

a) Without Project, 75% of new land accreting to +0.7m PWD (south of Bhola) and +1.2m PWD (South of Hatia and Char Lakshmi) may be planted in mangroves. Remaining land may be used for grazing of livestock and other purposes.

b) Forest plantation starts at year 9 without project situation and year 5 with project situation.

c) Thinning of mangrove forest may be done at year 9 and harvesting at year16.

Salvage Value: A portion of the bamboo pins and other materials may be retrieved at the third and fourth year of the project intervention. So 20% of cost of bamboos has been set as salvage value.

4 Prices

Financial and economic import parity price have been estimated for rice, TSP and potash and export parity prices for urea. These prices are based on World Bank price projections for 2010. For the economic prices transport, handling, processing, marketing and distribution costs are adjusted by the standard conversion factor.

Prices of other outputs are based on national farm gate prices, averaged for the four most recently available years.

For fisheries and forestry, market prices collected in the study area have been used.

5 EIRR and NPV

The EIRR and the NPV has been estimated for each of the three proposed intervention areas. The analytical results are presented below.

S-E Bhola: The EIRR is (-) 0.91% and the NPV is Tk (-)1.73 million. The calculation is shown in Table D.5.

S-E Hatia: The EIRR is (-) 1.55% and the NPV is Tk (-) 1.65 million. The calculation is shown in Table D.6.

Char Lakshmi : The EIRR is (-) 1.55% and the NPV is Tk (-) 1.65 million. The calculation is shown in Table D.7.

Negative results rule out the need for sensitivity analysis.

6. Conclusions and Recommendations

None of the proposed interventions is economically feasible and therefore not recommended for implementation.

OD

Table D.5 : Estimation of EIRR and NPV of Sedimentation Trial at South East of Bhola.

(Thousand Tk.)

ar F	Project costs		Fores	try benefits	Agricultu	ral benefits	Acquacui	tural benefits	Total ben	ients	Net benefit	Net
	- 1		Future	Future	Future	Future	Future	Future	Future	Future		Revenu
1	nvestment O	&M	Without	with Project	Without	with Project	Without	with Project	Without	with Project		
			Project	F1	Project	F1	Project	F1	Project	F1	F1-F0	F1
1	1578						1		0	0	0	-15
2	3	315.6							0	0	0	-315
3	1	157.8		64	S				0	64	64	-93
4		157.8		64	S				0	64	64	-93
5				-110.9					0	-110.9	-110.9	-11(
6									0	0	0	
7									0	0	0	
8									0			
9			-83.17						-83.17	0	83.17	83.
10									0	0	0	
11									0			
12									0	0	0	
13				12.7					0	0	12.7	1:
14									0			
15									0			
16									0			
17			9.52						9.52			
18									0			
19									0			
20				789.7					0	P N DEPENDENT		
21	170.48	1043 - 22040				23.32			C			
22		3.41				27.2		6.46				
23		3.41				33.04		6.46		Same Same Same Same		1.000 A 100 A 1
24		3.41				. 34.98		6.46				
25		3.41				38.87		6.46				-197
26		3.41				42.75		6.46				
27		3.41				42.75		6.46				
28		3.41				46.64		6.46		0 0505000		
29		3.41				46.64		6.46		the second s		
30		3.41				68.42		6.46				
31						68.42		6.46				
32						68.42		6.46			74.88	74
33						68.42		6.46		e		
34						68.42		6.46				
35						68.42		6.46			74.88	74
36						83.37	7	6.46	C	89.83	89.83	89
37						83.37		6.46	C	89.83	89.83	89
38						83.37		6.46	C			89
39						83.37	,	6.46	C	89.83	89.83	89
40						83.37	7/.	6.46	C		the second s	

NPV(MnTk) -1.73

F0= Future without project intervention; F1= Future with project intervention.
 S= It denotes salvage value of bamboo pins and materials used in the sedimentation field.

Table D.6 : Estimation of EIRR and NPV of Sedimentation Trial at South East of Hatia.

(Thousand Tk.)

	Project costs	Forest	try benefits	Agricultura	al benefits	Acquacul	tural benefits	Total ben	efits	Net benefit	Net
2007085W	F1	Future	Future	Future	Future	Future	Future	Future	Future		Revenue
1	Investment O&M	Without	with Project	Without	with Project		with Project		with Project		i coveride
	Investment Oaw	Project	F1	Project	F1	Project	F1	Project	F1	F1- F0	F1
1	1481	[i i ojoot		1				0			1
2	296.2	2						0	0	0	
3	148.1		53.64	S				0	53.64	53.64	-94.46
4	148.1		53.64	s				0	53.64	53.64	-94.46
5			-110.9					0	-110.9		-110.9
6								0	0	0	0
7								0	0	0	0
8								0	0	0	0
9		-83.17		4.85				-78.32	0	78.32	78.32
10				4.85				4.85	0	-4.85	-4.85
11				4.85				4.85	0	-4.85	-4.85
12				4.85				4.85			-4.85
13			12.7	4.85				4.85	12.7	7.85	7.85
14				4.85				4.85	0	-4.85	-4.85
15				4.85				4.85	0	-4.85	-4.85
16				8.09				8.09	0	-8.09	-8.09
17		9.52	1	8.09				17.61	0	-17.61	-17.61
18				8.09				8.09	0	-8.09	-8.09
19				8.09				8.09	0	-8.09	-8.09
20			789.7	9.17				9.17	789.7	780.53	780.53
21	218.78			9.17				9.17	23.32	14.15	-204.63
22	4.3	7		9.17			6.46	9.17	33.66	24.49	20.12
23	4.3	7		9.17	33.04	L.	6.46	9.17	39.5	30.33	25.96
24	4.3	7		9.17	34.98	3	6.46	9.17	41.44	32.27	27.9
25	4.3	7 239.6	5	9.17	38.87		6.46	248.77	45.33	-203.44	-207.81
26	4.3	7		9.17	42.75	5	6.46	9.17	49.21	40.04	35.67
27	4.3	7		9.17	42.75	5	6.46	9.17	49.21	40.04	35.67
28	4.3	7		9.17			6.46				39.56
29	4.3	7		9.17		ļ	6.46	9.17	53.1	43.93	39.56
30	4.3	7		9.17		2	6.46	9.17	74.88	65.71	61.34
31	4.3	7		9.17		2	6.46	9.17	74.88	65.71	
32	4.3	7		9.17	68.42	2	6.46	9.17	74.88	65.71	61.34
33	4.3	7		9.17			6.46			65.71	61.34
34	4.3	7		9.17		2	6.46	9.17	74.88	65.71	61.34
35	4.3	7		9.17	68.42	2	6.46	9,17	74.88	65.71	61.34
36	4.3	7		9.17	83.37	7	6.46	9.17	89.83	80.66	76.29
37	4.3	7		9.17	83.3	7	6.46	9.17	89.83	80.66	76.29
38	4.3	7		9.17	83.37	7	6.46	9.17	89.83	80.66	111
39	4.3	7		9.17			6.46		89.83	80.66	
40	4.3	7		9.17	83.3	7	6.46	9.17	89.83	80.66	76.29

Notes:

EIRR(%) -1.55

1/ F0= Future without project intervention; F1= Future with project intervention.

NPV(MnTk) -1.65

2/ S= It denotes salvage value of bamboo pins and materials used in the sedimentation field.

Cb 2

Table D.7 : Estimation of EIRR and NPV of Sedimentation Trial at Char Lakshmi, Noakhali.

(Thousand Tk.)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Voor	Project costs	Fores	try henefits	Agriculture	al henefits	Acquacu	ltural benefits	Total ben	efits	Net benefit	Net
Investment O&M With Project With Project F1 With With Project F1 With Project F1 With Project F1 Project F1 </td <td>real</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	real					1						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		20. 11		CONTRACTOR OF STREET	A CONTRACTOR OF CONTRACTOR OFO	101103999080000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 COLOR OF CONTRACT	NO BREEZED VODESS	1011110200-004162019		Revenue
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		investment Oaw		A REAL PROPERTY AND A REAL PROPERTY CONTRACTOR OF A		Comparison of the second		COLUMN IN ACCESSION OF	1.1.1 C. 10 1945		E1- E0	F1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1481	1110/000	p.,	1110,000				1			12 A.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$)							5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				53.64	s							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0			-94.46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0		in New York and the	-110.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0	0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8								0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9		-83.17	•	4.85				-78.32	0	78.32	78.32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10				4.85				4.85	0	-4.85	-4.85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11				4.85				4.85	0	-4.85	-4.85
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12				4.85				4.85	0	-4.85	-4.85
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13			12.7	4.85				4.85	12.7	7.85	7.85
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14				4.85				4.85	i C	-4.85	-4.85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15				4.85				4.85	i C	-4.85	-4.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16				8.09				8.09) C	-8.09	-8.09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17		9.52	2	8.09				17.61	C	-17.61	-17.61
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18				8.09				8.09) C		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19				8.09				8.09) C	-8.09	-8.09
22 4.37 9.17 27.2 6.46 9.17 33.66 24.49 20.723 23 4.37 9.17 33.04 6.46 9.17 39.5 30.33 25.725 24 4.37 9.17 34.98 6.46 9.17 41.44 32.27 21.727 25 4.37 239.6 9.17 38.87 6.46 9.17 41.44 32.27 21.727 26 4.37 9.17 42.75 6.46 9.17 49.21 40.04 35.77 26 4.37 9.17 42.75 6.46 9.17 49.21 40.04 35.77 28 4.37 9.17 46.64 6.46 9.17 49.21 40.04 35.77 29 4.37 9.17 46.64 6.46 9.17 53.1 43.93 39.79 30 4.37 9.17 68.42 6.46 9.17 74.88 65.71 61.77 31 4.37 9.17 68.42 6.46 9.17 74.88 65.71 61.77 33 4.37 9.17 68.42 6.46 9.17 74.88 65.71 61.77 34.4 4.37 9.17 68.42 6.46 9.17 74.88 65.71 61.77 33 4.37 9.17 68.42 6.46 9.17 74.88 65.71 61.77 34.4 4.37 9.17 68.42 6.46 9.17 74.88 65.7	20			789.7	9.17						780.53	780.53
23 4.37 9.17 33.04 6.46 9.17 39.5 30.33 $25.$ 24 4.37 9.17 34.98 6.46 9.17 41.44 32.27 22.7 25 4.37 239.6 9.17 38.87 6.46 9.17 41.44 32.27 22.7 26 4.37 9.17 42.75 6.46 9.17 49.21 40.04 $35.$ 27 4.37 9.17 42.75 6.46 9.17 49.21 40.04 $35.$ 28 4.37 9.17 46.64 6.46 9.17 53.1 43.93 $39.$ 29 4.37 9.17 46.64 6.46 9.17 53.1 43.93 $39.$ 30 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 31 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 32 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 33 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 34 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 35 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 36 4.37 9.17 83.37 6.46 9.17 74.88 65.71 $61.$ 36 4.37	21	218.78							9.17	23.32	14.15	-204.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7					6.46	0.222.000.072			
254.37239.69.1738.876.46248.7745.33-203.44-207.264.379.1742.756.469.1749.2140.0435.274.379.1742.756.469.1749.2140.0435.284.379.1746.646.469.1753.143.9339.294.379.1746.646.469.1753.143.9339.304.379.1768.426.469.1774.8865.7161.314.379.1768.426.469.1774.8865.7161.324.379.1768.426.469.1774.8865.7161.334.379.1768.426.469.1774.8865.7161.344.379.1768.426.469.1774.8865.7161.354.379.1768.426.469.1774.8865.7161.364.379.1768.426.469.1774.8865.7161.364.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.												
26 4.37 9.17 42.75 6.46 9.17 49.21 40.04 $35.$ 27 4.37 9.17 42.75 6.46 9.17 49.21 40.04 $35.$ 28 4.37 9.17 42.75 6.46 9.17 49.21 40.04 $35.$ 29 4.37 9.17 46.64 6.46 9.17 53.1 43.93 $39.$ 30 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 31 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 32 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 34 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 34 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 35 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 36 4.37 9.17 68.42 6.46 9.17 74.88 65.71 $61.$ 36 4.37 9.17 83.37 6.46 9.17 89.83 80.66 $76.$ 37 4.37 9.17 83.37 6.46 9.17 89.83 80.66 $76.$ 39 4.37 9.17 83.37 6.46 9.17 89.83 80.66 $76.$ 39			7								32.27	27.9
274.379.1742.756.469.1749.2140.0435.284.379.1746.646.469.1753.143.9339.294.379.1746.646.469.1753.143.9339.304.379.1768.426.469.1774.8865.7161.314.379.1768.426.469.1774.8865.7161.324.379.1768.426.469.1774.8865.7161.334.379.1768.426.469.1774.8865.7161.344.379.1768.426.469.1774.8865.7161.354.379.1768.426.469.1774.8865.7161.364.379.1768.426.469.1774.8865.7161.364.379.1783.376.469.1789.8380.6676.374.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.				5						1111000000	11. See 10. COS/1. CO	
284.379.1746.646.469.1753.143.9339294.379.1746.646.469.1753.143.9339304.379.1768.426.469.1774.8865.7161314.379.1768.426.469.1774.8865.7161324.379.1768.426.469.1774.8865.7161334.379.1768.426.469.1774.8865.7161344.379.1768.426.469.1774.8865.7161354.379.1768.426.469.1774.8865.7161364.379.1768.426.469.1774.8865.7161364.379.1783.376.469.1789.8380.6676374.379.1783.376.469.1789.8380.6676384.379.1783.376.469.1789.8380.6676394.379.1783.376.469.1789.8380.6676	26	4.3	7						and the second se			
294.379.1746.646.469.1753.143.9339.304.379.1768.426.469.1774.8865.7161.314.379.1768.426.469.1774.8865.7161.324.379.1768.426.469.1774.8865.7161.334.379.1768.426.469.1774.8865.7161.344.379.1768.426.469.1774.8865.7161.354.379.1768.426.469.1774.8865.7161.364.379.1768.426.469.1774.8865.7161.364.379.1783.376.469.1789.8380.6676.374.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.			7									
304.379.1768.426.469.1774.8865.7161.314.379.1768.426.469.1774.8865.7161.324.379.1768.426.469.1774.8865.7161.334.379.1768.426.469.1774.8865.7161.344.379.1768.426.469.1774.8865.7161.354.379.1768.426.469.1774.8865.7161.364.379.1768.426.469.1774.8865.7161.374.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.												A 1743-AA 180.45
314.379.1768.426.469.1774.8865.7161.324.379.1768.426.469.1774.8865.7161.334.379.1768.426.469.1774.8865.7161.344.379.1768.426.469.1774.8865.7161.354.379.1768.426.469.1774.8865.7161.364.379.1768.426.469.1774.8865.7161.364.379.1783.376.469.1789.8380.6676.374.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.												the second se
324.379.1768.426.469.1774.8865.7161.334.379.1768.426.469.1774.8865.7161.344.379.1768.426.469.1774.8865.7161.354.379.1768.426.469.1774.8865.7161.364.379.1768.426.469.1774.8865.7161.374.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.												61.34
334.379.1768.426.469.1774.8865.7161.344.379.1768.426.469.1774.8865.7161.354.379.1768.426.469.1774.8865.7161.364.379.1783.376.469.1789.8380.6676.374.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.											the second s	61.34
344.379.1768.426.469.1774.8865.7161.354.379.1768.426.469.1774.8865.7161.364.379.1783.376.469.1789.8380.6676.374.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.												61.34
354.379.1768.426.469.1774.8865.7161.364.379.1783.376.469.1789.8380.6676.374.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.									2 <u>1977</u> (1977)			A
364.379.1783.376.469.1789.8380.6676.374.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.												
374.379.1783.376.469.1789.8380.6676.384.379.1783.376.469.1789.8380.6676.394.379.1783.376.469.1789.8380.6676.												
38 4.37 9.17 83.37 6.46 9.17 89.83 80.66 76. 39 4.37 9.17 83.37 6.46 9.17 89.83 80.66 76.												
39 4.37 9.17 83.37 6.46 9.17 89.83 80.66 76.												
												A HELEPHER - THERE
40 4.37 9.17 83.37 6.46 9.17 89.83 80.66 76.												
	40	4.3	7		9.17	83.37	7	6.46	9.17	89.83	80.66	76.29

Notes:

1/ F0= Future without project intervention; F1= Future with project intervention.

EIRR(%) -1.55 NPV(MnTk) -1.65

2/ S= It denotes salvage value of bamboo pins and materials used in the sedimentation field.

Location Map of Accretion Trials Figure 1 MEGHNA ESTUARY STUDY (MES) SCALE 1:1,000,000 DHV Consultants BV

14-08-96 RECLAMATION SECTION 120m 120m DATE: Gr. No. 7 Gr. No. 8 SCALE 2 NOT TON FIGURE CIVIL Gr. No. 6 240m-Gr. No. 4 - BANK LINE PLAN FOR SEDIMENTATION TRIAL FIELD Cr. No. 5 MEGHNA ESTUARY STUDY (MES) Gr. No. 3 DHV CONSULTANTS BV BAMBOO GROYNE 240m-Gr. No. 2 LEGEND Gr. No. 1 11111111111 120m

08

