Call - 1021 PAP-5B

> BN-862 A-1021(2)

FAP-5B

GOB

MINISTRY OF WATER RESOURCES BANGLADESH WATER DEVELOPMENT BOARD

MEGHNA ESTUARY STUDY

TECHNICAL NOTE MES-017

NUMERICAL MODELLING

August 1998

DHV CONSULTANTS BV

in association with

KAMPSAX INTERNATIONAL DANISH HYDRAULIC INSTITUTE

1no

A-97

DEVELOPMENT DESIGN CONSULTANTS SURFACE WATER MODELLING CENTRE AQUA CONSULTANTS AND ASS. LTD. DGIS/DANIDA

MINISTRY OF WATER RESOURCES

BANGLADESH WATER DEVELOPMENT BOARD

MEGHNA ESTUARY STUDY

TECHNICAL NOTE MES-017

NUMERICAL MODELLING

August 1998

DHV CONSULTANTS BV

in association with

KAMPSAX INTERNATIONAL DANISH HYDRAULIC INSTITUTE

A-51

DEVELOPMENT DESIGN CONSULTANTS SURFACE WATER MODELLING CENTRE AQUA CONSULTANTS AND ASS. LTD.

GOB

Technical Note on:

NUMERICAL MODELLING OF HYDRODYNAMICS, SALINITY, WAVES AND SEDIMENT TRANSPORT IN THE MEGHNA ESTUARY 0

Dhaka , June 1998Project Name :Meghna Estuary Study (MES)Location :Meghna EstuaryKey words :Bathymetries, Model Set-up, Base Line Simulations,
Simulation with Interventions, Salinity Modelling,
Wind-Wave Modelling, Sediment Transport Modelling

Table of Contents

. . .

U

	Exe Abb	cutive Summary reviations	i ii
1	1.1 1.2	INTRODUCTION Background Objectives	1 1 1
2	2.1 2.2 2.3 2.4	METHODOLOGY Background Modelling Procedure MIKE 21 Modelling System Overview of Model Simulations	2 2 2 4 4
3	3.1 3.2 3.3	MODEL BATHYMETRIES Bathymetric Data Meghna Estuary Model (600 m Grid) Nijhum Dwip Model (200 m Grid)	6 6 6
4	4.1 4.2 4.3 4.4 4.5 4.6	HYDRODYNAMIC MODEL SET-UP General Hydrodynamic Model Calibration, 600 m Model Comparison of Measurements and Simulation Results, Dry Season 1996 Comparison of Measurements and Simulation Results, Monsoon Season 1997 Hydrodynamic Model Validation Nijhum Dwip Local Hydrodynamic Model	8 9 10 15 16
5	5.1 5.2 5.3	HYDRODYNAMIC BASELINE SIMULATIONS Dry Season 1996 Monsoon Season 1997 Nijhum Dwip Local Model, Dry Season 1996	17 17 17 17
6	6.1 6.2 6.3	HYDRODYNAMIC SIMULATIONS INCLUDING INTERVENTION SCHEMES Dry Season 1996 Monsoon Season 1997 Nijhum Dwip Local Model, Dry Season 1996	18 18 19 19
7	7.1 7.2 7.3 7.4	SALINITY MODELLING General Set-up of Salinity Model Salinity Model Calibration Salinity Model Simulations	20 20 20 20 22
8	8.1 8.2 8.3	WIND-WAVE MODELLING General Set-up of Wind-Wave Model Wind-Wave Model Simulations	24 24 24 25
9	9.1 9.2 9.3	SEDIMENT TRANSPORT MODELLING General Set-up of Sediment Transport Model Sediment Transport Model Simulations	26 26 26 26

10 10.1 10.2 10.3 10.4 10.5 10.6	Hydrodynamic Modelling Salinity Modelling Wind-Wave Modelling	28 28 28 29 29 29
11	REFERENCES	30

1

APPENDICES

- A MIKE 21 HD, Hydrodynamic Module, A Short Description
- B MIKE 21 AD, Advection-Dispersion Module, A Short Description
- C MIKE 21 NSW, Nearshore Spectral Wind-Wave Module, A Short Description
- D MIKE 21 ST, Non-Cohesive Sediment Transport Module, A Short Description
- E Description of MES Numerical Modelling CD-ROM Archive

DRAWINGS

List of Drawings

- 3.1 Bathymetry data coverage, MES bathymetric survey
- 3.2 Bathymetry data coverage, Landsat image, February 1996
- 3.3 Bathymetry data coverage, BIWTA sea charts
- 3.4 Bathymetry data coverage, British Admiralty Charts
- 3.5 Model Bathymetry, Meghna Estuary Model
- 3.6 Model Bathymetry, Nijhum Dwip Local Model
- 4.1 Hatia, Wind data for Dry Period Run 1996
- 4.2 Hatia, Wind data for Monsoon Run 1996
- 4.3 Hatia, Wind data for Dry Period Run 1997
- 4.4 Hatia, Wind data for Monsoon Run 1997
- 4.5 Bed friction coefficients, Manning Numbers (m^{1/3}/s)
- 4.6-4.21 Measured and simulated water level, Dry Season 1996
- 4.22 Tidal analysis, Dry season 1996, M2 amplitude
- 4.23 Tidal analysis, Dry season 1996, M2 phase
- 4.24 Tidal analysis, Dry season 1996, S2 amplitude
- 4.25 Tidal analysis, Dry season 1996, S2 phase
- 4.26 Tidal analysis, Dry season 1996, K1 amplitude
- 4.27 Tidal analysis, Dry season 1996, K1 phase
- 4.28 Tidal analysis, Dry season 1996, O1 amplitude
- 4.29 Tidal analysis, Dry season 1996, O1 phase
- 4.30-4.44 Measured and simulated water level at different places, Monsoon Season 1997

4

- 4.45 H-1 (West), Bhola to Char Gazaria, 17 September 1997
- 4.46 H-2 (New West), Bhola to Manpura, 13-14 September 1997
- 4.47 H-2 (New West), Bhola to Manpura, 22-23 September 1997
- 4.48 H-2 (New East), Manpura to Jahajmara, 13-14 September 1997
- 4.49 H-2 (New East), Manpura to Jahajmara, 20-21 September 1997
- 4.50 H-3, Hatia to Noakhali Coast 19 September 1997

4.51-4.66 Measured and simulated water level at different places, Monsoon Season 1996

4.67-4.88 Measured and simulated water level at different places, Dry Season 1997

- 5.1 Max velocities for Spring Tide, Dry Season 1996, Existing situation
- 5.2 Net flow for Spring Tide, Dry Season 1996, Existing situation
- 5.3 Max velocities for Neap Tide, Dry Season 1996, Existing situation
- 5.4 Net flow for Neap Tide, Dry Season 1996, Existing situation
- 5.5 Max velocities for Spring Tide, Monsoon Season 1997, Existing situation
- 5.6 Net flow for Spring Tide, Monsoon Season 1997, Existing situation
- 5.7 Max velocities for Neap Tide, Monsoon Season 1997, Existing situation
- 5.8 Net flow for Neap Tide, Monsoon Season 1997, Existing situation
- 5.9 Max velocities for Spring Tide, Dry Season 1996, Existing situation, Nijhum Dwip Local Model
- 5.10 Net flow for Spring Tide, Dry Season 1996, Existing situation, Nijhum Dwip Local Model
- 6.1 Max velocities for Spring Tide, Dry Season 1996, Intervention Schemes 1 and 3
- 6.2 Net flow for Spring Tide, Dry Season 1996, Intervention Schemes 1 and 3
- 6.3 Max velocities for Spring Tide, Dry Season 1996, All intervention Schemes, excl. 8
- 6.4 Net flow for Spring Tide, Dry Season 1996, All intervention Schemes, excl. 8
- 6.5 Max velocities for Spring Tide, Dry Season 1996, All intervention Schemes
- 6.6 Net flow for Spring Tide, Dry Season 1996, All intervention Schemes,
- 6.7 Max velocities for Neap Tide, Dry Season 1996, Intervention Schemes 1 and 3
- 6.8 Net flow for Neap Tide, Dry Season 1996, Intervention Schemes 1 and 3
- 6.9 Max velocities for Neap Tide, Dry Season 1996, All intervention Schemes, excl. 8

- 6.10 Net flow for Neap Tide, Dry Season 1996, All intervention Schemes, excl. 8 6.11 Max velocities for Neap Tide, Dry Season 1996, All intervention Schemes 6.12 Net flow for Neap Tide, Dry Season 1996, All intervention Schemes 6.13 Max velocities for Spring Tide, Monsoon Season 1997, Intervention Schemes 1 and 6.14 Net flow for Spring Tide, Monsoon Season 1997, Intervention Schemes 1 and 3 6.15 Max velocities for Spring Tide, Monsoon Season 1997, Intervention Schemes excl. 8 6.16 Net flow for Spring Tide, Monsoon Season 1997, Intervention Schemes excl. 8 6.17 Max velocities for Spring Tide, Monsoon Season 1997, All intervention Schemes 6.18 Net flow for Spring Tide, Monsoon Season 1997, All intervention Schemes 6.19 Max velocities for Neap Tide, Monsoon Season 1997, Intervention Schemes 1 and 3 6.20 Net flow for Neap Tide, Monsoon Season 1997, Intervention Schemes 1 and 3 6.21 Max velocities for Neap Tide, Monsoon Season 1997, All intervention Schemes excl. 8 6.22 Net flow for Neap Tide, Monsoon Season 1997, All intervention Schemes excl. 8 6.23 Max velocities for Neap Tide, Monsoon Season 1997, All intervention Schemes Net flow for Neap Tide, Monsoon Season 1997, All intervention Schemes 6.24 6.25 Max velocities for Spring Tide, Dry Season 1996, Intervention Schemes 1 and 3 6.26 Net flow for Spring Tide, Dry Season 1996, Intervention Schemes 1 and 3 6.27 Max velocities for Spring Tide, Dry Season 1996, All intervention Schemes 6.28 Net flow for Spring Tide, Dry Season 1996, All intervention Schemes 7.1 LRP salinity data 0.5 m below surface 7.2 Salinity, Dry season 1996 7.3 Difference in mean elevations, incl - excl the effect of salinity Minimum salinities, Dry season 1996, Existing situation 7.4 7.5 Mean salinities (ppt), Dry season 1996, Existing situation 7.6 Maximum salinities (ppt), Dry season 1996, Existing situation 7.7 Minimum salinities (ppt), Dry season 1996, Including all interventions 7.8 Mean salinities (ppt), Dry season 1996, Including all interventions 7.9 Maximum salinities (ppt), Dry season 1996, Including all interventions 8.1 Model bathymetry for wind-wave model, Meghna Estuary Model Waves from SSE, wind 8 m/s 8.2
 - 8.3 Waves from SSW, wind 8 m/s

Q

- 9.1 Sediment transport rates, Dry season 1997, Spring tide, No waves
- 9.2 Sediment transport rates, Dry season 1997, Neap tide, No waves
- 9.3 Sediment transport rates, Monsoon season 1997, Spring tide, Waves corr. to wind of 8 m/s from SSE
- 9.4 Sediment transport rates, Monsoon season 1997, Spring tide, Waves corr. to wind of 8 m/s from SSW
- 9.5 Sediment transport rates, Monsoon season 1997, Spring tide, No waves
- 9.6 Sediment transport rates, Monsoon season 1997, Neap tide, Waves corr. to wind of 8 m/s from SSE
- 9.7 Sediment transport rates, Monsoon season 1997, Neap tide, Waves corr. to wind of 8 m/s from SSW
- 9.8 Sediment transport rates, Monsoon season 1997, Neap tide, No waves

Executive Summary

Meghna Estuary Study (MES) is a component (FAP5B) of the Flood Action Plan. The study was executed from late 1995 till mid 1998 by Government of Bangladesh, Ministry of Water Resources, represented by Bangladesh Water Development Board (BWDB). DHV, The Netherlands, with associates, participated as a Consultant. Financial support for the project was granted by DGIS, The Netherlands, and Danida, Denmark.

The present report describes the numerical hydraulic modelling, which was carried out as a part of the study by Surface Water Modelling Centre (SWMC) and Danish Hydraulic Institute (DHI). Both institutes participated in the MES project organisation as specialist subconsultants to DHV.

The purpose of the numerical hydraulic modelling was to establish a tool for description of present and future hydraulic conditions in the study area. The results are required in connection with

- assessment and comparison of development scenarios; and
- impact evaluation and design of various specific schemes.

Numerical hydraulic models have been established for the Meghna Estuary in connection with other studies. However, at the early stages of MES it was realised that the bathymetric data basis on which these models were made had grown partly obsolete and inconsistent due to the dynamic morphological environment. Therefore the modelling was suspended while a comprehensive bathymetric survey was carried out.

With the new bathymetric survey data the hydrodynamic model was set-up, calibrated and validated against available measurements. Also a local hydraulic model for the Nijhum Dwip area was set-up.

In addition to the hydrodynamic models a salinity model, a wind-wave model and a sediment transport model for the study area were set-up.

All together this comprehensive model suite constitutes a valuable and versatile tool for impact assessment in connection with the development of the estuary.

Within the present study a number of intervention scenarios were modelled and key parameters extracted for analysis and interpretation within other study tasks.

On-the-job supervision of SWMC staff by the DHI numerical modelling specialist was carried out throughout the project period. It is recommended that formal training in the further development and application of the models are made.

At the end of the study period emphasis was put on making the model suite, together with the results already obtained, readily available for future use by setting up a CD-ROM archive.

Finally, in order to visualise the results, a presentation was made on CD-ROM (for viewing in a web browser) containing the main parts of the present report together with animation of key results.

Abbreviations

U

ADCP ATT BITWA BMD BTM BUET BWDB CD CSPS DANIDA DGIS DHI DHV EGIS FAP4 FAP5B FPCO GOB IFCDR KMS LGED LRP MES MIKE 21 MIKE 21 AD MIKE 21 HD MIKE 21 NSW MIKE 21 ST PWD RTK SSD SPM SSE	Acoustic Doppler Current Profiler Admiralty Tide Tables Bangladesh Inland Water Transport Authority Bangladesh Meteorological Department Bangladesh Meteorological Department Bangladesh Mater Development and Technology Bangladesh Water Development Board Chart Datum Cyclone Shelter Preparatory Study Danish International Development Agency Directorate General for International Cooperation, The Netherlands Danish Hydraulic Institute DHV Consultants BV Environmental and Geographic Information System support Project Southwest Area Water Resources Management Project Flood Action Plan project 5B (same as Meghna Estuary Study) Flood Plan Coordination Organisation Government of Bangladesh Institute of Flood Control and Drainage Research (BUET) Kort- og Matrikelstyrelsen Local Government Engineering Department Land Reclamation Project Meghna Estuary Study 2 Dimensional Modelling System developed by DHI Advection-Dispersion Module of MIKE 21 Hydrodynamic Module of MIKE 21 Nearshore Spectral Wind-Wave Module of MIKE 21 Sand Sediment Transport Module of MIKE 21 Public Works Datum Real Time Kinematics Survey and Study Division (of BWDB) Shore Protection Manual South-Southeast	
SPM	Shore Protection Manual	

2

1 Introduction

1.1 Background

Meghna Estuary Study (MES) is a component (FAP5B) of the Flood Action Plan. The study was executed from late 1995 till mid 1998 by Government of Bangladesh, Ministry of Water Resources, represented by Bangladesh Water Development Board (BWDB). DHV, The Netherlands, with associates, participated as a Consultant. Financial support for the project was granted by DGIS, The Netherlands, and Danida, Denmark.

MES built on results of the Land Reclamation Project (LRP), which was executed by BWDB from 1977 to 1991. The development objectives of MES are to increase the physical safety and social security of the some two million inhabitants of the study area, and to promote sustainable development in the coastal areas and on the islands. The immediate objectives are

- to enhance and strengthen operational knowledge of hydraulic and morphological processes in the Meghna Estuary;
- to find suitable land reclamation and bank protection methods;
- to increase the capacity of BWDB to reclaim new land and protect the eroding river banks; and
- to prepare a plan with priority projects and programmes for flood protection, agricultural and socio-economic development for early implementation.

The present report describes the numerical hydraulic modelling, which was carried out as a part of the study by Surface Water Modelling Centre (SWMC) and Danish Hydraulic Institute (DHI). Both institutes participated in the MES project organisation as specialist subconsultants to DHV.

1.2 Objectives

The numerical model can describe water levels, flow rates and current velocities, salinities, and mass budgets for solutes, as well as waves and erosive capacity. The model was established as a tool for description of present and future hydraulic conditions in the study area. The results of the modelling are required in connection with

- assessment and comparison of development scenarios; and
- impact evaluation and design of various specific schemes.

During MES, the model was applied for these purposes. Upon completion of the study, the model remains as a tool that can be used in connection with the future development of Meghna Estuary, at the general planning level as well as at the individual project level.

2 Methodology

2.1 Background

The model that was set-up, calibrated and applied for MES is the most recent in a series of numerical hydraulic models of the Estuary. In addition to LRP, previous studies comprise

- Pussur-Sibsa River and Karnafuli Entrance, Ministry of Shipping (1989-92);
- Numerical Simulation of Tides and Saline Water Intrusion, IFCDR, BUET (1989);
- Cyclone Protection Project II, BWDB (1990-91);
- Southwest Area Water Resources Management Project (FAP4), FPCO (1991-93); and
- Cyclone Shelter Preparatory Study (CSPS), Phases I and II, LGED (1995-98).

All these studies involved application of the same modelling system (DHI's MIKE 21, previously named System 21), in a set-up which was gradually upgraded in the course of time. In this connection, large amounts of data and information have been compiled.

Satellite imagery analyses made by EGIS for MES in 1996 showed, however, that the planform of the estuary had changed comprehensively in recent years due to its dynamic morphological environment. Against expectations, the data basis that was available at the time had grown partly obsolete and inconsistent, which caused considerable difficulties in connection with the CSPS model calibration. Further, during that project, it appeared that it was difficult to identify the reference level for the estimated storm surge heights in the field. This was a main reason for initiating the joint CSPS/MES geodetic survey in the area, which took place in the first half of 1996. At the same time, it was decided to suspend the MES modelling activities until better data had been produced. The work was discontinued temporarily, while nearly the entire study area was surveyed by MES from BWDB/SSD's vessel 'Anwesha'.

The MES model, as described in this report, is based on planform, bathymetry and calibration data from 1996-97. Therefore, it is superior to former models with respect to description of present conditions in the area.

2.2 Modelling Procedure

Where earlier models had adopted a nested grid philosophy i.e. with models covering not only the Meghna Estuary but also the northern part of the Bay of Bengal, it was decided to concentrate only on the Meghna Estuary in the present study. In this way it was anticipated that calibration problems which were experienced in the earlier models and which were made more complicated through the use of a nested model approach could be avoided.

Furthermore it was decided to calibrate the model not only against tidal water level variations as earlier models had been, but also against actual water level measurements combined with flow measurements. The measurements and the new bathymetric survey data would constitute a coherent set of model data thus facilitating an improved model calibration.

The area covered by the numerical model is shown in figure 2.1.

The grid spacing of the model was selected on the basis of:

- required resolution of the flow field within the estuary
- available computer resources

On this basis a resolution of 600 meters in the whole of the estuary was chosen with local models having a resolution (i.e grid spacing) of 200 meters.

RD

LIBRARY.

The model has two open boundaries:

- one at Chandpur to the North, where water level measurements were available
- and one to the South, where water level predictions were available at Kutubdia Island.

As the flow in the estuary differs considerable from the dry season to the monsoon season one calibration period was selected for each of these seasons. Furthermore two validation periods were selected, one from each season.

The procedure for the hydrodynamic modelling consisted of the following steps:

- making a bathymetry based on the new survey data combined with satellite imagery and other data sources
- calibration and validation
- applying the model for a number of periods with known conditions (base runs)
- applying the model for a number of selected scenarios (including intervention schemes)

In addition to hydrodynamic modelling also salinity modelling, wave modelling and sediment transport modelling were conducted for the study area.

A calibration of the salinity model was carried out while no data were available for a calibration of the wind-wave model.

Calibrating the sediment transport model was outside the scope of the present study. The results of this model are therefore to be considered as indicative only.

2.3 MIKE 21 Modelling System

For all types of modelling carried out during the numerical modelling study DHI's Modelling System for two-dimensional flows in one layer, MIKE 21, was applied. MIKE 21 is a software package containing a comprehensive modelling system for 2D free-surface flows. MIKE 21 is applicable to the simulation of hydraulic and related phenomena in lakes, estuaries, bays, coastal areas and seas where stratification can be neglected.

For the present study four different modules of MIKE 21 were applied:

- The Hydrodynamic Module, MIKE 21 HD
- The Advection-Dispersion Module, MIKE 21 AD
- The Nearshore Spectral Wind-wave Module, MIKE 21 NSW and
- The Non-cohesiveSediment Transport Module, MIKE 21 ST

Each of these modules are described in Appendices A to D.

2.4 Overview of Model Simulations

The following model simulations were carried out during the study:

Existing situation (ie with no interventions)

- Hydrodynamic simulations, each 17 days (the whole model area):
 - Dry season 1996 (calibration period and base run)
 - Monsoon season 1996 (validation period)
 - Dry season 1997 (validation period)
 - Monsoon season 1997 (calibration period and base run)
- Hydrodynamic simulation, 2 days during spring tide (local model around Nijhum Dwip):
 Dry season 1996
- Salinity simulation, 17 days (the whole model area):
 - Dry season 1996
- Wind-wave simulations, stationary conditions (whole model area):
 - wind of 8 m/s from SSE (water level corresponding to monsoon season 1997)
 - wind of 8 m/s from SSW (water level corresponding to monsoon season 1997)
- Sediment Transport simulations (whole model area):
 - Dry season 1996, spring tide, no waves
 - Dry season 1996, neap tide, no waves
 - Monsoon season 1997, spring tide, waves from SSE
 - Monsoon season 1997, spring tide, waves from SSW
 - Monsoon season 1997, neap tide, waves from SSE
 - Monsoon season 1997, neap tide, waves from SSW

Including interventions 1 and 3 (see figure 6.1)

- Hydrodynamic simulations, each 17 days (the whole model area):
 - Dry season 1996
 - Monsoon season 1997
- Hydrodynamic simulation, 2 days during spring tide (local model around Nijhum Dwip):
 - Dry season 1996

Including all interventions except 8 (see figure 6.1)

Hydrodynamic simulations, each 17 days (the whole model area):

- Dry season 1996
- Monsoon season 1997

Including all interventions (see figure 6.1)

- Hydrodynamic simulations, each 17 days (the whole model area):
 - Dry season 1996
 - Monsoon season 1997
- Hydrodynamic simulation, 2 days during spring tide (local model around Nijhum Dwip):
 Dry season 1996

YS

- Salinity simulation, 17 days (the whole model area):
 - Dry season 1996

The simulations are described in Chapters 4 through 9.

Table 3.1 Model grid definitions

	Meghna Estuary Model	Nijhum Dwip Local Model
Origo (longitude, latitude) (deg)	89.9710, 21.6329	90.8460, 21.9639
Origo (easting, northing) (m BTM)	497000, 392000	587337, 428873
Orientation (deg)	0.0	25.34
Grid extend x-dir., y-dir	0360, 0291	0132, 0157
Grid spacing (m)	600	200
Model area (km ²)	37948	841

The basic data for the bathymetry for this model was the same as was used for the 600 meter model bathymetry, and the interpolation and smoothing procedure were similar to the one applied for the 600 meter bathymetry.

Drawing 3.6 shows the 200 meter bathymetry of the Local Nijhum Dwip Model, while the model grid definition is given in table 3.1. Finally figure 3.1 shows the location of the model.

7

4 Hydrodynamic Model Set-up

4.1 General

Based on the availability of measurements of water levels, wind and discharge (ADCP-data), the four simulation periods listed in table 4.1 were selected. Each simulation covers a period of 17 days allowing for warm-up of the model (1-2 days) plus a neap tide and a spring tide period.

Table 4.1 Simulation periods

Simulation name	Simulation period			
	start	end		
Dry season 1996 (calibration period and base run)	03 Feb 96 00:00	20 Feb 96 00:00		
Monsoon season 1996 (validation period)	23 Aug 96 00:00	09 Sep 96 00:00		
Dry season 1997 (validation period)	01 Jan 97 00:00	18 Jan 97 00:00		
Monsoon season 1997 (calibration period and base run)	08 Sep 97 00:00	25 Sep 97 00:00h		

The simulation of the hydrodynamics in the Meghna Estuary was carried out using DHI's Hydrodynamic Model for 2D free-surface flows, MIKE 21 HD. A description of the model is included in appendix A.

For the model the following input data were applied in addition to the model bathymetry:

Basic model parameters:

time step of 60 seconds

Initial conditions:

- water level of 0.46 m PWD corresponding to MSL
- cold start, i.e. all fluxes equal zero
- soft start of 6 hours

Boundary conditions:

- northern boundary: measured water levels (relative to PWD) at Chandpur
- southern boundary: tidal level from Kutubdia predicted from tidal constituents (from ATT [1]) as listed in table 4.2. Seasonal variations in the mean water level of -0.3 m (January), -0.4 m (February), 0.5 m (August), and 0.4 m (September) were applied. The predictions were finally related to PWD by adding 0.46 m. (See the section on model calibration for a final description of this boundary).

Driving forces:

- wind speed and direction measured at Hatia (from BMD) were applied for the whole model area (see drawings 4.1 to 4.4)
- inflow from rivers except for Lower Meghna during the two monsoon simulations: Feni River: 2500 m³/s and Karnafuli River: 600 m³/s. The flow from these two rivers was ignored during the dry season.

Calibration factors:

- bed resistance (see the model calibration below)
- wind friction factor: varying linearly from 0.0016 at 0 m/s to 0.0026 at 24 m/s

79

• momentum dispersion coefficients (eddy coefficients, E): $E = 0.015 \cdot \Delta x^2 / \Delta t$

where Δx is the grid spacing Δt is the time step

Table 4.2Tidal constituents at Kutubdia Island (from ATT [1])

Tidal constituent	Amplitude (m)	Phase (deg) (UTC+6)
M2	1.16	337
S2	0.48	6
K1	0.18	349
01	0.07	347
1/4 diurnal	0.017	241
1/6 diurnal	0.014	26

4.2 Hydrodynamic Model Calibration, 600 m Model

The model calibration was based on:

- comparison of measured water levels and predicted tidal levels with simulated water levels for the dry season period in 1996
- comparison of tidal constituents derived from the dry season period in 1996 with tidal constituents from tidal tables
- comparison of water levels, predicted tidal levels and measured discharges with simulated data for the monsoon season period in 1997.

Emphasis was put on the water level comparison for the dry season period in 1996.

The bed friction and the water level variation at the southern boundary were used as calibration factors.

The final bed friction coefficients (Manning Numbers) are shown in drawing 4.5. Manning Numbers of up to 100 m^{1/3}/s were applied in those parts of the model describing flows through rivers and channels, while Manning Numbers of 60 m^{1/3}/s were applied in the open parts of the model area.

The high Manning Numbers (i.e the low bed resistance) in the rivers and channels were necessary in order to compensate for the fact that a computational grid of 600 m is barely adequate to resolve the flow in the braided river channels. Especially flows running at an angle of 45° relative to the computational grid require a small grid size to be resolved without artificial loss of energy. However, using a smaller grid spacing was not possible as the CPU time requirements would thus become too high.

The final time shift of the tidal wave along the southern boundary together with the factor applied to the tidal level is listed in table 4.3.

The time shift reflects the fact that the tidal wave does not travel in an exactly south to north direction but arrives first at the western part of the boundary. The factor on the water levels shows the difference in tidal elevation along the boundary.

Grid point	Time shift (hours)	Factor on water levels
1	+1 1/25	0.90
50	+.1 1/4	0.925
100	+1	0.95
150	+3/4	0.975
200	+1/2	1.0
250	+1/4	1.0
300	0	1.0
326	+1/4	1.0

Table 4.3 Time shift and factor on water level along southern model boundary

4.3 Comparison of Measurements and Simulation Results, Dry Season 1996

Comparison between measured and calculated time series were made at 10 stations where measurements were available and 8 stations where predicted tidal elevations (from ATT [1].) were available. Results are shown in drawings 4.6 through 4.21. The stations are shown in figure 4.1 while their BTM and model coordinates are listed in table 4.4.

An evaluation of each individual station is given in table 4.5.

In addition to standard chart datum (CD) to PWD corrections it has been found necessary to apply extra corrections to the water level measurements and tidal predictions in order to achieve the fit shown. These extra corrections together with the standard corrections are listed in table 4.6.

Station	BTM coo (m	15	Model coor	Depth in model (m PWD)	
	Easting	Northing	J	К	
Chandpur	566690	567978	114	291	-3.0
Char Chenga	610691	458354	188	111	-8.9
Chittal Khali	589871	508155	155	189	-2.9
Dasmunia	557041	458774	100	110	-11.2
Daulatkhan	573636	502898	128	185	-3.9
Dhulasar	522957	415600	43	39	-2.0
Dhulia	555110	494762	98	172	-7.6
Hatia Bar	597713	486428	168	157	-6.8
Khal No. 18	685510	457713	316	111	-3.6
Khepupara	522935	431061	43	65	-4.0
Kochopia	568946	434527	121	66	-1.2
Kutubdia Island	689408	419003	322	45	-6.3
Norman's Point	637276	454036	317	103	
Rabnabad Channel	537828	440055	68	80	-3.5

Table 4.4	BTM and model	coordinates of	recording stations	and tidal	prediction stations
-----------	---------------	----------------	--------------------	-----------	---------------------

10

Station	BTM coo (n	and 14	Model co	Depth in model (m PWD)	
	Easting	Northing	J	К	
Ramdaspur (Ilsa Ghat)	567662	522585	118	216	-3.5
Sandwip	649194	482135	254	150	-9.0
MES 1	540014	412723	72	35	-4.1
MES 2	591975	426766	158	58	-9.4
MES 4	664455	500204	279	180	-9.0
MES 5	637347	513778	234	203	-5.7
MES 6	592000	500000	158	180	-5.3
MES SE	694105	413510	329	36	-5.1

- 4

m

Figure 4.1 Locations used for comparison of measured/predicted water levels with simulated water levels.

Station	Measurement (M) and/or tidal prediction (TP)	
Chandpur	M	This is the prescribed northern boundary. Therefore a perfect fit is seen.
Char Chenga	M	A good fit.
Chittal Khali	M	A good fit.
Dasmunia	M	A good fit.
Daulatkhan	M	A good fit.
Dhulasar	TP	The amplitude of the simulation results are a little higher than the tidal prediction.
Dhulia	М	Although the amplitude of the simulation results are smaller that the measured amplitudes the fit is considered good.
Hatia Bar	TP	The simulated amplitudes are smaller than the predicted ones. These however are based on tidal constants which are most likely computed when the flow in this changing and dynamic area was different.
Khal No. 18	TP	A good fit.
Khepupara	М	Khepupara is up a small river where a 2-D model is not very accurate. Most likely this explains the phase difference between simulated and predicted water levels.
Kochopia	M	A minor shift in mean level and in phase is found. Otherwise a good fit.
Kutubdia Island	TP	A very good fit as this station is applied at the nearby southern model boundary.
Norman's Point	TP	A good fit.
Rabnabad Channel	TP	A good fit.
Ramdaspur (Ilsa Ghat)	M & TP	The amplitude of the simulation results is considerable smaller than the measurements but fit the tidal prediction reasonable well. (It should be noted that the simulation results in this part of the model are very sensitive to changes in the depth of the Lower Meghna.)
Sandwip	M&TP	A good fit.

Table 4.5Comparison of measured/predicted water levels and simulated water levels for
dry season 1996 period.

20

 Table 4.6
 Water level corrections for measurements (meas) and tidal stations (tide)

Station	Meas*	ATT tide station no.	Season- al corr. on tide	MSL to PWD corr. for tide	Extra corr. on tide	CD to PWD corr. on meas.	Extra corr. on meas.
Chandpur	X					0.25	
Char Chenga	X					-1.18	-0.22
Chittal Khali	X					-1.35	
Dasmunia	X					-0.55	
Daulatkhan	×					0.04	

Station	Meas*	ATT	Season-	MSL to	Extra	CD to	Extra
		tide	al corr.	PWD	corr. on	PWD	corr. on
		station	on tide	corr. for	tide	corr. on	meas.
		no.		tide		meas.	
Dhulasar		4502	**	0.46	0.18		
Dhulia	×					-0.66	0.27
Hatia Bar		4506	**	0.46	0.53		
Khal No. 18		4511	**	0.46	0.10		5
Khepupara	X					-1.96	0.18
Kochopia	(X)					-1.60	
Kutubdia Island		4514	**	0.46	0.06		
Norman's Point		4510	**	0.46	0.09		
Rabnabad Channel		4503	**	0.46	0.28		
Ramdaspur (Ilsa Ghat)	X	4507a	**	0.46	1.02	-0.66	
Sandwip	X	4507	**	0.46	0.07	-1.71	-0.85
MES 1	(X)						-0.76
MES 2	(X)						-0.75
MES 4	(X)						-0.95
MES 5	(x)						-1.26
MES 6	(x)						-0.40
MES SE	(x)						-0.45

22

* (x): Measurements only available for one of the four calibration and validation periods, ie the dry season 1997 period.

** Seasonal variations for the four calibration and validation periods are given in table 4.7.

Table 4.7	Tidal seasonal	variations	(from ATT	[1])
-----------	----------------	------------	-----------	------

Station	ATT tide station no.	Dry season period 1996	Monsoon season period 1996	Dry season period 1997	Monsoon season period 1997
Dhulasar	4502	-0.40	0.45	-0.30	0.45
Hatia Bar	4506	-0.40	0.45	-0.30	0.45
Khal No. 18	4511	-0.40	0.45	-0.30	0.45
Kutubdia Island	4514	-0.40	0.45	-0.30	0.45
Norman's Point	4510	-0.40	0.45	-0.30	0.45
Rabnabad Channel	4503	-0.40	0.45	-0.30	0.45
Ramdaspur (Ilsa Ghat)	4507a	-0.70	0.95	-0.60	0.95
Sandwip	4507	-0.40	0.45	-0.30	0.45

A tidal analysis of the simulation has been carried out in order to make a comparison of tidal constituents from [1] with tidal constituents from the model simulation. It should be noted that the length of the simulation period (16 days) is not sufficient to extract important tidal constituents like K_2 , as the magnitude of the tidal constants from the model simulations are influenced by non-resolved constituents. Furthermore wind is included in the simulation which may also influence the magnitude of the constants.

Co-tidal charts showing amplitudes and phases for the four main tidal constituents (M_2 , S_2 , O_1 and K_1) are shown in drawings 4.22 through 4.29. Furthermore tables 4.8a and b list a comparison between tidal constituents from [1] and from the tidal analysis of the simulation, while table 4.8c lists the shallow water corrections also included in the ATT. Generally a good agreement is found keeping in mind that the simulation was not intended for tidal analysis but for comparison on a time series basis. If tidal constituents are required for the study area a longer tide-only simulation should be carried out and a tidal analysis performed

22

Station		M ₂ amplitude (m)		M ₂ phase (deg)		plitude n)	S ₂ phase (deg)	
	ATT	model	ATT	model	ATT	model	ATT	model
Dhulasar	0.73	0.92	317	312	0.35	0.42	358	6
Hatia Bar	1.19	0.99	69	62	0.47	0.36	111	119
Khal No. 18	1.63	1.53	15	5	0.53	0.64	55	62
Kutubdia Island	1.16	1.31	337	335	Ø.48	0.58	6	27
Norman's Point	1.36	1.48	359	3	0.54	0.62	30	59
Rabnabad Channel	0.75	0.77	336	348	0.29	0.33	27	43
Ramdaspur (Ilsa Ghat)	0.67	0.57	136	118	0.67	0.19	179	174
Sandwip	1.84	1.79	33	36	0.65	0.74	81	97

Table 4.8aComparison of semi-diurnal tidal constituents from ATT [1]. and the dry
season 1996 period simulation

Table 4.8bComparison of diurnal tidal constituents from [1]. and the dry season 1996period simulation

Station		K ₁ amplitude (m)		K₁ phase (deg)		O ₁ amplitude (m)		O₁ phase (deg)	
	ATT	model	ATT	model	ATT	model	ATT	model	
Dhulasar	0.13	0.14	9	16	0.04	0.07	355	339	
Hatia Bar	0.12	0.12	46	62	0.07	0.08	12	13	
Khal No. 18	0.18	0.18	12	30	0.09	0.09	2	353	
Kutubdia Island	0.18	0.18	349	18	0.07	0.08	347	346	
Norman's Point	0.18	0.18	351	30	0.06	0.09	354	352	
Rabnabad Channel	0.16	0.12	25	35	0.05	0.07	10	351	
Ramdaspur (Ilsa Ghat)	0.11	0.08	82	104	0.07	0.06	57	49	
Sandwip	0.15	0.18	25	44	0.09	0.09	1	4	

Table 4.8cShallow water corrections included in ATT [1]

Station	1/4 di	urnal	1/6 diurnal		
	Amplitude (m)	Phase (deg)	Amplitude (m)	Phase (deg)	
Dhulasar	0.095	227			
Hatia Bar	0.097	278			
Khal No. 18	0.026	249	0.007	59	
Kutubdia Island	0.017	241	0.014	26	
Norman's Point	0.045	240			
Rabnabad Channel	0.135	250	0.051	106	
Ramdaspur (Ilsa Ghat)	0.279	280	0.080	165	
Sandwip	0.041	289	0.011	67	

Based on the comparisons shown and discussed above the model calibration is considered satisfactory.

20

4.4 Comparison of Measurements and Simulation Results, Monsoon Season 1997

At 9 stations, water level measurements were available and at 8 stations, predicted tidal elevations (from ATT [1].) were available. For these stations comparisons with simulated water levels are shown in drawings 4.30 through 4.44. The stations are shown in figure 4.1 while their BTM and model coordinates are listed in table 4.4.

Also, comparisons of discharges have been made. These are shown in drawings 4.45 to 4.50. The cross sections where the ADCP measurements are made are shown in figure 4.2 Generally the measured/predicted water levels and the simulated water levels compare well although not as good as for the dry season 1996 period, while the discharge measurements and the simulated discharge compare well.

In all the calibration is considered to be satisfactory.

Figure 4.2 Locations of cross sections with ADCP measurements used for comparison with simulated discharges

4.5 Hydrodynamic Model Validation

For validation a dry season period in 1997 and a monsoon period in 1996 (see table 4.1) were simulated using the calibrated model.

Comparisons of time series of measured/predicted and simulated water levels for the two simulations are shown in drawings 4.51 through 4.88. The stations are shown in figure 4.1 while their BTM and model coordinates are listed in table 4.4.

For both periods, the comparison is satisfactory, although the concordance is better for the dry season period than for the monsoon season period as it was the case for the model calibration.

4.6 Nijhum Dwip Local Hydrodynamic Model

No measurements were available for a calibration or validation of the Nijhum Dwip Local Model. Therefore the same model parameters were used for this model as for the surrounding 600 meter model.

A local model simulation was carried out covering 4 tidal periods during spring tide of the dry season 1996 period: 06 February 1996 00:00 to 8 February 1996 01:30. The boundary conditions were taken from the surrounding 600 meter model.

The simulation results are discussed in section 5.3.

5 Hydrodynamic Baseline Simulations

5.1 Dry Season 1996

As reference simulation (or baseline simulation) for the dry season the calibration simulation of 1996 was selected.

In order to be able to assess the impact of various interventions on the flow patterns in the estuary the following parameters were extracted for each grid point in the model:

- maximum velocities during spring tide
- maximum velocities during neap tide
- net flow during spring tide
- net flow during neap tide

These parameters are shown in drawings 5.1 to 5.4.

5.2 Monsoon Season 1997

As base line simulation for the monsoon season the calibration simulation of 1997 was selected.

The base line conditions for the monsoon season were extracted and presented similar to the dry season base line simulation.

These maximum velocities and net flows for the monsoon season base line simulation are shown in drawings 5.5 to 5.8.

5.3 Nijhum Dwip Local Model, Dry Season 1996

For the Nijhum Dwip Local Model the base line simulation covered four tidal cycles during spring tide, dry period 1996 as described under local model set-up.

From this simulation the following parameters were extracted:

- maximum velocities, spring tide (see drawing 5.9)
- net flow, spring tide (see drawing 5.10)

20

17

6 Hydrodynamic Simulations including Intervention Schemes

6.1 Dry Season 1996

27

Three different scenarios involving three different combinations of intervention schemes (see figure 6.1) were considered in hydrodynamic simulations of the dry season period in 1996:

- including interventions no. 1 and 3
- including all interventions except no. 8
- including all eight interventions

For each of these three scenarios the following parameters were extracted from the simulations for comparison with the base line simulation:

- maximum velocities during spring tide
- maximum velocities during neap tide
- net flow during spring tide
- net flow during neap tide

These parameters are shown in drawings 6.1 through 6.12.

Figure 6.1 Intervention schemes considered in the numerical modelling

6.2 Monsoon Season 1997

Simulations were made for the monsoon season 1997 similar to those carried out for the dry season 1996, and maximum velocities and net flows were extracted (see drawings 6.13 through 6.24).

6.3 Nijhum Dwip Local Model, Dry Season 1996

For the local model two different scenarios (see figure 6.1) were considered in hydrodynamic simulations of four tidal periods (spring tide) during the dry season period in 1996:

- including intervention no. 3
- including interventions no. 3 and 4

For each of these scenarios the following parameters were extracted from the simulations for comparison with the baseline simulation:

- maximum velocities during spring tide
- net flow during spring tide

These parameters are shown in drawings 6.25 through 6.28.

7 Salinity Modelling

7.1 General

The salinity in the Meghna Estuary varies considerably from area to area and from season to season depending mainly on the outflow from the rivers and the tidal flow entering from the sea. During the monsoon season the large outflow from the rivers pushes the salt water well out into the Bay of Bengal, while the salt water during the dry season enters the estuary and the southernmost parts of the rivers emptying into the estuary.

The salinity is an important factor for many parts of the present study. Examples are fisheries, agriculture (especially salinity intrusion) and sedimentation rates.

In the present numerical study only the salinity variation during the dry season has been simulated as the salinity front during this season lies within the study area. If the salinity variation during the monsoon season is to be studied a much larger model area would be required.

7.2 Set-up of Salinity Model

The hydrodynamic model described in the previous chapters is a depth-integrated model assuming one-layer vertically homogeneous flow. In estuaries stratified two-layer flow occurs often with fresh water on top of salt water. In the Meghna Estuary the two layers are, however, well mixed most of the time (according to [2]), so the use of a one-layer model is therefore justified.

DHI's Advection-Dispersion Model, MIKE 21 AD, was applied for the same model area (and using the same model bathymetry) as the hydrodynamic model described in the previous chapters. MIKE 21 AD simulates the spreading of a dissolved or suspended substance in an aquatic environment under the influence of the fluid transport and associated natural dispersion processes. A more detailed description is given in Appendix B.

In addition to simulating the transport and spreading of salt and fresh water MIKE 21 AD also takes into account the density driven currents, i.e. the current generated by the difference in density of fresh water and saline water. The results of MIKE 21 AD is thus not only salinity concentration fields but also water levels and fluxes like MIKE 21 HD. By comparing the water levels from the two models the effect of the density differences can be quantified.

7.3 Salinity Model Calibration

Two sources of salinity data for calibrating the salinity model for a dry season period were available:

- LRP data [2] (0.5 m above sea bed and 0.5 m below surface)
- MES data (profiles)

As the LRP data covered the estuary more extensively then the MES data it was decided to base the salinity modelling on the LRP data by using these data as the initial salinity concentration within the estuary and at the boundary of the salinity model. The MES data were used for model calibration in combination with the LRP data. Drawing 7.1 shows the initial salinity concentrations based on the LRP measurements.

As calibration period for the dry season the period in February 1996 already applied for the hydrodynamic model calibration was selected.

The calibration factors in MIKE 21 AD are dispersion coefficients in the x and y-direction, D_x and D_y , which describe the subgrid scale mixing. Suitable methods for determining these coefficients are subject to intense research but no final formulations have been found. A number of indicative formulations do however exist, and one of these reads:

 $\mathsf{D} = \mathsf{K} \bullet \Delta \mathsf{x}^2 / \Delta \mathsf{t}$

where D is the dispersion coefficient in the x or y direction K is a constant Δx is the grid spacing

∆t is the time step

Using a value for K of 0.015 as was used for the eddy coefficient in the hydrodynamic simulations yields a first guess of 90 m²/s for the dispersion factor, which is applied both for D_x and D_y .

A salinity simulation using these dispersion factors does however give salinity concentrations, which are too small in the inner parts of the estuary when comparing both to LRP and MES data. The dispersion coefficient is therefore increased by a factor of 5 to 450 m²/s, which yields results comparing satisfactory to the measurements (see below). As only limited data are available for calibration of the salinity no further calibration seemed justified.

Drawing 7.2 show the variation of the salinity at different stations throughout the simulation. From this drawing it is concluded that the salinity variations have reached a stable level (taking into account the varying tidal conditions) around 13 February 1996. Minimum, mean and maximum salinities are therefore extracted for the last 14 tidal cycles of the simulation, i.e from 12 February 1996 18:30 to 20 February 1996 00:00. This period also covers the transition from neap to spring tide (see the hydrodynamic model calibration for February 1996).

Table 7.1 shows a comparison of MES measurements in different parts of the estuary (see figure 7.1) with extracted salinity statistics from the simulation. The two sets of data generally show a good agreement:

- Around northern and eastern part of Hatia a very good agreement is found
- Around northern half of Sandwip

the simulation results vary between 13 ppt and 19 ppt, while most of the measurements are between 3 and 4 ppt. A salinity of 16 ppt has however also been measured close to a location where 3.4 ppt was measured only two days earlier, thus documenting a large salinity variation in time. By looking at the flow pattern during the measuring period an explanation for the variation and thus the difference between the simulation results and the measurements may be found.

 South and east of Nijhum Dwip: Generally a very good agreement between measurements and simulation results is found. The only difference occurs in a location with a measured salinity of 4.5 and 8.5 ppt, where the maximum salinity simulated was 3.9 ppt.

Southwest corner of study and south of Char Montaz:

(20

The measurements in this area vary between 10 and 14 ppt, which is comparable to the simulation results. However in one location the measurement is smaller that the simulation result while in another one the measurement is larger than the simulation results. This discrepancy illustrates the large salinity variations in this part of the study area, variations which are also found in the simulation results. The comparison is thus considered to be satisfactory.

Area	Position		Measurem	ents	Model si	mulation	results
	Easting	Northing	Date	Depth average salinity (ppt)	Min. salinity (ppt)	Mean salinity (ppt)	Max. salinity (ppt)
Around Northern	610150	472736	29-jan-97	12.2	1.3	4.5	10.5
and Eastern part of	610243	473018	02-feb-97	6.3	1.3	4.6	10.6
Hatia	609563	477570	03-feb-97	10.7	1.3	4.9	11.0
	611069	486729	26-feb-97	2.5	0.2	2.6	8.9
	614263	480411	26-feb-97	3.0	0.4	5.3	12.2
	623242	454113	04-feb-97	12.3	11.3	12.8	13.9
Around Northern	663610	501628	27-feb-97	3.2	15.3	17.5	19.0
half of Sandwip	664128	499958	01-mar-97	16.4	15.7	17.7	19.2
	646987	486798	01-mar-97	3.4	14.4	15.4	16.4
	644780	493520	02-mar-97	3.4	12.9	14.9	16.7
	647021	486864	03-mar-97	3.4	14.4	15.4	16.4
South and East of	599503	439430	22-jan-97	4.5	1.7	2.3	3.9
Nijhum Dwip	600070	439411	26-feb-97	8.5	1.7	2.3	3.9
	604569	447173	24-jan-97	4.6	1.6	2.3	5.4
	591570	427291	25-jan-97	4.2	1.2	3.3	9.5
	604503	447114	25-jan-97	4.7	1.6	2.3	5.3
	609540	426473	25-jan-97	7.9	5.8	9.2	11.8
	611734	431077	27-jan-97	7.0	5.4	9.5	12.1
	603739	425163	28-jan-97	6.8	3.3	5.8	8.0
Southwest corner	536009	394292	26-mar-97	13.7	19.6	24.3	26.5
of study area and	530421	411814	28-mar-97	10.7	7.7	13.3	21.9
South of Char	526622	412950	29-mar-97	10.2	6.9	12.9	21.3
Montaz	537494	411913	30-mar-97	12.7	9.8	13.0	18.8
	552648	421998	28-mar-97	14.1	2.8	5.2	8.3
	565342	417901	27-mar-97	11.2	2.5	5.9	11.8

Table 7.1	Comparison o	f measured and	simulated salinitie.	s during the dry season.
-----------	--------------	----------------	----------------------	--------------------------

7.4 Salinity Model Simulations

Two salinity simulations as listed in table 7.2 have been carried out. In addition to the simulation carried out for calibration one simulation for the same period but including all intervention schemes has also been made. For each of these simulations the minimum, mean and maximum salinity have been extracted.

Furthermore the difference in **mean water** level caused by the inclusion of density differences in the hydrodynamic computations is shown in drawing 7.3. From this drawing it is seen that the mean water level in the estuary is increased by up to 10 cm by including this effect.

00

		Chandpur						
550000								
525000		Lowel Medinio			ka ^{nt} River			
500000					Jrir Char Gnotico C	and the second second second		
475000			0	2 2 2	Sandwip		2 V	10
450000		Bhola	anne			Chiffe	ogong o ^{nde}	
425000	Char Rangabali	Char Char	¹¹ Shanbazpur Ch ¹² Shanbazpur Ch ¹² Shanbazpur Ch ¹² Shanbazpur Ch ¹² Shanbazpur Ch ¹² Shanbazpur Ch	1 1				
		Montaz Mukri					Kutubdi a Islan d	
400000	000095	575000	60000	625000	650000	675000	700000	

Figure 7.1 Location of measured salinities used for comparison with simulated salinities

Table 7.2 Salinity model simulations

Intervention Schemes	Min., mean and max. salinity shown in drawings
Existing situation (no intervention schemes)	7.4, 7.5 and 7.6
Including all interventions	7.7, 7.8 and 7.9

8 Wind-Wave Modelling

8.1 General

2V

The purpose of the wind-wave modelling was to determine the wind-wave fields for a number of normally occurring wave conditions within the study area. The simulated wind-wave fields were then subsequently applied in the sediment transport simulations.

8.2 Set-up of Wind-Wave Model

Wind-waves within the Meghna Estuary consist of two types of waves:

- Waves generated within the estuary by the local wind, which may either be the prevailing Northeast or Southwest monsoon wind, the local land/sea breeze, the winds associated with depressions or thunder storms, or in rare cases wind associated with a cyclone.
- Waves generated in the Bay of Bengal to the south of and outside the study area. These
 waves may be generated by the Southwest monsoon or by depressions or in rare cases
 by cyclones.

For the sediment transport simulations it was decided to consider waves corresponding to the Southwest monsoon only. On this basis, the model area and the software for making the wind-wave calculations were selected.

DHI's Nearshore Spectral Wind-Wave Model, MIKE 21 NSW, was chosen as this model computes the stationary wave field within a given area for given offshore wave conditions (i.e. wave conditions entering the area from the South) and for given wind conditions.

Generally MIKE 21 NSW describes the growth and decay of short-period waves in nearshore areas. The model takes into account the effects of

- refraction and shoaling due to varying depth
- wind generation
- energy dissipation due to bottom friction and wave breaking.

A short description of MIKE 21 NSW is given in Appendix C.

As only southwest monsoon winds were considered, the wave model area was chosen to coincide with the model area used for the hydrodynamic simulations. If for example waves generated by cyclonic winds were to be computed, a non-stationary wind-wave model covering the whole of the northern part of the Bay of Bengal should have been applied.

Due to the computational scheme applied in MIKE 21 NSW, the grid spacing in the main wave direction should be only 1/4 of the grid spacing perpendicular to the main wave direction. Therefore a grid spacing of 150 m x 600 m was applied. The model bathymetry is shown in drawing 8.1. The depth corresponds to mean sea level computed during the monsoon season simulation for 1997 by the hydrodynamic model.

As no wave measurements were available, no calibration was carried out. The wave fields computed by an uncalibrated model do however still give a good description of the wave conditions in the area. In the calculations the following parameters were applied:

- wave breaking (using Battjes and Janssens formulation): γ_1 =1.0, γ_2 =0.8 and α =2.0
- bottom friction: Nikuradse roughness parameter, k_N of 0.0002 m

Significant wave heights and wave periods required at the southern model boundary (i.e. the boundary facing the Bay of Bengal) were calculated using the revised Shore Protection

Manual (SPM) formulae given in [3]. A fetch length of 500 km, a 10 m wind speed of 8 m/s and the actual water depth along the boundary were applied.

8.3 Wind-Wave Model Simulations

For use in the sediment transport simulations the wind-wave model simulations listed in table 8.1 were carried out.

Table 8.1 Wind-wave model simulations

Wind conditions	Wave conditions shown in drawings
8 m/s from South-Southeast	8.2
8 m/s from South-Southwest	8.3

9 Sediment Transport Modelling

9.1 General

9%

Making a numerical sediment transport model of the Meghna Estuary is a large complicated task requiring extensive model calibration. Within the present study period, only a limited effort was envisaged and carried out. The results are thus indicative only and can be considered as a basis for further studies.

9.2 Set-up of Sediment Transport Model

The type of sediment transport model required for a specific area depends on the grain size of the sediment as well as on the governing transport processes. For the Meghna Estuary the sediment can be considered as largely non-cohesive, while the main governing sediment transport mechanisms are the tidal flow and the outflow from the rivers. The effect of the wind-waves on the sediment transport rates is also of importance and should be considered.

On this background DHI's Sand Transport Module of MIKE 21, MIKE 21 ST, was chosen. This model calculates sediment transport rates on a rectangular grid covering the area of interest on the basis of

- hydrodynamic data obtained from MIKE 21 HD simulations,
- wave data obtained from a simulation using MIKE 21 NSW (or another of the MIKE 21 wave models)
- characteristics of the bed material (like grain size and distribution)

When computing the sediment transport rates, MIKE 21 ST takes into account the following effects:

- pure current flow or combined wave-current flow
- arbitrary wave propagation angle relative to the flow direction
- breaking/non-breaking waves
- graded/uniform bed material
- plane/ripple-covered bed

For the present study the formulation of the total load (suspended load plus bed load) by Bijker was applied for pure current flow. For more details on MIKE 21 ST see appendix D.

The following bed material characteristics were applied in the simulations:

• d₅₀ = 0.099 mm, grading = 1.44, porosity = 0.4 and relative density = 2.57

Furthermore the following model parameters were applied:

B = 2.5 (the transport coefficient) and water temperature = 27 °C

The area covered by the sediment transport model corresponded to the area covered by the hydrodynamic model and the wind-wave model.

9.3 Sediment Transport Model Simulations

For use in the assessment of the morphological development of the Meghna Estuary a number of characteristic combinations of tidal regime, river outflow (i.e. season) and wave conditions were selected and simulated. Each simulation covers one tidal cycle (i.e. 12.5 hours) of the hydrodynamic base run simulations as listed in table 9.1, while all simulations are listed in table 9.2 together with the number of the drawing depicting the results of the simulations. The drawings show the sediment transport rates.

The wave conditions applied are described in the previous chapter.

Season	Tidal regime	Start of tidal period	End of tidal period
Dry season 1996	Spring tide	07 Feb 1996 02:00	07 Feb 1996 14:30
Dry season 1996	Neap tide	13 Feb 1996 20:00	14 Feb 1996 08:30
Monsoon season 1997	Spring tide	18 Sep 1997 01:00	18 Sep 1997 13:30
Monsoon season 1997	Neap tide	11 Sep 1997 07:30	11 Sep 1997 20:00

50

Table 9.1Tidal periods applied in sediment transport simulations

Table 9.2Sediment transport simulations

Season	Tidal regime	Wave conditions	Results shown in drawings
Dry season 1996	Spring tide	No waves	9.1
Dry season 1996	Neap tide	No waves	9.2
Monsoon season 1997	Spring tide	Waves from SSE	9.3
Monsoon season 1997	Spring tide	Waves from SSW	9.4
Monsoon season 1997	Spring tide	No waves	9.5
Monsoon season 1997	Neap tide	Waves from SSE	9.6
Monsoon season 1997	Neap tide	Waves from SSW	9.7
Monsoon season 1997	Neap tide	No waves	9.8

Please note that the sediment transport rates should only be applied qualitatively.

27

10 Recommendations for Future Model Development

10.1 General

The numerical modelling of the Meghna Estuary has been an on-going learning process throughout the study period. One example is the realisation during the early phases of the study that a bathymetric survey of the entire study area was required in order to be able to describe the existing hydrodynamic conditions properly.

During the later stages of the numerical modelling a number of other possible improvements to the basic modelling data and modelling procedures have been identified. It has not been possible to include all of these in the present study and they are therefore included in this section as recommendation for future modelling work.

On-the-job supervision of SWMC staff by the DHI numerical modelling specialist was carried out throughout the project period. However, in order to properly transfer the modelling techniques it is recommended that formal training in connection with further development and application of the models are conducted.

10.2 Model Bathymetries

Although a bathymetric survey has been carried out for the major part of the study area some parts have not yet been covered. These include especially shallow areas like the shallow area to the West of Sandwip. The shallow areas are important from a hydrodynamic point of view because of their blocking effect on the flow. For the model simulations described in the present report the elevations of these shallow un-surveyed areas are only known with an accuracy of a couple of meters, which makes the degree of "blocking effect" computed by the models uncertain. Therefore it is recommended that the shallow areas within the study area be surveyed and included in the models.

Coastlines and riverbanks are changing rapidly in certain areas of the estuary. The coastlines in the present models are based on satellite mapping in February 1996 supplemented with a few data around Nijhum Dwip from November 1997. In connection with future use of the models, it is recommended that coastlines (and thus riverbanks) are updated regularly.

Due to erosion and accretion, the depths in the estuary are also changing. Regular updates of the model bathymetry are therefore required in order to keep the model up to date.

Interpolation from bathymetric survey lines to a square model grid in rivers and areas with channels in the sea bed is not well performed by standard interpolation routines. Often the depth in between survey lines will be underestimated leading to an unrealistic small flow in the area. During the set-up of the bathymetry this problem was identified but only tedious ad hoc solutions to the problem found. It is therefore recommended that alternative interpolation routines are checked and if necessary developed or acquired. In this way the bathymetric survey data will be better utilised.

10.3 Hydrodynamic Modelling

During the course of MES, water level measurements and ADCP measurements have been collected and utilised in the calibration of the hydrodynamic models. When the model bathymetry is updated with new survey data in the future, and if this update introduces
significant changes in the bathymetry, a recalibration of the model with new water levels and new ADCP measurements is recommended.

If the hydrodynamic model is going to be used for modelling of cyclonic surges, a nested model approach as used in the Cyclone Shelter Preparatory Study [4] is required, because a larger area must be covered be the model.

10.4 Salinity Modelling

The salinity modelling carried out and described in the present report describes the salinity variations only during the dry season and only for one case with a known salinity distribution in the estuary. The reason is that the model applied only covers the estuary itself, while the area to the south of the model, which will effect the salinity variation within the estuary especially during the monsoon season but also during the dry season, is not included. Therefore it was only possible to do a simulation with known salinity along the southern model boundary.

If more general salinity simulations are to be made and especially if simulations during the monsoon season are to be carried out, it is recommended to adopt a nested grid approach like the one applied in the Cyclone Shelter Preparatory Study [4]. On the other hand, a demand for such simulations has not been identified.

It is also recommended to carry out more salinity measurements for the calibration of the salinity model. Only on the basis of measurements from the estuary will it be possible to improve the model calibration carried out and described in the present report. Such measurements cost next to nothing if combined with other survey activities.

10.5 Wind-Wave Modelling

The purpose of carrying out wave modelling in the present study was to support the sediment transport assessment. As the tidal flow and the river outflow are the governing forces, only minor emphasis was placed on the wave modelling. A limited number of wave measurements within the estuary to be used for future wave model calibration are however recommended.

It should also be mentioned that satellite measurements of wave heights are available. These do however presently only have an accuracy of 0.5 m or 10% (whichever is the higher) for the significant wave height, and they are only available for open sea areas. They could however be used for the open parts of the estuary as a supplement to the wave measurements.

10.6 Sediment Transport Modelling

The purpose of the sediment transport modelling carried out as part of the present study was to make an assessment of the sediment transport within the study area, while a detailed sediment transport study and a morphological study was outside the scope of the study. A sediment transport model of the Meghna Estuary is a valuable tool in for example impact assessments but it requires an extensive and detailed calibration effort with correspondingly extensive data requirements. As the estuary is a very dynamic area from a sediment transport model for the estuary, supported by a targeted field programme.

11 References

- [1] The Hydrographer of the Navy, Admiralty Tide Tables, 1995.
- [2] Meghna Estuary Study, Technical Note MES-004, Salinity Distribution in the Estuary, January 1997.
- [3] Hurdle, D.P. and Stive, R. J. H., Revision of SPM 1984 Wave Hindcast Model to Avoid Inconsistencies in Engineering Applications, Coastal Engineering, Vol. 12, pp. 339-351, 1989.
- [4] European Commission, Cyclone Shelter Preparatory Study, Stage II: Feasibility Phase, Final Report, Supporting Volume 1, Mathematical Modelling of Cyclone-surge and related Flooding, Appendix C: Bay of Bengal Modelling Complex (MIKE 21), May 1998.

Appendices

Appendix A

MIKE 21 HD Hydrodynamic Module A Short Description

MIKE 21 HD - Release 1.1

HYDRODYNAMIC MODULE

A SHORT DESCRIPTION

DANISH	HYDRAULIC	INSTITUTE
--------	-----------	-----------

Agern Allé 5	Telephone	:	+45 42 86 80 33
DK-2970 Hørsholm	Telex	:	37 402 dhicph dk
Denmark	Telefax	:	+45 42 86 79 51

0

U

D

U

U

MIKE 21 HD - HYDRODYNAMIC MODULE

SHORT DESCRIPTION

Introduction

MIKE 21 is a comprehensive modelling system for 2dimensional free surface flows where stratification can be neglected.

86

MIKE 21 HD is the basic module of the entire MIKE 21 system. It provides the hydrodynamic basis for the computations performed in most of the other modules, for example the Advection-Dispersion, Water Quality and Sediment Transport modules.

MIKE 21 HD simulates the water level variations and flows in reponse to a variety of forcing functions in lakes, estuaries, bays and coastal areas. The water levels and flows are resolved on a rectangular grid covering the area of interest when provided with the bathymetry, bed resistance coefficients, wind field, hydrographic boundary conditions, etc.

The system solves the equations of continuity and conservation of momentum using implicit finite difference methods.

Applications

MIKE 21 HD is applicable to a wide range of hydraulic phenomena:

Tidal exchange and currents

• Storm surge

Secondary circulations, eddies and vortices

• Harbour seiching

MIKE 21 HD - Short Description

M

Equations

The hydrodynamic module of MIKE 21 solves the vertically integrated equations of continuity and conservation of momentum in two horizontal dimensions. The following effects are included in the equations:

- convective and cross momentum
- wind shear stress at the surface
- barometric pressure gradients
- Coriolis forces
- momentum dispersion ('eddy')
- sources and sinks (both mass and impulse)
- evaporation.

Continuity

$$\frac{\partial \zeta}{\partial t} + \frac{\partial p}{\partial x} + \frac{\partial q}{\partial y} = s - e$$

x-Momentum

$$\frac{\partial p}{\partial t} + \frac{\partial}{\partial x} \left(\frac{p^2}{h} \right) + \frac{\partial}{\partial y} \left(\frac{p \cdot q}{h} \right) + gh \frac{\partial \zeta}{\partial x}$$

$$+ \frac{g \int_{h^2}^{p^2} + \frac{q^2}{h^2} \cdot \frac{p}{h}}{c^2} - fvv_x - \frac{h}{\rho_w} \cdot \frac{\partial p_a}{\partial x}$$

$$- \Omega q - \left(\frac{\partial}{\partial x} \left(E_{x} \cdot h \cdot \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(E_{y} \cdot h \cdot \frac{\partial u}{\partial y} \right) \right) = S_{ix}$$

y-Momentum

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial y} \left(\frac{q^2}{h} \right) + \frac{\partial}{\partial x} \left(\frac{p \cdot q}{h} \right) + gh \frac{\partial \zeta}{\partial y}$$

MIKE 21 HD - Short Description

Symbol List

ζ(x,y,t)	-	water surface level above datum (m)
p(x,y,t)	-	flux density in the x-direction $(m^3/s/m)$
q(x,y,t)	-	flux density in the y-direction (m ³ /s/m)
h(x,y,t)	-	water depth (m)
S		source magnitude per unit horizontal
		area (m ³ /s/m ²)
S_{ix}, S_{iy}	-	source impulse in x- and y-directions
		$(m^{3}/s/m^{2}.m/s)$
e	-	evaporation rate (m/s)
g	-	gravity (m/s ²)
g C f	-	Chezy resistance No. (m ¹⁴ /s)
f		wind friction factor
$V, V_x, V_y(x, y, t)$	-	wind speed and components in x- and
, , , , , , , , , ,		y-directions (m/s)
$p_a(x,y,t)$	-	barometric pressure (kg/m/s ²)
ρ_w	-	density of water (kg/m ³)
Ω		Coriolis coefficient (latitude dependent)
		(S ⁻¹)
E(x,y)		eddy or momentum dispersion
		coefficient (m ² /s)
x,y	-	space coordinates (m)
t	-	time (s)

Calibration Factors

A MIKE 21 HD generated model has only three calibration factors, namely bed resistance C, wind friction factor f, and momentum dispersion coefficient E (normally called an eddy coefficient). Using these factors alone, calibration of a model is normally quite easy. In practice, the calibration of a model depends far more on the accuracy of the data, e.g. bathymetry, boundary data and wind speeds.

The bed resistance, C, and momentum dispersion coefficient, E, can both be specified as a function of space. Further, E can vary in time in accordance with a special formulation of Smagorinsky's theory for turbulence.

Sclution Technique

The equations are solved by implicit finite differnce techniques with the variables defined on a space-staggered rectangular grid as shown below.

A 'fractioned-step' technique combined with an Alternating Direction Implicit (ADI) algorithm is used in the solution to avoid the necessity for iteration. Second order accuracy is ensured through the centering in time and space of all derivatives and coefficients. The ADI algorithm implies that at each time step a solution is first made in the x-direction using the continuity and x-momentum equations followed by a similar solution in the y-direction.

As a simple example, the finite difference scheme for the time derivative of flux density is shown below.

 $\frac{\partial p}{\partial t} \approx \left[\frac{p^{n+1} - p^n}{\Delta t} \right] - \frac{\Delta t^2}{24} \cdot \frac{\partial^3 p}{\partial t^3}$

truncation error

The truncation error is of second order, $O(\Delta t^2)$.

The application of the implicit finite difference scheme results in a tridiagonal system of equations for each grid line in the model. The solution is obtained by inverting the tridiagonal matrix using the Double Sweep algorithm, a very fast and accurate form of Gauss elimination.

The implicit scheme is used in MIKE 21 in such a way that stability problems do not occur provided, of course, that the input data is physically reasonable, so that the time step used in the computations is limited only by accuracy requirements.

Data Requirements

The necessary data can be divided into several groups as briefly described below.

Basic Model Parameters:

Model grid size and extent Time step and length of simulation Type of output required and its frequency Latitude and its orientation

Bathymetry.

Calibration Factors:

Bed resistance Momentum dispersion coefficients Wind rriction factor

Initial Conditions: Water surface level Flux densities in x- and y-directions

Boundary Conditions: Water levels or flow magnitude Flow direction

Other Driving Forces: Wind speed and direction Source/sink discharge magnitude and speed.

Pre- and Post-processing Software

The MIKE 21 HD module includes a range of pre- and postprocessing software which eases the input of data and analysis of simulation results. The software can be applied to the data and results of all the MIKE 21 modules.

Some examples of the software capabilities are:

- Input of time series and 2-D data
- Isoline plots of any variable
- 2-D vector plots of current patterns
- Plots of the variation in space of a variable along any line through the model
- 3-D plots of bathymetries, surface levels, concentrations
- Statistical analysis of time or space variation of any variable.

All graphical presentations can be in colour, produced with the UNIRAS graphics package.

List of References

H.I. Bundgaard, I.R. Warren, A. Barnett, "Modelling of Tsunami Generation and Run-up". EGS Congress, Copenhagen, April 1990. To appear in Science of Tsunami Hazards.

Abbott, M.B., H. Shaoling, I.R. Warren, "Auto-dispersion processes in numerical models". Computer Modelling in Ocean Engineering, Venice, 1988, Balkema, pp. 723-727.

Madsen, P.A., M. Rugbjerg, I.R. Warren, "Subgrid modelling in depth integrated flows". Proc. 21st Coastal Eng. Conf., Malaga, 1988, pp. 505-511.

Jensen, O., I.R. Warren, F. Nielsen, C. Laustrup, "Extreme water levels for design in the Baltic Sea Conference", September 1987. 8 pp.

Amdisen, L.K., J.B. Nielsen, I.R. Warren, "A prototype verification of a large-eddy simulation". Proc. 22nd Congress IAHR, 1987, Lausanne, B, pp. 53-58.

Warren, I.R., H.I. Bundgaard, "A Comparison between physical and numerical models of tsunamis". Proc. 22nd Congress IAHR, 1987, Lausanne, B, pp. 282-287.

Abbott, M.B., J. Larsen, "Modelling circulations in depthintegrated flows. Part 2: A reconciliation". Journal of Hydraulic Research, Vol. 23, 1985. No. 5.

Abbott, M.B., J. Larsen, J. Tao, "Modelling circulations in depth-integrated flows. Part 1: The accumulation of the evidence". Journal of Hydraulic Research, Vol. 23. 1985, No. 4, pp. 309-326.

Abbott, M.B., A. McCowan, I.R. Warren, "Numerical Modelling of Free-Surface Flows that are Two-Dimensional in Plan". Transport Models for Inland and Coastal Waters, Academic Press, 1981, pp. 222-283.

Abbott, M.B., Computational Hydraulics, Elements of the Theory of Free Surface Flows, Pitman, London, U.K., 1979.

Abbott, M.B., C.H. Rasmussen, "On the numerical Modelling of Rapid Concentrations and Expansions in Models that are Two-Dimensioanl in Plan". Proceedings 17th Congress IAHR, 1977, Baden-Baden, 2, pp. 229-238.

Abbott, M.B., A. Damsgaard, G.S. Rodenhuis, "System 21, Jupiter, A Design System for Two-Dimensional Nearly Horizontal Flows", Journal of Hydraulic Resources, Vol. 11, 1973, pp. 1-28.

1991-01-21 M21HD.RW/CHC9011.kin/I

MIKE 21 HD - Short Description

MIKE 21 HD - Short Description

Appendix B

MIKE 21 AD Advection-Dispersion Module A Short Description

MIKE 21 AD - Release 1.0

ADVECTION-DISPERSION MODULE

A SHORT DESCRIPTION

DANISH HYDRAULIC INSTITUTE

Agern Allé 5	Telephone	:	+45 42 86 80 33
DK-2970 Hørsholm	Telex	:	37 402 dhicph dk
Denmark	Telefax	i	+45 42 86 79 51

ſ

ñ

1

1

÷.

MIKE 21 AD - ADVECTION-DISPERSION MODULE

SHORT DESCRIPTION

Introduction

MIKE 21 is a comprehensive modelling system for 2-dimensional free surface flows where stratification can be neglected.

The advection-dispersion module of MIKE 21 simulates the spreading of a dissolved or suspended substance in an aquatic environment under the influence of the fluid transport and associated natural dispersion processes. The substance may be a pollutant of any kind, conservative or non-conservative, inorganic or organic: salt, heat, dissolved oxygen, inorganic phosphorus, nitrogen and other such water quality parameters.

In a similar way to the hydrodynamic stage, the concentration of the substance is calculated at each point of a rectangular grid covering the area of interest. Information on the transport, i.e. currents and water depths at each point of the grid, are provided by the hydrodynamic module. Other data required includes substance concentrations and discharge quantities at outfalls, together with concentrations at boundaries.

The system solves the equation of conservation of mass for a dissolved or suspended substance using a two-dimensional form of the QUICKEST finite difference scheme.

Applications

There are in principle two types of investigations for which the M21AD module is an essential part:

- Cooling water recirculation studies for power plants and salt recirculation studies for desalination plants
- Water quality studies connected with sewage outfalls and non-point pollution sources

Some illustrations follow:

• Spreading of bacteria or pollutants from sewage outfalls

MIKE 21 AD - Short Description

Equation

M21AD solves the so-called advection-dispersion equation for dissolved or suspended substances in two dimensions. This is in reality the mass-conservation equation. Discharge quantities and compound concentrations at source and sink points are included together with a decay rate.

$$\frac{\partial}{\partial t}(hC) + \frac{\partial}{\partial x}(uhC) + \frac{\partial}{\partial x}(vhC) = \frac{\partial}{\partial x}\left[h \cdot D_x \cdot \frac{\partial C}{\partial x}\right]$$

$$+ \frac{\partial}{\partial y} \left[h \cdot D_y \frac{\partial C}{\partial y} \right] - F \cdot h \cdot C + S$$

• Water quality studies

Symbol List

С	- compound concentration (arbitrary units)
u,v	- horizontal velocity components in the x, y direc-
	tions (m/s)
h	- water depth (m)
D_x, D_y	- dispersion coefficients in the x,y directions
-	(m^{2}/s)
F	- linear decay coefficient (1/s)
S =	$Q_{a} \cdot (C_{s} - C)$
Q,	- source/sink discharge per unit horizontal area
	$(m^{3}/s/m^{2})$

MIKE 21 AD - Short Description

125	76		-
-		X	
		and the second	-

(a)	C concentration of compound in the source/sink discharge.
	Information on u, v and h at each time step is provided by the hydrodynamic module M21HD.
	8
Calibration Factors	Calibration Factors are the dispersion coefficients $D_{\rm x}$ and $D_{\rm y}$ and the decay coefficient F.
	Suitable methods for calculating or assigning dispersion coefficients are the subject of intense research and have not ye been resolved. One of the few well-established theories is for the dispersion due to the vertical logarithmic velocity profile Elder (1959) found that the equivalent dispersion coefficient is proportional to u.h, where u. is the friction velocity. This is the basis for one of the options in M21AD where the dispersion coefficient can be chosen proportional to the flux density uh.
	The other option is for the user to select his own coefficients to reproduce measured dispersion. These are constant in time bu can be variable in space.
Heat Dissipation	In cooling water recirculation studies, the compound concentration, C, becomes excess temperature, ΔT , and the decay rate F, becomes the heat exchange with the atmosphere. F is primarily dependent on the wind speed and ambient temperature. $F = \frac{0.2388}{\rho C_p h} (4.6-0.09(T+C))$
	+ 4.06 W) exp (0.033 (T+C))
	Symbol List
×	 T - reference temperature (°C) W - wind speed (m/s), constant or time varying ρ - density of water (kg/m³) C_p - specific heat of water.

, T

n

11

[]

U

Future Developments

Future releases of the AD module will include more advanced methods for automatic calculation of dispersion coefficients.

Solution Technique

The advection-dispersion equation is solved using an explicit, third-order finite different scheme which is generally known as the QUICKEST scheme. This scheme has been described in various papers dealing with turbulence modelling, environmental modelling and other problems involving the advectiondispersion equation. It has several advantages over other schemes, especially that it avoids the "wiggle" instability problem associated with central differencing of the advection terms, and at the same time it greatly reduces the numerical damping which is characteristic of first-order upwinding methods.

The scheme itself is a Lax-Wendroff or Leith-like scheme in the sense that it cancels out the truncation error terms due to time differencing up to a certain order by using the basic equation itself. In the case of QUICKEST, truncation error terms up to third-order are cancelled for both space and time derivatives. See Reference List for further information.

Data Requirements

Basic Model Parameters Model grid size and extent Time step and length of simulation Type of output required and its frequency

Bathymetry and Hydrodynamic Input

Calibration Factors Dispersion coefficients Decay coefficient

Initial Conditions Compound concentrations

Boundary Conditions Compound concentrations

Other Driving Forces

Wind speed and ambient temperature for cooling water studies

Source/sink discharge magnitude and compound concentrations.

List of References

Patankar, S.V., "Numerical heat transfer and fluid flow". McGraw-Hill, New York (1980).

Leonard, B.P., "A stable and accurate convective modelling procedure based on quadratic upstream interpolation". Comput. Meths. Appl. Mech. Eng. 19 (1979), 59-98.

Roache, P.J., "Computational fluid dynamics". Hermosa Publishers, Albuquerque (1976).

Ekebjærg, L. and P. Justesen, "An Explicit Scheme for Advection-Diffusion Modelling in Two Dimensions". Comp. Meth. in App. Mech. and Eng., Vol. 88 No. 3 (1991) pp. 287-297

Elder, J., "The dispersion of a marked fluid in a turbulent shear flow". J. Fluid Mech., 5 (1959), 544-560.

12

Appendix C

MIKE 21 NSW Nearshore Spectral Wind-Wave Module A Short Description

MIKE 21 NSW - Release 1.2

NEARSHORE SPECTRAL WIND-WAVE MODULE

A SHORT DESCRIPTION

DANISH HYDRAULIC INSTITUTE

Agern Allé 5	Telephone	:	+45 42 86 80 33
DK-2970 Hørsholm	Telex	:	37 402 dhicph dk
Denmark	Telefax	:	+45 42 86 79 51

Π

11

T

U.

भंजवाद्यको सम्राज्य स्थान साम्य स्थान साम्य स्थानम

SHORT DESCRIPTION

Introduction

MIKE 21 NSW is DHI's wind-wave model which describes the propagation, growth and decay of short-period waves in nearshore areas. The model takes into account the effects of refraction and shoaling due to varying depth, wind generation and energy dissipation due to bottom friction and wave breaking. The effects of current on these phenomena are included.

MIKE 21 NSW is a stationary, directionally decoupled parametric model. To take into account the effect of current the basic equations in the model are derived from the conservation equation for the spectral wave action density. A parameterization of the conservation equation in the frequency domain is performed introducing the zero-th and the first moment of the action spectrum as dependent variables. From these variables wave parameters such as the significant wave height, the mean wave period and the mean wave direction can be determined.

The basic equations are solved using an Eulerian finite-difference technique.

Basic Equations

The conservation equations for the zero-th and the first moment, m_o and m_1 , of the action spectrum A can be written (Holthuijsen et al., 1989)

MIKE 21 NSW - Short Description

$$\frac{\partial (c_{gx}m_o)}{\partial x} + \frac{\partial (c_{gy}m_o)}{\partial y} + \frac{\partial (c_{\theta}m_o)}{\partial \theta} = T_0$$

$$\frac{\partial (c_{gx}m_1)}{\partial x} + \frac{\partial (c_{gy}m_1)}{\partial y} + \frac{\partial (c_{\theta}m_1)}{\partial \theta} = T_1$$
(1)

where

$m_o(x,y,\theta)$	-	Zero-th moment of the action spectrum
$m_1(x,y,\theta)$	-	First moment of the action spectrum
c_{gx} and c_{gy}	~	Components in the x- and y-direction,
		respectively, of the group velocity c,
C _θ	-	Propagation speed representing the
		change of action in the θ -domain
x and y	-	Cartesian coordinates
θ	(a)	Direction of wave propagation
T_0 and T_1	-	Source terms

The moments $m_n(\theta)$ are defined

$$m_n(\theta) = \int_0^{\infty} \omega^n A(\omega, \theta) \, d\omega \tag{2}$$

where ω is the absolute frequency.

From $m_o(\theta)$ and $m_1(\theta)$ two wave parameters can be calculated: the directional action spectrum $A_o(\theta) = m_o(\theta)$ and the mean frequency per direction $\omega_o(\theta) = m_1(\theta)/m_o(\theta)$.

The propagation speeds c_{gx} , c_{gy} and c_{θ} are obtained using linear wave theory.

The left hand side of the basic equations (1) takes into account the effect of refraction and shoaling. The source terms T_o and T_1 take into account the effect of energy input from the wind, bottom dissipation, wave breaking and wave blocking. The effects of current on these phenomena are included. The formulation of the source terms for wind generation of waves is based on empirical formulas for the wave growth for fetchlimited sea states in deep water (Shore Protection Manual). The description of the bottom dissipation is based on the quadratic

friction law to represent bottom shear stress (Svendsen and Johnsson, 1980) and the description of the wave breaking is based on the expressions given by Battjes and Janssen (1978). The effect of the bottom dissipation and wave breaking on the mean frequency is also included.

Numerical Solutions

The two coupled partial differential equations are solved using Eulerian finite-difference technique. The zero-th and the first moment are calculated on a rectangular grid for a number of discrete directions.

A once-through marching procedure is applied in the predominant direction of wave propagation restricting the angle between the direction of wave propagation and the marching direction to less than 90°. Due to stability conditions the angle is usually less than 60° depending on the mesh sizes.

Input/Output

The basic input to the model is the bathymetry, the current and wind field and the boundary condition at the up-wave boundary. The boundary conditions can be given in form of transfer-data (the directional spectrum of m_o and m_1 along the boundary) from a previous calculation, or in form of the significant wave height, the mean wave period and the directional distribution at the boundary.

The results of the computations can be stored in the form of the discrete values of the zero-th and the first moments of the action spectrum, or in form of selected wave parameters such as the significant wave height, the mean wave period, the mean wave direction and the directional standard deviation. These results can then be presented graphically through the use of a range of service programs. It is possible to obtain for example:

- Isoline plots of any variable
- Plots of variation in space of a variable along any line through the model area
- 2D vector plots showing the mean wave direction
- 3D plots of bathymetries.

(A few examples of the graphical presentation are shown on the following page).

Calibration Factors

The main calibration factors using MIKE 21 NSW are the bottom friction coefficients - the wave friction factor f_w and the current friction factor f_c . The friction factor f_w can be given either explicit or calculated using a semi-empirical formula given the Nikuradse roughness parameter k_n .

Normally, the calibration of the model for a specific study is quite easy. In practice, the most important factor in the calibration is the accuracy of the data, e.g. bathymetry, boundary data, and wind and current fields.

Fig. 1 Vector plot showing the mean wave direction where the vector length is scaled relative to the significant wave heights.

MIKE 21 NSW - Short Description

MIKE 21 NSW - Short Description

do

C

List of References

Holthuijsen L.H., Booij N. and Herbers T.H.C., "A Prediction Model for Stationary, Short-crested Waves in Shallow Water with Ambient Currents", Coastal Engineering 13 (1989), pp. 23-54.

Battjes J.A. and Janssen J.P.F.M., "Energy loss and set-up due to breaking of random waves", Proc. 16th Coastal Eng. Conf. Hamburg 1978, pp. 569-587.

Svendsen I.A., Johnsson I.G., "Hydrodynamics of Coastal Regions", Den Private Ingeniørfond, Lyngby 1980.

CERC, "Shore Protection Manual", U.S. Army Coastal Eng. Res. Center, Corps Engineers, 1973, 1145 pp.

CERC, "Shore Protection Manual", U.S. Army Coastal Eng. Res. Center, Corps Engineers, Volume 1, 1984.

1993-02-25 M21NSW.ORS/SHORT.M21\CHC.kin

MIKE 21 NSW - Short Description

Appendix D

MIKE 21 ST Non-Cohesive Sediment Transport Module A Short Description

MIKE 21 ST - Release 2.0

NON-COHESIVE SEDIMENT TRANSPORT MODULE

A SHORT DESCRIPTION

DANISH HYDRAULIC INSTITUTE

Agern Allé 5	Telephone	•	+45 42 86 80 33	
DK-2970 Hørsholm	Telex	:	37 402 dhicph dk	
Denmark	Telefax	:	+45 42 86 79 51	

n

m

0

U

98

MIKE 21 ST - NON-COHESIVE SEDIMENT TRANSPORT MODULE

SHORT DESCRIPTION

Introduction

MIKE 21 is a comprehensive modelling system for 2dimensional free surface flows where stratification can be neglected.

MIKE 21 ST is a sediment transport module of the system for assessing rates of bed level changes in coastal areas subject to the action of waves and currents. The sediments are assumed to be non-cohesive, i.e. sand, but may vary in grain size throughout the model area. The currents may be due to tide, they may be wind-driven or even wave-driven. The effect of both non-breaking and breaking waves are included in the module computations.

For given bathymetry, sediment type, water depth, currents and wave patterns, the MIKE 21 ST module calculates the sediment transport capacity at each point of a rectangular grid covering the area of interest. Erosion and deposition rates in the model area are thereby estimated.

The data concerning current and wave conditions is provided by other modules of the MIKE 21 system and are prepared prior to the simulations with MIKE 21 ST. The water depth and current conditions due to tide and wind will be calculated with the hydrodynamic module MIKE 21 HD which can also give the wave-driven currents through the inclusion of the wave radiation stresses. The wave fields can be calculated by MIKE 21 SW, the deterministic wave module, or by MIKE 20 NS, DHI's spectral wind-wave modelling system for near-shore areas. Even a wave field developed from a refraction/diffraction model or a desk study can be used.

The structure of the module and the possible connections with other MIKE modules are illustrated in Figure 1.

The principal applications of MIKE 21 ST concern the estimation of erosion and deposition around large coastal structures such as large groynes, breakwaters, river mouths and protection works generally.

Fig. 1a

The interaction of MIKE 21 ST with other modules of the MIKE system.

Ne 2ª

93

Fig. 1b

Illustration of structure of MIKE 21 ST.

Theoretical Background

The core of the MIKE 21 ST is the calculation of the sediment transport capacity as function of the local wave, current and sediment conditions. This calculation is carried out by the DHI model STP which is a detailed intra-wave-period model for description of the time-varying distribution of suspended sediment and bed load over the wave period in combined wave and current motion, including effects of wave breaking if relevant.

The STP model is included directly in MIKE 21 ST where it is used to establish a comprehensive data base of transport rates

corresponding to the relevant ranges of the parameters: current speed, depth, wave height and period, breaking/non-breaking waves, grain size.

The rates of bed level changes, $\partial z/\partial t$, are described by the equation of continuity:

$$\frac{\partial z}{\partial t} + \frac{1}{1-n} \frac{\partial q}{\partial x} + \frac{1}{1-n} \frac{\partial q}{\partial y} = 0$$

where

x,y,t	are independent variables
q _x ,q _y	are sediment transport components in x- and y- directions
Z	is the bed level
n	is the porosity of the bed material.

This equation is solved by a finite difference model.

The module, STP, which calculates the sediment transport rates, is briefly described below.

The Sediment Transport Module, STP

In combined waves and current the turbulent interaction in the near bed boundary layer is of importance for the bed shear stresses as well as for the eddy viscosity distribution. The basis for the sediment transport description is the model for turbulent wave-current boundary layers of Fredsøe (1984). The boundary layer is composed of two regions:

Close to the bed the turbulence and the shear stress in the wave boundary layer vary with the wave period, giving rapidly changing bed concentration and turbulent diffusion coefficients.

Outside the wave boundary layer the mean velocity is described by a log-profile. The increased turbulence level in the wave boundary layer retards the mean current, an effect which is expressed through an apparent wave roughness, k_w , which is larger than the natural bed roughness k.

The transport of non-cohesive material is calculated according to the model presented by Engelund and Fredsøe (1976). Through subsequent developments this model has been extended to cover combined waves and current, and conditions in the surf zone.

The total sediment load is split into bed load and suspended load, which are calculated separately. The bed load transport is

4

C 2

calculated as a function of the bed shear stress through the dimensionless bed shear stress, θ :

$$\theta = U_f^2 / (s-1)gd$$

s is the relative sediment density, g the acceleration of gravity, d the grain size and U_f is the shear velocity. The bed load transport is assumed to correspond to the instantaneous bed shear stress under unsteady conditions, e.g. under wave action.

The suspended load transport, q_s , is described through the sediment concentration c, which is determined from the vertical turbulent diffusion equation:

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left[\epsilon_{s} \quad \frac{\partial C}{\partial z} \right] + w \quad \frac{\partial C}{\partial z}$$

t is time, z the vertical coordinate (zero at the bed) ϵ_s the turbulent diffusion coefficient and w is the settling velocity of the sediment. ϵ_s is taken to be equal to the turbulent eddy viscosity of the flow field. The near-bed boundary condition is given as bed concentration C_b at the level z = 2d. C_b is determined as a function of θ using the dynamic considerations of Bagnold (1954), that a certain sediment concentration is required near the bed in order to transfer the shear stress to the bed through grain-grain interaction.

The bed concentration, C_b , is only valid for the plane bed case, i.e. sheet flow, which is found for θ larger than about 0.8. At smaller θ -values the bed is covered by wave ripples. The sediment transport model by Fredsøe et. al (1985) has been modified to take the effect of wave ripples into account. The modification involves the bed concentration, turbulent diffusion and the bed roughness. The values of C_b and ϵ are based directly on the laboratory measurements of Nielsen (1979). The roughness is expressed through the ripple dimensions as given by Raudkivi (1988). The sediment transport model converges gradually towards a plane bed description with increasing bed shear stress or mean current velocity.

Inside the surf zone, the wave energy is dissipated due to breaking, and the production of turbulence is very intense. This has been taken into account by use of a one-equation turbulence model (Deigaard et. al. (1986)).

Figure 2 shows the vertical mean sediment concentration profile calculated by STP, compared to full scale field measurements. The main results from STP are

- bed load
- suspended load

in combined breaking or non-breaking waves and current.

Data Requirements

The basic parameters are: Model grid size and extent, bathymetry, length of simulation and time step between calculations of sediment transport fields and requirements to the output. Further, the module requires hydrodynamic input, water depths and currents, significant wave heights and periods in the defined grid points and grain size distribution over the model area. Prior to the MIKE 21 ST simulations, the service programme STP must produce a catalog of sediment transport rates. Input to STP is relevant ranges of the parameters wave heights and periods, current speed, depth, grain size ($d_{50\%}$).

Model Calibration

The hydrodynamic and wave models should be calibrated in the normal way by comparisons with field data.

R La

The accuracy of the STP model should also be checked against field measurements of suspended sediment concentrations under a variety of wave and current conditions. However, a large number of comparisons have already been made so that the default parameter values can be used with confidence.

Further Developments

The present version of the sediment transport programme STP uses an average grain size $d_{50\%}$ and the corresponding fall velocity. A new version of STP which includes the effect of grading of the bed material will be available during 1991. This improvement requires input of a parameter all over the model area which reflects the grading of the bed material, for instance the spreading of a log normal distribution which represents the grain sizes.

The present version of STP calculates the transport rate assuming logarithmic current profiles. Inside the surf zone, the vertical distribution of flow might differ significantly from logprofiles due to undertow. Another more advanced version of STP includes calculation of the form of the current profile under quasi uniform conditions in breaking waves and current at an arbitrary angle. Implementation of this advanced version and extraction of the relevant parameters from the basic wave and current simulations, i.e. wave energy dissipation in the wave propagation direction and angle between waves and current will allow the effect of undertow to be included. This version will be tested during 1991.

The present model setup calculates the sediment transport capacity as a function of the local wave and current conditions. This assumption is good for medium to coarse sand, but for very fine sand there might be so-called time and space lag effects which attenuate the transport rates due to the time it takes to adjust the concentration profile to changed hydrodynamic conditions. A model complex which uses the MIKE 21 AD module (Advection Dispersion Module) to simulate this phenomenum is under development.

The present module MIKE 21 ST represents a single time step in a so-called morphological model with feedback from changed bathymetry to the wave and current calculations. MIKE 21 ST now works as a module in a research version of a deterministic morphological model which is currently being developed at DHI.

Applications

NG VG

An example of the application of MIKE 21 ST is taken from the Venice lagoon study.

The Venice lagoon is located in the north western part of the Adriatic Sea, Figure 3.

The detail of the Venice coastline is shown in Figure 4.

This example treats the local area around Chioggia inlet for the existing constructions and strong Scirocco wind conditions, $H_s \approx 2.8$ m, tidal range 0.8 m.

Figure 5 shows the bathymetry of the area. The grain size of the bed material is digitized in a similar way and used as input to the model complex.

The calculated wave field is illustrated in Figure 6, in which isolines for significant wave heights are shown.

The time varying current field is calculated by the hydrodynamic model MIKE 21 HD. The driving forces included in this simulation are wind, tide and variation in the radiation stresses (wave-driven currents). As an example, the current field at maximum flood flow is shown in Figure 7.

Fig. 4 Venice Lagoon and adjacent coast

Fig. 5 Bathymetry

Fig. 6 Significant wave heights

Fig. 7 Current pattern at maximum flood flow

The sediment transport field averaged over the tidal cycle has been calculated based on the wave field, the current fields and the grain size distribution.

10

The calculated average transport field is shown in Figure 8.

It appears that the wave-driven currents along Sottomarina carry large amounts of sediment. This socalled littoral drift is responsible for the evolution of Sottomarina Beach, which advances $\sim 6m/year$. Close to the southern jetty a large counter clockwise current vortex appears. This wave-driven current pattern occurs because the wave fronts are refracted around the shoal SE of the inlet. The sediment transport rates along the jetty increase strongly from outside to inside the surf zone. This is because the breaking waves are able to carry more sediment in suspension than the non-breaking waves.

The net transport in the inlet appears to be close to zero in this case. This is because the current speeds during ebb and flood flow are found from the current simulations to be nearly identical.

The duration per year of the conditions simulated in this example is estimated at 1.8 day/year - assuming that this condition represents all strong Scirocco wind cases.

Fig. 8 Sediment transport field averaged over the tidal cycle

From the sediment transport field described above, the initial bed level changes per year corresponding to Scirocco wind are

determined. These calculated bed level changes are illustrated in Figure 9.

The bed level changes reflect the variations in the transport capacities. Along Sottomarina Beach the decrease in littoral drift leads to large deposition areas. The counter clockwise current and sediment transport pattern south of the jetty leads to erosion where the transport capacity is increased due to the increase from outside to inside the surf zone in the amount of suspended sediment. Inside the inlet no net erosion is seen because the transport capacity is identical during ebb and flood.

The erosion NE of the inlet takes place during ebb flow where the ebb flow jet passes this area.

The pattern SE of the inlet occurs due to the shoal. Erosion takes place where the water depth decreases in the current direction, and deposition takes place where the current has passed the shoal and the water depth increases (north of the shoal).

List of References

Bagnold, R.A., "Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear", Proceeding Royal Society, London (A), 49, 1954.

Battjes, J.A. and J.P.F.M. Janssen, 1978, "Energy Loss and Set-up due to Breaking of Random Waves". Proceedings of 16th Coastal Engineering Conference, ASCE, pp. 569-587.

Battjes, J.A. and M.J.F. Stive, 1985, "Calibration and Verification of a Dissipation Model for Random Breaking Waves". Journal of Geophysical Research, Vol. 90, No. C5, 1985, pp. 9159-9167.

Deigaard, R., Fredsøe, J. and Hedegaard, I.B. (1986a) "Suspended sediment in the surf zone". J. of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 112, No. 1.

Engelund, F. and Fredsøe, J. (1976) "A sediment transport model for straight alluvial channels", Nordic Hydrology, 7.

Fredsøe, J. (1984) "The turbulent boundary layer in combined wave-current motion". J. of Hydraulic Engineering, ASCE, Vol. 110, No. HY8.

Fredsøe, J., Andersen, O.H. and Silberg, S. (1985) "Distribution of suspended sediment in large waves". J. of Waterway, Port, Coastal and Ocean Engineering, ASCE, vol. 111, No. 6.

Hedegaard, I.B. (1985) "Wave generated ripples and resulting sediment transport in waves". Inst. Hydrodynamics and Hydraulic Engng., Tech. Univ. of Denmark, Ser. Paper 36.

Longuett-Higgins, M.S. (1953) "Mass transport in water waves", Philos. Trans. R. Soc. London, Ser. A, 245.

Nielsen, P. (1970) "Some basic concepts of wave sediment transport". Int. Hydrodynamics na d Hydraulic Engineering. Tech. Univ. of Denmark. Ser. Paper 20.

Raudkivi, Arved J. (1988) "The roughness heights under waves". J. Hydraulic Research, Vol. 26, No. 5.

1991-02-25 MIKE21ST.IBH/SHORT.M21/CHC.kin

MIKE 21 ST - Short Description

[]

1

[]

14

Appendix E

Description of MES Numerical Modelling CD-ROM Archive 11

E Description of MES Numerical Modelling CD-ROM Archive

E.1 Contents of CD-ROMs

All major results from the numerical simulations have been saved in a CD-ROM archive as listed in table no. E.1, while the contents of all CD-ROM except the presentation CD-ROM are listed in sections E.3 - E.10.

Voiume Id	Contents
MES_DRY96A	Hydrodynamic Modelling, Dry Season 1996, calibration and base run, existing situation
MES_DRY96B	Hydrodynamic Modelling, Dry Season 199∂, including intervention schemes
MES_MON96A	Hydrodynamic Modelling, Monsoon 1996, validation, existing situation
MES_DRY97A	Hydrodynamic Modelling, Dry Season 1997, validation, existing situation
MES_MON97A	Hydrodynamic Modelling, Monsoon 1997, calibration and base run, existing situation
MES_MON97B	Hydrodynamic Modelling, Monsoon 1997, including intervention schemes
MES_SALI	Salinity Modelling, Dry Season 1996, existing situation and including intervention schemes
MES_OTHER	 Wind-wave Modelling of waves from SSE and SSW for use in sediment transport modelling Sediment Transport Modelling, Dry Season 1996 (Spring TIde and Neap Tide) and Monsoon 1997 (Spring Tide and Neap Tide) Hydrodynamic Modelling, Dry Season 1996, Nijhum Dwip Local Model, existing situation and including interventions Raw bathymetry files (LANDSAT data, MES survey data etc.) Water level measurements and tidal level predictions for calibration and validation periods Program source codes for hdflow and htmbnd.
MES_PRESENT	Presentation of Meghna Estuary Study Numerical Modelling including study report and animations of model results.

Table no E.1 Contents of MES Numerical Modelling CD-ROM Archive

ND

E.2 Format of CD-ROM Data

The CD-ROMs have been written using Joliet filename format, while the file formats used on the CD-ROMS are described in table no E.2.

9

ñ

Table no. E.2 MES CD-ROM file formats

Volume Id	File Formats
MES_DRY96A MES_DRY96B MES_MON96A MES_DRY97A MES_MON97A MES_MON97B MES_SALI	All files in subdirectories of the <i>cat</i> directory are MIKE 21 data files in UNIX/DOS/Windows format, while files in <i>wrk</i> directories are MIKE 21 specification files in UNIX format. The specification files correspond to MIKE 21 version 2.6.
MES_OTHER	All files in subdirectories of the <i>cat</i> directory are MIKE 21 data files in UNIX/DOS/Windows format, while files in <i>wrk</i> and <i>work</i> directories are MIKE 21 specification files in UNIX format. The specification files correspond to MIKE 21 version 2.6.
	The <i>source</i> directory contains FORTRAN 77 source codes for programs hdflow (used to derive net and maximum flow from HD simulations) and htmbnd (used to compute boundary conditions for NSW simulations).
	The <i>bathyraw</i> directory contains XYZ data for model bathymetry generation:
	 orikms: MES survey data water0: Classified Landsat data (600 m grid) mes200: Classified Landsat data (200 m grid) niz97: 1997 shallow area line around Nijhum Dwip eXXX and cXXX: BITWA data from charts XXX.
	The <i>cat/bathyraw</i> directory contains MIKE 21 data files showing the bathymetry data sources:
	 bat-csps: Bathymetry data used from CSPS bat-spot: Landsat data bat-kms: MES survey data bat land; land area autoida landaat data area
MES_PRESENT	 bat-land: land area outside Landsat data area The MES Numerical Modelling Presentation CD-ROM is viewed using a web browser like Netscape Navigator or Microsoft Internet Explorer. To start viewing the CD-ROM open file index.htm in the root directory of the CD-ROM in the web browser.

E.3 Contents of CD-ROM MES_DRY96A

Volume in drive F is MES_DRY96A Volume Serial Number is 0B96-8A51

Directory of $F: \setminus$

7577

CAT	<dir></dir>	05-18-98	3:22p	cat
WRKHDD~7 0	<dir> file(s)</dir>	05-18-98 0 byt	-	wrkHDdry96
Directory	of F:\cat			

nd

	<dir></dir>	05-18-98	3:22p	3 • 3
	<dir></dir>	05-18-98	3:22p	
BATHY	<dir></dir>	05-18-98	3:22p	bathy
BOUND	<dir></dir>	05-18-98	3:22p	bound
DRY96	<dir></dir>	05-18-98	3:22p	Dry96
WIND	<dir></dir>	05-18-98	3:22p	wind
() file(s)	0 byt	es	

Directory of F:\cat\bathy

	<di< th=""><th>٤></th><th>05-18-98</th><th>3:22p</th><th>×</th></di<>	٤>	05-18-98	3:22p	×
	<dih< td=""><td>२></td><td>05-18-98</td><td>3:22p</td><td>4.4</td></dih<>	२>	05-18-98	3:22p	4.4
BATHYFIN	CT2	1,052	04-27-98	11:07a	bathyfin.ct2
BATHYFIN	DT2	421,648	04-27-98	11:07a	bathyfin.dt2
BEDFRIC	CT2	1,052	05-03-98	11:54a	bedfric.ct2
BEDFRIC	DT2	421,648	04-21-98	3:40p	bedfric.dt2
	4 file(s)				

Directory of F:\cat\bound

	<dif< th=""><th>2></th><th>05-18-98</th><th>3:22p</th><th>(3)</th></dif<>	2>	05-18-98	3:22p	(3)
x x	<dif< td=""><td>2></td><td>05-18-98</td><td>3:22p</td><td></td></dif<>	2>	05-18-98	3:22p	
CHAN02~6	CTO	1,052	04-19-98	11:03a	chan0296PW.ct0
CHAN02~8	DTO	76,640	04-19-98	11:03a	chan0296PW.dt0
S96DRY	CT1	1,052	05-03-98	12:08p	s96Dry.ct1
S96DRY	DT1 2,	129,432	03-07-98	12:11p	s96Dry.dt1
	4 file(s)	2,2	08,176 byt	ces	

Directory of F:\cat\Dry96

		<dir></dir>	05-18-98	3:22p	
		<dir></dir>	05-18-98	3:22p	2.2
HD	CT2	1,052	05-04-98	2:33a	hd.ct2
HD.	DT2	324,668,960	05-04-98	2:33a	hd.dt2
HDFLNM	CT2	1,052	05-26-98	2:38p	hdflNm.ct2
HDFLNM	DT2	1,686,592	05-26-98	2:38p	hdflNm.dt2
HDFLNN	CT2	1,052	05-26-98	2:38p	hdflNn.ct2
HDFLNN	DT2	1,686,592	05-26-98	2:38p	hdflNn.dt2
HDFLSM	CT2	1,052	05-26-98	2:39p	hdflSm.ct2
HDFLSM	DT2	1,686,592	05-26-98		hdflSm.dt2
HDFLSN	CT2	1,052	05-26-98	2:39p	hdflSn.ct2

3V

HDFLSN	DT2	1,686,592	05-26-98	2:390	hdflSn.dt2
HDMAX	CT2	1,052	05-17-98		hdmax.ct2
HDMAX	DT2	843,296	05-17-98		hdmax.dt2
HDMEAN	CT2	1,052	05-17-98		hdmean.ct2
HDMEAN	DT2	843,296	05-17-98		hdmean.dt2
HDMIN	CT2	1,052	05-17-98	4:26p	hdmin.ct2
HDMIN	DT2	843,296	05-17-98	4:26p	hdmin.dt2
NEAP96	CT2	1,052	05-04-98	2:33a	Neap96.ct2
NEAP96	DT2	126,916,048	05-03-98	11:41p	Neap96.dt2
SIM0296A	5 R 6	1,052	05-12-98	10:04a	sim0296A.ct0
SIM0296A	DTO	49,216	05-12-98	10:04a	sim0296A.dt0
SIM0296B	CTO	1,052	05-12-98	10:23a	sim0296B.ct0
SIM0296B	DTO	24,608	05-12-98	10:23a	sim0296B.dt0
SPRING96	CT2	1,052	05-04-98	2:33a	Spring96.ct?
SPRING96	DT2	126,916,043	05-03-98	6:48p	Spring96.dt2
TIDCON	CT2	1,052	05-23-98	6:02a	tidcon.ct2
TIDCON	DT2	4,638,128	05-23-98	6:02a	tidcon.dt2
1	26 fil	e(s) 592,5	02,940 byt	les	

[]

[]

1

U

IJ

1

U

IJ

U

U

U

Directory of F:\cat\wind

	<dir></dir>		05-18-98	3:22p	
	<dir></dir>		05-18-98	3:22p	12110
HATIA0~6	CTO	1,052	04-23-98	12:37p	hatia0296.ct0
HATIA0~8	DT0				hatia0296.dt0
	2 file(s)		2,844 byt	zes -	

Directory of F:\wrkHDdry96

н 2 2	<dir> <dir></dir></dir>		05-18-9 05-18-9)8 3:2)8 3:2	2p.
M21HD	INP 1 file(s)	5,012		98 3:2	3p m21hd.inp
Total	files listed: 37 file(s) 18 dir(s)	595,5	64,372 b 0 b	oytes bytes f	ree

E.4 Contents of CD-ROM MES_DRY96B

Volume in drive F is MES_DRY96B Volume Serial Number is A403-09FF

Directory of $F: \setminus$

8.8

CAT <DIR> 05-26-98 5:13p cat WRKHDD~7 <DIR> 05-26-98 5:13p wrkHDdry96 0 file(s) 0 bytes

Directory of F:\cat

	<dir></dir>	05-26-93	5:13p	
* *	<dir></dir>	05-26-98	5:13p	
BATHY	<dir></dir>	25-26-98	5:13p	bathy
BOUND	<dir></dir>	05-26-98	5:13p	bound
DRY96	<dir></dir>	05-26-98	5:13p	Dry96
WIND	<dir></dir>	05-26-98	5:13p	wind
	0 file(s)	0 byt	-	

Directory of F:\cat\bathy

<DIR> 05-26-98 5:13p . <DIR> 05-26-98 5:13p 1,052 05-24-98 11:13a bathyI13.ct2 BATHYI13 CT2 BATHYI13 DT2 421,648 05-24-98 10:16a bathyI13.dt2 BATHY~10 CT2 1,052 05-24-98 11:04a bathyIall.ct2 BATHY~12 DT2 421,648 05-24-98 11:04a bathyIall.dt2 BATHY~14 CT2 1,052 05-24-98 10:27a bathyIex8.ct2 BATHY~16 DT2 421,648 05-24-98 10:27a bathyIex8.dt2
 BEDFRIC
 CT2
 1,052
 05-03-98
 11:54a
 bedfric.ct2

 BEDFRIC
 DT2
 421,648
 04-21-98
 3:40p
 bedfric.dt2
 8 file(s) 1,690,800 bytes

Directory of F:\cat\bound

3	<dir></dir>		05-26-98	5:13p	
ST 273	<dir></dir>		05-26-98	5:13p	2.3
CHAN02~6	CTO	1,052	04-19-98	11:03a	chan0296PW.ct0
CHAN02~8	DTO	76,640	04-19-98	11:03a	chan0296PW.dt0
S96DRY	CT1	1,052	05-03-98	12:08p	s96Dry.ct1
S96DRY	DT1 2,11	29,432	03-07-98	12:11p	s96Dry.dt1
	4 file(s)	2,20)8,176 byt	ces	

Directory of F:\cat\Dry96

24		<dir></dir>	05-26-98	5:13p	
- 10 - 10 -		<dir></dir>	05-26-98	5:13p	x a:
HDFLI1~6	CT2	1,052	05-26-98	3:02p	hdflll3Nn.ct2
HDFLI1~8	DT2	1,686,592	05-26-98	3:02p	hdflll3Nm.dt2
HDFLI~10	CT2	1,052	05-26-98	3:03p	hdflll3Sm.ct2
HDFLI~12	DT2	1,686,592	05-26-98	3:02p	hdflI13Nn.dt2
HDFLI~14	CT2	1,052	05-26-98	3:03p	hdflI13Sn.ct2
HDFLI~16	DT2	1,686,592	05-26-98	3:03p	hdflI13Sm.dt2

HDFLI~18	CT2	1,052	05-26-98	3:02p	hdflIl3Nm.ct2
HDFLI~20	DT2	1,686,592	05-26-98		hdflI13Sn.dt2
HDFLI~22	CT2	1,052			hdflIallNm.ct2
HDFLI~24	DT2	1,686,592	05-26-98		hdflIallNm.dt2
HDFLI~26	CT2.	1,052	05-26-98		hdflIallNn.ct2
HDFLI~28	DT2	1,686,592	05-26-98		hdflIallNn.dt2
HDFLI~30	CT2	1,052	05-26-98	3:180	hdflIallSm.ct2
HDFLI~32	DT2	1,686,592	05-26-98		hdflIallSm.dt2
HDFLI~34	CT2	1,052	05-26-98		hdflIallSn.ct2
HDFLI~36	DT2	1,686,592	05-26-98		hdflIallSn.dt2
HDFLI~38	CT2	1,052	05-26-98		hdfllex8Nm.ct2
HDFLI~40	DT2	1,686,592	05-26-98		hdfllex8Nm.dt2
HDFLI~42	CT2	1,052	05-26-98		hdflIex8Nn.ct2
HDFLI~44	DT2	1,686,592	05-26-98		hdflIex8Nn.dt2
HDFLI~46	CT2	1,052	05-26-98		hdflIex3Sm.ct2
HDFLI~48	DT2	1,686,592	05-26-98		hdflIex8Sm.dt2
HDFLI~50	CT2	1,052	05-26-98		hdflIex8Sn.ct2
HDFLI~52	DT2	1,686,592	05-26-98		hdflIex8Sn.dt2
HDI13MAX	CT2	1,052	05-25-98		hdI13max.ct2
HDI13MAX	DT2	843,296	05-25-98		hdI13max.dt2
HDI13MIN	CT2	1,052			hdI13min.ct2
HDI13MIN	DT2	843,296			hdI13min.dt2
HDI13TSA	CT0	1,052			hdI13tsA.ct0
HDI13TSA	DTO	49,216			hdI13tsA.dt0
HDI13TSB	CTO	1,052	05-25-98	10:28 <i>a</i>	hdI13tsB.ct0
HDI13TSB	DTO	24,608	05-25-98	10:27a	hdI13tsB.dt0
HDI13~62	CT2	1,052	05-25-98	11:51a	hdI13mean.ct2
HDI13~64		843,296	05-25-98	11:51a	hdI13mean.dt2
HDIALL	CT2	1,052	05-26-98	2:55a	hdIall.ct2
HDIALL	DT2	324,668,960	05-26-98	2:55a	hdIall.dt2
HDIAL~78	CT0	1,052	05-26-98	12:14p	hdIalltsA.ct0
HDIAL~80		1,052			hdIallmax.ct2
HDIAL~32	DTO	49,216			hdIalltsA.dt0
HDIAL~84		843,296			hdIallmax.dt2
HDIAL~86		1,052			hdIalltsB.ct0
HDIAL~88		1,052			hdIallmean.ct2
HDIAL~90		24,508			hdIalltsB.dt0
HDIAL~92		843,296			hdIallmean.dt2
HDIAL~94		1,052			hdIallmin.ct?
HDIAL~96		843,296			hdIallmin.dt2
HDIEX~98		1,052			hdIex8tsA.ct0
HDIE~100		1,052			hdIex8max.ct2
HDIE~102		49,216			hdIex8tsA.dt0
HDIE~104		843,296			hdIex8max.dt2
HDIE~106		1,052			hdIex8tsB.ct0
HDIE~108		1,052			hdIex8mean.ct2
HDIE~110		24,608			hdIex8tsB.dt0
HDIE~112		843,296			hdIex8mean.dt2
HDIE-114		1,052			hdlex8min.ct2
HDIE~116		843,296			hdIex8min.dt2
NEAP~118		1,052			Neap96Iall.ct2
NEAP~120	DT2	126,916,048	05-25-98	5:18p	Neap96Iall.dt2

HATIA0~6 CTO

Directory of F:\cat\wind

5 1

n

IJ

26

E-6

1,052 04-23-98 12:37p hatia0296.ct0

 SPR9~122 CT2
 1,052
 05-26-98
 2:55a
 Spr96Iall.ct2

 SPR9~124 DT2
 126,916,048
 05-24-98
 11:38p
 Spr96Iall.dt2

<DIR> 05-26-98 5:13p. <DIR> 05-26-98 5:13p..

60 file(s) 606,582,856 bytes

HATIA0~8 DT0 1,792 04-23-98 12:37p hatia0296.dt0 2 file(s) 2,844 bytes わぐ

Directory of F:\wrkHDdry96

2.4

	<dir></dir>		05-26-98	5:13p	×
a 14	<dir></dir>		05-26-98	5:13p	(*))(*)
M21HDI13	INP	5,048	05-24-98	11:08a	m21hdI13.inp
M21HDI~8	INP	5,067	05-24-98	11:11a	m21hdIex8.inp
M21HD~10	INP	5,052	05-24-98	11:12a	m21hdIall.inp
	3 file(s)		15,167 by	tes	
Total fi	les listed:				

77	file(s)	610,499,843	bytes	
18	dir(s)	0	bytes	free

E.5 Contents of CD-ROM MES_MON96A

8

.

11

Volume in drive F is MES_MON96A Volume Serial Number is E97E-793F

Directory of $F: \setminus$

CAT WRKHDM~7 (<dir> <dir>) file(s)</dir></dir>	05-22-98 10:23a cat 05-22-98 10:23a wrkHDmon96 0 bytes
Directory	of F:\cat	
3	<dir></dir>	05-22-98 10:23a .
4 G	<dir></dir>	05-22-98 10:23a
BATHY	<dir></dir>	05-22-93 10:23a bathy
BOUND	<dir></dir>	05-22-98 10:23a bound
MON96	<dir></dir>	05-22-98 10:23a Mon96
WIND	<dir></dir>	05-22-98 10:23a wind
0) file(s)	0 bytes

Directory of F:\cat\bathy

	<di.< th=""><th></th><th>05-22-98</th><th></th><th></th></di.<>		05-22-98		
	<di:< td=""><td>R></td><td>05-22-98</td><td>10:23a</td><td>(* 100)</td></di:<>	R>	05-22-98	10:23a	(* 100)
BATHYFIN	CT2				bathyfin.ct2
BATHYFIN	DT2	421,648	04-27-98	11:07a	bathyfin.dt2
BEDFRIC	CT2	1,052	05-03-98	11:54a	bedfric.ct2
BEDFRIC	DT2				bedfric.dt2
	4 file(s)	8	45,400 byt	ces	

Directory of F:\cat\bound

<DIR>
 ODIR>
 ODIR
 ODIR

Directory of F:\cat\Mon96

8		<dir></dir>	05-22-98	10:23a	2
8.8		<dir></dir>	05-22-98		
HD	CT2	1,052	05-05-98		
HD	DT2	324,668,960	05-05-98		
HDMAX	CT2	1,052			hdmax.ct2
HDMAX	DT2	843,296			hdmax.dt2
HDMEAN	CT2	1,052			hdmean.ct2
HDMEAN	DT2	843,296			hdmean.dt2
HDMIN	CT2	1,052			hdmin.ct2
HDMIN	DT2	843,296			hdmin.dt2
NEAP96	CT2	1,052			Neap96.ct2
NEAP96	DT2	126,916,048	05-05-98		Neap96.dt2

< 3

27

E.6 Contents of CD-ROM MES_DRY97A

Volume in drive F is MES_DRY97A

Volume Serial Number is 9CF3-E5D2

Directory of $F: \setminus$

CAT	<dir></dir>	05-21-98	4:07p	cat
WRKHDD~7	<dir></dir>	05-21-98	4:07p	wrkHDdry97
0	file(s)	0 byt	es	

U.

n

Directory of F:\cat

	<dir></dir>	05-21-98	4:07p	2
50/350	<dir></dir>	05-21-98	4:07p	
BATHY	<dir></dir>	05-21-98	4:07p	bathy
BOUND	<dir></dir>	05-21-98	4:07p	bound
DRY97	<dir></dir>	05-21-98	4:07p	Dry97
WIND	<dir></dir>	05-21-98	4:07p	wind
	0 file(s)	0 byt	es	

Directory of F:\cat\bathy

			05-21-98		
a 2	<dih< td=""><td>2></td><td>05-21-98</td><td>4:07p</td><td>*: *:</td></dih<>	2>	05-21-98	4:07p	*: *:
BATHYFIN	CT2	1,052	04-27-98	11:07a	bathyfin.ct2
BATHYFIN	DT2	421,648	04-27-98	11:07a	bathyfin.dt2
BEDFRIC	CT2	1,052	05-03-98	11:54a	bedfric.ct2
BEDFRIC	DT2	421,648	04-21-98	3:40p	bedfric.dt2
	4 file(s) 845,400 bytes				

Directory of F:\cat\bound

.
. <DIR> 05-21-98 4:07p .
. <DIR> 05-21-98 4:07p .
. <DIR> 05-21-98 4:07p ..
CHAN01~6 CT0 1,052 04-19-98 11:11a Chan0197FW.ct0
CHAN01~8 DT0 11,328 04-19-98 11:11a Chan0197FW.dt0
S97DRY CT1 1,052 05-03-98 5:36p s97Dry.ct1
S97DRY DT1 2,145,080 05-03-98 5:36p s97Dry.dt1
4 file(s) 2,158,512 bytes

Directory of F:\cat\Dry97

		<dir></dir>	05-21-98	4:07p	3.1
5. E		<dir></dir>	05-21-98	4:07p	54.0 m
HD	CT2	1,052	05-04-98	8:07p	hd.ct2
HD	DT2	324,668,960	05-04-98	8:07p	hd.dt2
HDMAX	CT2	1,052	05-22-98	11:11a	hdmax.ct2
HDMAX	DT2	843,296	05-22-98	11:11a	hdmax.dt2
HDMEAN	CT2	1,052	05-22-98	11:34a	hdmean.ct2
HDMEAN	DT2	843,296	05-22-98	11:34a	hdmean.dt2
HDMIN	CT2	1,052	05-22-98	11:30a	hdmin.ct2
HDMIN	DT2	843,296	05-22-98	11:29a	hdmin.dt2
NEAP97	CT2	1,052	05-C4-98	8:07p	Neap97.ct2
NEAP97	DT2	126,916,048	05-04-98	11:08a	Neap97.dt2
SIM0197A	CTO	1,052	05-11-98	3:43p	sim0197A.ct0
SIM0197A	DTO	49,216	05-11-98	3:43p	sim0197A.dt0

 SIM0197B CT0
 1,052
 05-11-98
 3:47p
 sim0197B.ct0

 SIM0197B DT0
 24,608
 05-11-98
 3:47p
 sim0197B.dt0

 SPRING97 CT2
 1,052
 05-04-98
 8:07p
 Spring97.ct2

 SPRING97 DT2
 126,916,048
 05-04-98
 4:25p
 Spring97.dt2

 16 file(s)
 581,113,184
 bytes

Directory of F:\cat\wind

. 1

•	<dir></dir>		05-21-98	4:07p	
	<dir></dir>		05-21-98	4:07p	
HATIA0~6	CT0	1,052	04-23-98	12:45p	hatia0197.ct0
HATIA0~8	DTO	1,408	04-23-98	12:45p	hatia0197.dt0
	2 file(s)		2,460 byt	ces	

Directory of F:\wrkHDdry97

14	<dir></dir>		05-21-98	4:07p	÷
19 10	<dir></dir>		05-21-98	4:07p	
M21HD	INP	5,012	05-03-98	3:49p	m21hd.inp
	1 file(s)		5,012 byt	es	

Total files listed: 27 file(s) 584,124,568 bytes 18 dir(s) 0 bytes free

E.7 Contents of CD-ROM MES MON97A

200

The second se

0

Volume in drive F is ME3_MON97A Volume Serial Number is 0F9A-8453 Directory of F:\ CAT <DIR> 05-22-98 4:51p cat WRKHDM~7 <DIR> 05-22-98 4:51p wrkHDmon97 0 file(s) 0 bytes Directory of F:\cat <DIR> 05-22-98 4:51p .
<DIR> 05-22-98 4:51p ..
<DIR> 05-22-98 4:51p bathy
<DIR> 05-22-98 4:51p bound
<DIR> 05-22-98 4:51p bound
<DIR> 05-22-98 4:51p Mon97
<DIR> 05-22-98 4:51p wind
0 file(s) 0 bytes BATHY BOUND MON97 WIND C file(s) 0 bytes Directory of F:\cat\bathy <DIR> 05-22-98 4:51p . <DIR> 05-22-98 4:51p . . . BATHYFIN CT2 1,052 04-27-98 11:07a bathyfin.ct2 BATHYFIN DT2 421,648 04-27-98 11:07a bathyfin.dt2
 BEDFRIC
 CT2
 1,052
 05-03-98
 11:54a
 bedfric.ct2

 BEDFRIC
 DT2
 421,648
 04-21-98
 3:40p
 bedfric.dt2
 4 file(s) 845,400 bytes Directory of F:\cat\bound <DIR> 05-22-98 4:51p . <DIR> 05-22-98 4:51p . CHAN08~6 CT0 1,052 04-19-98 11:17a Chan0897PW.ct0 CHAN08~8 DTO 6,352 04-19-98 11:17a Chan0897PW.dt0 1,052 05-03-98 12:09p s97Mon.ct1 S97MON CT1 S97MON DT1 3,999,368 04-23-98 5:20p s97Mon.dt1 4 file(s) 4,007,824 bytes Directory of F:\cat\Mon97 <DIR> 05-22-98 4:51p. <DIR> 05-22-98 4:51p.. ...<DIR>05-22-984:51p ...HDCT21,05205-04-989:02a hd.ct2HDDT2324,668,96005-04-989:02a hd.dt2HDFLNMCT21,05205-26-982:52p hdflNm.ct2HDFLNMDT21,686,59205-26-982:52p hdflNm.dt2HDFLNNCT21,05205-26-982:52p hdflNm.ct2HDFLNNCT21,05205-26-982:52p hdflNm.dt2HDFLSMCT21,05205-26-982:52p hdflSm.ct2HDFLSMCT21,05205-26-982:52p hdflSm.ct2HDFLSMDT21,686,59205-26-982:52p hdflSm.ct2HDFLSNCT21,05205-26-982:52p hdflSm.ct2HDFLSNDT21,686,59205-26-982:52p hdflSm.dt2HDFLSNDT21,686,59205-26-982:52p hdflSm.dt2HDFLSNDT21,686,59205-26-982:52p hdflSm.dt2HDMAXCT21,05205-17-984:04p hdmax.ct2HDMAXDT2843,29605-17-984:04p hdmax.dt2HDMEANDT2843,29605-22-9810:23a hdmean.ct2HDMEANDT2843,29605-22-9810:23a hdmean.dt2

E-12

		 E 				
NEAP97 NEAP97 SIM0997A SIM0997A SIM0997B SIM0997B SPRING97	DT2 CT2 DT2 CT0 DT0 CT0 DT0 CT2	84 126,91 4 2	3,296 1,052 6,048 1,052 9,216 1,052 4,608 1,052	05-03-98 05-11-98 05-11-98 05-11-98 05-11-98 05-11-98 05-04-98	4:04p 9:02a 6:18p 4:36p 4:36p 4:37p 4:37p 9:02a	hdmin.ct2 hdmin.dt2 Neap97.ct2 Neap97.dt2 sim0997A.ct0 sim0997A.dt0 sim0997B.ct0 sim0997B.ct0 Spring97.ct2
SPRING9/	D12	120,91	.0,048	03-04-98	2:35a	Spring97.dt2
	24 file	e(s)	587.8	63,760 byt	es	
			1			
Directory	y of F	\cat\w	vind			
HATIA0~6	CT0 DT0	<dir></dir>	1,052 3,912	05-22-98 05-22-98 04-23-98 04-23-98 4,964 byt	4:51p 12:58p 12:58p	hatia0897.ct0 hatia0897.dt0
Director	y of F	:\wrkHI)mon97			
	INP		5,329	05-22-98 05-22-98 05-03-98 5,329 byt	3:21p	m21hd.inp
Total fi			592,7	27,277 byt	ces	

а

 35 file(s)
 592,727,277 bytes

 18 dir(s)
 0 bytes free

E.8 Contents of CD-ROM MES_MON97B

Volume in drive F is MES_MON97B

Volume Serial Number is 3108-0570

Directory of $F: \setminus$

CAT	<dir></dir>	05-28-98	12:20p	cat
WRKHDM~7	<dir></dir>	05-28-98	12:200	wrkHDmon97
	0 file(s)	0 by		
Directory	of F:\cat			
з	<dir></dir>	05-28-98	12:20p	•
* *	<dir></dir>	05-28-98	12:20p	
BATHY	<dir></dir>	05-28-98		
BOUND	<dir></dir>	05-28-98	12:20p	bound
MON97	<dir></dir>	05-28-98		
WIND	<dir></dir>	05-28-98		
	0 file(s)	0 by	tes	

1

Π

1

1

1

11

Directory of F:\cat\bathy

4	<di< th=""><th>R></th><th>05-28-98</th><th>12:20p</th><th></th></di<>	R>	05-28-98	12:20p	
÷ .	<di< td=""><td>R></td><td>05-28-98</td><td></td><td></td></di<>	R>	05-28-98		
BATHYI13		1,052	05-24-98	11:13a	bathyI13.ct2
BATHYI13	DT2	421,648	05-24-98	10:16a	bathyI13.dt2
BATHY~10	1. TO 1. TT 1. THE	1,052	05-24-98	11:04a	bathyIall.ct2
BATHY~12		421,648	05-24-98	10:27a	bathyIex8.dt2
BATHY~14		1,052	05-24-98	10:27a	bathyIex8.ct2
BATHY~16		421,648	05-24-98	11:04a	bathyIall.dt2
BEDFRIC		1,052	05-03-98	11:54a	bedfric.ct2
BEDFRIC	DT2	421,648	04-21-98	3:40p	bedfric.dt2
	8 file(s)		90,800 byt		

Directory of F:\cat\bound

5.	<dir< th=""><th>(></th><th>05-28-98</th><th>12:20p</th><th></th></dir<>	(>	05-28-98	12:20p	
A 8	<dip< td=""><td></td><td>05-28-98</td><td></td><td></td></dip<>		05-28-98		
CHAN08~6					Chan0897PW.ct0
CHAN08~8		6,352	04-19-98	11:17a	Chan0897PW.dt0
S97MON		1,052	05-03-98	12:09p	s97Mon.ccl
S97MON		999,368	04-23-98	5:20p	s97Mon.dt1
4 file(s) 4,007,824 bytes					

Directory of F:\cat\Mon97

•	< D I R >	05-28-98	12:20p	9
• *	<dir></dir>	05-28-98		
HDFLI1~6 C	T2 1,052	05-27-98		hdflI13Nn.ct2
HDFLI1~8 D	T2 1,686,592	05-27-98		hdflI13Nm.dt2
HDFLI~10 C	T2 1,052	05-27-98		hdflI13Sm.ct2
HDFLI~12 D	T2 1,686,592	05-27-98		hdflI13Nn.dt2
HDFLI~14 C	11000	05-27-98		hdflI13Sn.ct2
HDFLI~16 D	T2 1,686,592	05-27-98	2:54p	hdflll3Sm.dt2
HDFLI~18 C	the product and the	05-27-98	2:52p	hdflll3Nm.ct2
HDFLI~20 D	and construction because at	05-27-98		hdflI13Sn.dt2
HDFLI~22 C	and the second se	05-28-98		hdflIallNm.ct2
HDFLI~24 D	I2 1,686,592	05-28-98		hdflIallNm.dt2

72	1 -	
YU	C	2

		14			
HDFLI~26	CT2	1,052	05-28-98	9:41a	hdflIallNn.ct2
HDFLI~28	DT2	1,686,592	05-28-98		hdflIallNn.dt2
HDFLI~30	CT2	1,052	05-28-98	9:42a	hdflIallSm.ct2
HDFLI~32		1,686,592	05-28-98		hdflIallSm.dt2
HDFLI~34		1,052	05-28-98	9:43a	hdflIallSn.ct2
HDFLI~36		1,686,592	05-28-98	9:43a	hdflIallSn.dt2
HDFLI~38	CT2	1,052	05-28-98	8:54a	hdflIex8Nm.ct2
HDFLI~40	DT2	1,686,592	05-28-98	8:54a	hdfllex8Nm.dt2
HDFLI-42	CT2	1,052	05-28-98	8:55a	hdfllex8Nn.ct2
HDFLI~44	DT2	1,686,592	05-28-98	8:55a	hdfllex8Nn.dt2
HDFLI~46	CT2	1,052	05-28-98	8:56a	hdfllex8Sm.ct2
HDFLI~48	1714 TAIT	1,686,592	05-28-98	8:56a	hdfllex8Sm.dt2
HDFLI~50	CT2	1,052	05-28-98	8:56a	hdflIex8Sn.ct2
HDFLI~52	DT2	1,686,592	05-28-98	8:56a	hdflIex8Sn.dt2
HDI13MAX	CT2	1,052	05-27-98	10121 U.S. 112 Control (#0.11)	hdI13max.ct2
HDI13MAX	DT2	843,296	05-27-98	3:09p	hdI13max.dt2
HDI13MIN	CT2	1,052	05-27-98		hdI13min.ct2
HDI13MIN	DT2	843,296	05-27-98	3:27p	hdI13min.dt2
HDI13TSA	CTO	1,052	05-27-98	3:34p	hdI13tsA.ct0
HDI13TSA	DTO	49,216	05-27-98		hdI13tsA.dt0
HDI13TSB	CTO	1,052	05-27-98	-	hdI13tsB.ct0
HDI13TSB		24,608	05-27-98		hdI13tsB.dt0
HDI13~62		1,052	05-27-98	-	hdI13mean.ct2
HDI13~64		843,296	05-27-98		hdI13mean.dt2
HDIALL	CT2	1,052	05-28-98		hdIall.ct2
HDIALL	DT2	324,668,960	05-28-98		hdIall.dt2
HDIAL~78		1,052	05-28-98		hdIalltsA.ct0
HDIAL~80	CT2	1,052	05-28-98		hdIallmax.ct2
HDIAL~82	DTU	49,216	05-28-98		hdIalltsA.dt0
HDIAL~84	DT2	843,296	05-28-98		hdIallmax.dt2
	CT0	1,052	05-28-98		hdIalltsB.ct0
		1,052	05-28-98		hdIallmean.ct2
HDIAL~90		24,608	05-28-98		hdIalltsB.dt0
	DT2	843,296	05-28-98		hdIallmean.dt2
HDIAL~94		1,052	05-28-98		hdIallmin.ct2
HDIAL~96		843,296			hdIallmin.dt2
HDIEX~98		1,052			hdlex8tsA.ct0
HDIE~100		1,052			hdIex8max.ct2
HDIE~102		49,216	05-28-98		hdIex3tsA.dt0
HDIE~104		843,296	05-28-98		hdIex8max.dt2
HDIE-106		1,052	05-28-98		hdIex8tsB.ct0
HDIE~108		1,052	05-28-98		hdIex8mean.ct2
HDIE~110		24,608	05-28-98		hdIex8tsB.dt0
HDIE~112		843,296	05-28-98		hdIex8mean.dt2
HDIE~114		1,052	05-28-98		hdIex8min.ct2
HDIE~116		843,296	05-28-98		hdIex8min.dt2
NEAP~118		1,052	05-28-98		Neap97Iall.ct2
NEAP~120		126,916,048			Neap97Iall.dt2
SPR9~122			05-28-98		Spr97Iall.ct2
SPR9~124		126,916,043			Spr97Iall.dt2
	60 Ill	.e(s) 606,5	02,856 by	tes	

Directory of F:\cat\wind

N.M.

.

201

20	<dir></dir>		05-28-98	12:20p	
43 - 40	<dir></dir>		05-28-98	12:20p	
HATIA0~6	CT0	1,052	04-23-98	12:58p	hatia0897.ct0
HATIA0~8	DT0	3,912	04-23-98	12:58p	hatiaC897.dt0
	2 file(s)		4,964 byt		

Directory of F:\wrkHDmon97

 <DIR>
 O5-28-98 12:20p .
 <DIR>
 O5-28-98 12:20p .
 M21HDI13 INP
 S,044
 O5-26-98
 S:59p m21hdI13.inp
 M21HDI~8 INP
 S,048
 O5-26-98
 4:02p m21hdIex8.inp
 M21HD~10 INP
 S,033
 O5-26-98
 4:04p m21hdIall.inp
 3 file(s)
 15,125 bytes Total files listed: 77 file(s) 612,301,569 bytes 18 dir(s)

0 bytes free

E [].

[]

68

E-16

E.9 Contents of CD-ROM MES_SALI

Volume in drive F is MES_SALI Volume Serial Number is 3B40-EEDE

Directory of $F: \setminus$

D

CAT	<dir></dir>	05-27-98	11:54a cat
WRKAD	<dir></dir>	05-27-98	11:54a wrkAD
	0 file(s)	0 byt	tes
Directory	of F:\cat		

	<dir></dir>	05-27-98 11	.:54a .
	<dir></dir>	05-27-98 11	:54a
BATHY	<dir></dir>	05-27-98 11	:54a bathy
BOUND	<dir></dir>	05-27-98 11	:54a bound
SALI	<dir></dir>	05-27-98 11	.:54a sali
WIND	<dir></dir>	05-27-98 11	:51a wind
	0 file(s)	0 bytes	3

Directory of F:\cat\bathy

	<dih< th=""><th>२></th><th>05-27-98</th><th>11:54a</th><th></th></dih<>	२>	05-27-98	11:54a	
* *	<dih< td=""><td>ર></td><td>05-27-98</td><td>11:54a</td><td></td></dih<>	ર>	05-27-98	11:54a	
BATHYFIN	CT2	1,052	04-27-98	11:07a	bathyfin.ct2
BATHYFIN	DT2	421,648	04-27-98	11:07a	bathyfin.dt2
BATHY~10	CT2	1,052	05-24-98	11:04a	bathyIall.ct2
BATHY~12	DT2	421,648	05-24-98	11:04a	bathyIall.dt2
BEDFRIC	CT2	1,052	05-03-98	11:54a	bedfric.ct2
BEDFRIC	DT2	421,648	04-21-98	3:40p	bedfric.dt2
	6 file(s)	1,2	68,100 byt	ces	

Directory of F:\cat\bound

		<dir></dir>	05-27-98	11:54a	20
		<dir></dir>	05-27-98	11:54a	
CHAN02~6	CTO	1,052	04-19-98	11:03a	chan0296PW.ct0
CHAN02~8	DTO	76,640	04-19-98	11:03a	chan0296PW.dt0
S96DRY					s96Dry.ct1
S96DRY	DT1	2,129,432	03-07-98	12:11p	s96Dry.dt1
		e(s) 2,20			

Directory of F:\cat\sali

÷		<dir> <dir></dir></dir>	05-27-98 05-27-98		
1992 • 65				11:54a	
AD	CT2	1,052	05-27-98	4:04a	ad.ct2
AD	DT2	324,668,960	05-27-98	4:04a	ad.dt2
AD0296A	CTO	1,052	05-27-98	8:53a	ad0296A.ct0
AD0296A	DTO	49,216	05-27-98	8:53a	ad0296A.dt0
AD0296B	CT0	1,052	05-27-98	9:01a	ad0296B.ct0
AD0296B	DTO	24,608	05-27-98	9:01a	ad0296B.dt0
ADI0296A	CT0	1,052	05-26-98	11:33a	adI0296A.ct0
ADI0296A	DT0	22,272	05-26-98	11:32a	adI0296A.dt0

200

ADI0296B	CTO	1,052	05-26-98	11:38a	adI0296B.ct0
ADI0296B		11,136	05-26-98		adI0296B.dt0
ADIALL	CT2	1,052	05-26-98		adIall.ct2
ADIALL		,155,152	05-26-98		adIall.dt2
ADIMAX	CT2	1,052	05-26-98		adImax.ct2
ADIMAX	DT2	843,296	05-26-98		adImax.dt2
ADIMEAN	CT2	1,052	05-26-98	9:11a	adImean.ct2
ADIMEAN	DT2	843,296	05-26-98	9:11a	adImean.dt2
ADIMIN	CT2	1,052	05-26-98	9:06a	adImin.ct2
ADIMIN	DT2	843,296	05-26-98		adImin.dt2
ADMAX	CT2	1,052	05-27-98		admax.ct2
ADMAX	DT2	843,296	05-27-98		admax.dt2
ADMEAN	CT2	1,052	05-27-98		admean.ct2
ADMEAN	DT2	843,296	05-27-98		admean.dt2
ADMIN	CT2	1,052	05-27-98	9:15a	admin.ct2
ADMIN	DT2	843,296	05-27-98		admin.dt2
HD0296A	CTO	1,052	05-27-98		hd0296A.ct0
HD0296A	DTO	22,272	05-27-98		hd0296A.dt0
HD0296B	CTO	1,052	05-27-98		hd0296B.ct0
HD0296B	DTO	11,136	05-27-98	9:08a	hd0296B.dt0
HDDIFF	CT2	1,052	05-27-98		hddiff.ct2
HDDIFF	DT2	421,648	05-27-98		hddiff.dt2
HDI0296A		1,052	05-26-98		hdI0296A.ct0
HDI0296A		22,272	05-26-98		hdI0296A.dt0
HDI0296B		1,052	05-26-98		hdI0296B.ct0
HDI0296B HDIDIFF		11,136	05-26-98		hdI0296B.dt0
HDIDIFF	CT2 DT2	1,052	05-26-98		hdIdiff.ct2
HDIMAX	CT2	421,648			hdIdiff.dt2
HDIMAX	DT2	1,052 843,296			hdImax cc2
HDIMEAN	CT2	1,052			hdImax.dt2
HDIMEAN	DT2	843,296			hdImean.ct2
HDIMIN	CT2	1,052			hdImean.dt2 hdImin.ct2
HDIMIN	DT2	843,296			hdImin.dt2
HDSMAX	CT2	1,052			hdSmax.ct2
HDSMAX	DT2		05-27-98	9:26a	hdSmax.dt2
HDSMEAN	CT2				hdSmean.ct2
HDSMEAN	DT2	843,296			hdSmean.dt2
HDSMIN	CT2	1,052			hdSmin.ct2
HDSMIN	DT2	843,296	05-27-98		hdSmin.dt2
HDXMAX	CT2	1,052	05-25-98		hdXmax.ct2
HDXMAX	DT2	843,296	05-25-98		hdXmax.dt2
HDXMEAN	CT2		05-25-98		hdXmean.ct2
HDXMEAN	DT2	843,296	05-25-98		hdXmean.dt2
HDXMIN	CT2	1,052	05-25-98	1:31p	hdXmin.ct2
HDXMIN	DT2	843,296	05-25-98		hdXmin.dt2
HDYMAX	CT2	1,052	05-26-98	11:11a	hdYmax.ct2
HDYMAX	DT2	843,296			hdYmax.dt2
HDYMEAN	CT2	1,052			hdYmean.ct2
HDYMEAN	DT2				hdYmean.dt2
HDYMIN HDYMIN	CT2				hdYmin.ct2
SALIINI	DT2				hdYmin.dt2
SALIINI	CT2 DT2	1,052	05-05-98	6:36p	saliini.ct2
SBND	CT1	441,048 1 0ED	05-05-98	6:36p	saliini.dt2
SBND	DT1	1,052	05-18-98 05-05-98	11:38a	spnd.ctl
	54 file(s)	488 41	05-05-98 78,704 byt	que: a	spina.atl
		100,4	io, iou byt	.05	

£

Q

Į

[]

IJ

Directory of F:\cat\wind

0

<DIR> 05-27-98 11:54a .

... <DIR> 05-27-98 11:54a ... HATIA0~6 CT0 1,052 04-23-98 12:37p hatia0296.ct0 HATIA0~8 DT0 1,792 04-23-98 12:37p hatia0296.dt0 2 file(s) 2,844 bytes 209

Directory of F:\wrkAD

7,

 ${\bf y} = {\bf q}$

	<dir></dir>		05-27-98	11:54a	÷
141 ¥	<dir></dir>		05-27-98	11:54a	
M21AD			05-26-98		
M21ADI~8	INP	6,852	05-25-98	4:54p	m21adIall.inp
	2 file(s)		13,670 byt	tes	
Total fi	les listed:				

78	file(s)	491,971,494	bytes	
18	dir(s)	0	bytes	free

DR

E.10 Contents of CD-ROM MES_OTHER

Volume in drive F is MES_OTHER Volume Serial Number is 904C-4115

Directory of $F: \setminus$

BATHYRAW	<dir></dir>	06-01-98	4:33p	bathyraw
CAT	<dir></dir>	06-01-98	4:33p	cat
SOURCE	<dir></dir>	06-01-98	4:33p	source
WORKNZ WRKNSW WRKST	<dir> <dir> <dir></dir></dir></dir>	06-01-98 06-01-98 06-01-98	4:33p 4:33p	workNZ wrkNSM wrkST
0 t	ile(s)	0 byte	es	

Directory of F:\bathyraw

		<dir></dir>	06-01-98	4:33p	
3.3		<dir></dir>	06-01-98	4:33p	* *
C18294	XYZ	7,727	10-30-97	3:26p	c18294.xyz
C186_95	XYZ	37,768	11-16-97		c186 95.xyz
E169_96	XYZ	26,207	10-13-97	7:19p	e169 96.xyz
ED182BP	XYZ	8,064	11-02-97	4:14p	ed182bp.xyz
ED_14994	XYZ	6,615	10-28-97	9:16a	ed 14994.xyz
MES200	XYZ	21,361,536	03-16-98	5:08p	mes200.xyz
NIZ97	XYZ	12,988	03-16-98	12:00p	niz97.xyz
ORIKMS	XYZ	69,116.892	02-12-98	3:21p	orikms.xyz
WATERO	XYZ	2,370,816	03-15-98	2:17p	water0.xyz
	9 fil	e(s) 92,94	48,613 byt	les	

Directory of F:\cat

	<dir></dir>	06-01-98	4:33p	a
× -	<dir></dir>	06-01-98	4:33p	x x
BATHY	<dir></dir>	06-01-98	4:33p	bathy
BATHYRAW	<dir></dir>	06-01-98		bathyraw
BATLOC	<dir></dir>	06-01-98	-	batLoc
BNDLOC	<dir></dir>	06-01-98		bndLoc
MEAS0296	<dir></dir>	06-01-98		meas0296
MEAS0297	<dir></dir>	06-01-98		meas0297
MEAS0996	<dir></dir>	06-01-98	4:33p	meas0996
MEAS0997	<dir></dir>	06-01-98	4:33p	meas0997
MESWL	<dir></dir>	06-01-98	4:33p	meswl
SEDI	<dir></dir>	06-01-98	4:33p	sedi
TIDE0296	<dir></dir>	06-01-98	4:33p	tide0296
TIDE0297	<dir></dir>	06-01-98	4:33p	tide0297
TIDE0996	<dir></dir>	06-01-98	4:33p	tide0996
TIDE0997	<dir></dir>	06-01-98	4:33p	tide0997
WAVES	<dir></dir>	06-01-98	4:33p	waves
	0 file(s)	0 byt	es	

Directory of F:\cat\bathy
<DIR> 06-01-98 4:33p . <DIR> 06-01-98 4:33p BAT-MES CT2 1,052 04-27-98 10:46a bat-MES.ct2 BAT-MES DT2 421,648 04-27-98 9:58a bat-MES.dt2 BAT-NIZ CT2 BAT-NIZ DT2 1,052 04-27-98 10:37a bat-niz.ct2 421,648 04-27-98 10:37a bat-niz.dt2 1,052 03-04-98 3:30p bathybnd.ct2 421,648 03-04-98 3:30p bathybnd.dt2 BATHYBND CT2 BATHYBND DT2 1,052 04-27-98 11:07a bathyfin.ct2 BATHYFIN CT2 BATHYFIN DT2 421,648 04-27-98 11:07a bathyfin.dt2 BATHYNSW CT2 1,052 05-04-98 9:29a bathyNSW.ct2 BATHYNSW DT2 1,682,250 05-04-98 9:29a bathyNSW.dt2 BEDFRIC CT2 BEDFRIC DT2 1,052 05-03-98 11:54a bedfric.ct2 421,648 04-21-98 3:40p bedfric.dt2 FINAL~30 CT2 1,052 03-07-98 12:08p rinaldhul.ct2 FINAL~32 DT? 421,648 03-07-98 12:08p finaldhul.dt2 14 file(s) 4,219,512 bytes

202

Directory of F:\cat\bathyraw

1.3

9	<dir></dir>	06-01-98	4:33p	.5
	<dir></dir>	06-01-98	4:33p	3.9
BAT-CSPS CT2	1,052	02-22-98	5:03p	bat-csps.ct2
BAT-CSPS DT2	490,960	02-22-98	5:03p	bat-csps.dt2
BAT-KMS CT2	1,052	03-12-98	5:10p	bat-kms.ct2
BAT-KMS DT2	516,952	03-12-98	5:10p	bat-kms.dt2
BAT-LAND CT2	1,052	02-22-98	4:49p	bat-land.ct2
BAT-LAND DT2	421,648	02-22-98	4:49p	bat-land.dt2
BAI-SPOT CT2	1,052	05-18-98	11:44a	bat-spot.ct2
BAT-SPOT DT2	503,956	05-18-98	11:44a	bat-spot.dt2
BIWTA~22 CT2	1,052	02-19-98	11:10a	biwta pwd.ct2
BIWTA~24 DT2	503,956	02-19-98	11:10a	biwta pwd.dt2
10 fil	e(s) 2,4	42,732 byt	ces	

Directory of F:\cat\batLoc

		<dir></dir>	06-01-98	4:33p	
		<dir></dir>	06-01-98	4:33p	
BATHYLOC	CT2	1,052	05-30-98	10:37a	hathyLoc.ct2
BATHYLOC	DT2	84,056	05-26-98	9:24a	<pre>bathyLoc.dt2</pre>
BATILOC	CT2	1,052	05-30-98	10:36a	batILoc.ct2
BATILOC	DT2	84,056	05-27-98	5:40p	batILoc.dt2
BATIL~14	CT2	1,052	06-02-98	10:06a	batILoc13.ct2
BATIL~16	DT2	84,056	06-02-98	10:06a	batILoc13.dt2
BEDFRIC	CT2	1,052	05-19-98	3:21p	bedfric.ct2
BEDFRIC	DT2	84,056	05-19-98	3:21p	bedfric.dt2
HDFLI~22	CT2	1,052	06-04-98	12:04p	hdflI13Sn.ct2
HDFLI~24	DT2	336,224	06-04-98	12:03p	hdflll3Sm.dt2
HDFLI~26	CT2	1,052	06-04-98	12:03p	hdflll3Sm.ct2
HDFLI~28	DT2	336,224	06-04-98	12:04p	hdflll3Sn.dt2
HDFLI~30	CT2	1,052	05-30-98	3:14p	hdflIallSn.ct2
HDFLI~32	DT2	336,224	05-30-98	3:13p	hdflIallSm.dt2
$\texttt{HDFLI} \sim 3.4$	CT2	1,052	05-30-98	3:13p	hdflIallSm.ct2
HDFLI~36	DT2	336,224	05-30-98	3:14p	hdflIallSn.dt2
HDFLSM	CT2	1,052	05-30-98	3:09p	hdflSm.ct2
HDFLSM	DT2	336,224	05-30-98	3:09p	hdflSm.dt2
HDFLSN	CT2	1,052	05-30-98	3:10p	hdflSn.ct2
HDFLSN	DT2	336,224	05-30-98	3:10p	hdflSn.dt2
HDNZ	CT2	1,052	05-30-98	10:13a	hdNZ.ct2
HDNZ	DT2	25,300,856	05-27-98	9:12p	hdNZ.dt2
HDNZI13	CT2	1,052	06-03-98	7:03p	hdNZI13.ct2

DHU0296C	CTO	1,052	05-14-98	11.552	dhu0296C.ct0
			- 이러 - 영화 - 영		는 것은 것은 것이 가지 않는 것이다. 것이다. 것이 가지 않는 것이 있는 것이다. 이 것이 있다. 이 가 있다. 이 것이 있다. 이 가 있
DHU0296C	DTO	5,568	05-14-98	11:55a	dhu0296C.dt0
K100296C	CTO	1,052	05-13-98	3:23p	k100296C.ct0
K100296C	DT0	2,780	05-13-98	3:23p	k100296C.dt0
KHE0296C	CTO	1,052	05-14-98	4:08p	khe0296C.ct0
KHE0296C	DTO	5,564	05-14-98	4:08p	khe0296C.dt0
KOCHO~38	CTO	1,052	05-14-98	11:32a	Kocho0296C.ct0
KOCHO~40	DTO	6,000	05-14-98	11:32a	Kocho0296C.dt0
RAM0296C	CTO	1,052	05-13-98	3:28p	ram0296C.ct0
RAM0296C	DTO	5,568	05-13-98	3:28p	ram0296C.dt0
SAN0296C	CTO	1,052	03-08-98	9:42a	san0296C.ct0
SAN0296C	DTO	5,568	03-08-98	9:42a	san0296C.dt0
	22 file(s)	1:	36,428 by	tes	

Directory of F:\cat\meas0297

+ 1

	<dir></dir>	06-01-98	4:33p	2
20 20 20	<dir></dir>	06-01-98	4:33p	
CHAND0~6 CT0	1,052	04-20-98	2:36p	Chand0197C.ct0
CHAND0~8 DT0	11,328	04-20-98	2:36p	Chand0197C.dt0
CHANG~10 CTO	1,052	05-13-98	11:17a	Chang0197C.ct0
CHANG~12 DT0	11,328	05-13-98	11:17a	Chang0197C.dt0
CHIT0~14 CTO	1,052	05-13-98	11:18a	Chit0197C.ct0
CHIT0~16 DT0	11,328	05-13-98	11:18a	Chit0197C.dt0
DAS0197C CTO	1,052	05-13-98	11:19a	Das0197C.ct0
DAS0197C DT0	11,324	05-13-98	11:19a	Das0197C.dt0
DAU0197C CTO	1,052	05-13-98	11:26a	Dau0197C.ct0
DAU0197C DTO	440	05-13-98	11:26a	Dau0197C.dt0
DHULI~26 CTO	1,052	C5-14-98	1:10p	Dhuli0197C.ct0
DHULI~28 DTO	11,332	05-14-98	1:10p	Dhuli0197C.dt0
KH100~30 CT0	1,052	05-13-98	12:00p	Kh100197C.ct0
KH100~32 DT0	5,664	05-13-98	12:00p	Kh100197C.dt0
KHEP0~34 CTO	1,052	05-14-98	4:06p	Khep0197C.ct0
KHEP0~36 DT0	11,328	05-14-98	4:06p	Khep0197C.dt0
KOCH0~38 CTO	1,052	05-14-98	12:46p	Koch0197C.ct0
KOCH0~40 DT0	5,664	05-14-98	12:46p	Koch0197C.dt0
RAMDA~42 CTO	1,052	05-13-98	11:32a	Ramda0197C.ct0
RAMDA~44 DTO	11,328	05-13-98	11:32a	Ramda0197C.dt0
SAND0~46 CT0	1,052	05-14-98	12:27p	Sand0197C.ct0
SAND0~48 DT0	11,328	05-14-98	12:27p	Sand0197C.dt0
22 file	e(s) 1	13,964 by	ces	

Directory of F:\cat\meas0996

		<dir></dir>		06-01-98	4:33p	
		<dir></dir>		06-01-98	4:33p	* *
0809CH~6	CTO		1,052	05-14-98	9:35a	0809Char96.ct0
0809CH~8	DTO		3,188	05-14-98	9:35a	0809Char96.dt0
CHAR0~10	CTO		1,052	05-14-98	9:39a	Char0996C.ct.0
CHAR0~12	DTO		3,188	05-14-98	9:39a	Char0996C.dt0
CHIT0~14	CTO		1,052	05-14-98	9:44a	Chit0996C.ct0
CHIT0~16	DTO		3,072	05-14-98	9:44a	Chit0996C.dt0
DAS0996C	CTO		1,052	05-14-98	9:46a	Das0996C.ct0
DAS0996C	DTO		3,072	05-14-98	9:46a	Das0996C.dt0
DAUL0~22	CT0		1,052	05-14-98	12:14p	Daul0996C.ct0
DAUL0~24	DTO		008	05-14-98	12:14p	Daul0996C.dt0
DHUL0~26	CT0		1,052	05-14-98	10:44a	Dhul0996C.ct0
DHUL0~28	DT0		3,072	05-14-98	10:44a	Dhul0996C.dt0
KH100~30	CT0		1,052	05-14-98	2:57p	kh100996C.ct0
KH100~32	DT0		2,784	05-14-98	2:57p	kh100996C.dt0
KHEP0~34	CT0		1,052	05-14-98	4:04p	Khep0996C.ct0

KHEP0~36 DT0	3,072	05-14-98	4:04p	Khep0996C.dt0
KOCH0~38 CT0	1,052	05-16-98		Koch0996C.ct0
KOCH0~40 DT0	2,784	05-16-98		Koch0996C.dt0
RAM0996C CTO	1,052	05-14-98	10:54a	Ram0996C.ct0
RAM0996C DTO	3,072			Ram0996C.dt0
SAND0~46 CT0	1,052			Sand0996C.ct0
SAND0~48 DT0	3,072	05-14-98	11:18a	Sand0996C.dt0
22 file(s)		42,748 byt		

0

[]

[]

U

l

U

U

Directory of F:\cat\meas0997

222

		<dir></dir>	06-01-98	4:33p	
		<dir></dir>	06-01-98	4:33p	
CHAND0~6	CTO	1,052	04-26-98	-	Chand0897.ct0
CHAND0~8	DTO	11,712	04-26-98		Chand0897.dt0
CHANG~10	CTO	1,052	05-13-98		Chang0997C.ct0
CHANG~12	DTO	11,712	05-13-98		Chang0997C.dt0
CHIT0~14	CTO	1,052	05-13-98		Chit0997C.ct0
CHIT0~16	DTO	11,712	05-13-98		Chit0997C.dt0
DAS0997C	CTO	1,052	05-13-98		Das0997C.ct0
DAS0997C	DTO	11,712	05-13-98		Das0997C.dt0
DAU0997C	CTO	1,052	05-13-98		Dau0997C.ct0
DAU0997C	DTO	1,088	05-13-98		Dau0997C.dt0
DHULI~26	CTO	1,052	05-14-98		Dhuli0997C.ct0
DHULI~28	DT0	11,712	05-14-98		Dhuli0997C.dt0
K100997C	CTO	1,052	05-13-98		K100997C.ct0
K100997C	DTO	5,856	05-13-93		K100997C.dt0
KHEP0~34	CTO	1,052	05-14-98		Khep0997C.ct0
KHEP0~36	DTO	11,712	05-14-98	4:06p	Khep0997C.dt0
RAM0997C	CTO	1,052	05-13-98		Ram0997C.ctu
RAM0997C	DTO	11,712	05-13-98		Ram0997C.dt0
SAND0~42	CT0	1,052	05-14-98		Sand0997C.ct0
SAND0~44	DTO	11,712	05-14-98		Sand0997C.dt0
2	0 file	(s) 11	1,160 byte	-	presentation and a second state of the second

Directory of F:\cat\meswl

	<dir< th=""><th>.></th><th>06-01-98</th><th>4:33p</th><th></th></dir<>	.>	06-01-98	4:33p	
65 S20	<dir< td=""><td>></td><td>06-01-98</td><td></td><td></td></dir<>	>	06-01-98		
MES1C	CTO	1,052	05-13-98		mes1C.ct0
MES1C	DTO	5,612			mes1C.dt0
MES2C	CT0	1,052			mes2C.ct0
MES2C	DT0	4,748			mes2C.dt0
MES4C	CT0	1,052			mes4C.ct0
MES4C	DTO	6,044			mes4C.dt0
MES5C	CT0	1,052			mes5C.ct0
MES5C	DTO	6,124			mes5C.dt0
MES6C	CTO	1,052			mes6C.ct0
MES6C	DTO	5,812			mes6C.dt0
SEC	CTO	1,052	05-13-98		
SEC	DTO	4,596	05-13-98		
	12 file(s)		40,248 byt		

Directory of F:\cat\sedi

2		<dir></dir>	06-01-98	4:33p	S.
÷ 4		<dir></dir>	06-01-98	4:33p	3.3
DRYSNN~6	CT2	1,052			drySNnowT.ct2
DRYSNN~8	DT2	1,686,592	05-28-98	3:56p	drySNnowT.dt2
DRYSP~10	CT2				drySPnowT.ct2
DRYSP~12	DT2	1,686,592	05-28-98	4:33p	drySPnowT.dt2

-

MONSN~14 MONSN~16 MONSN~20 MONSN~20 MONSN~22 MONSN~24 MONSP~26 MONSP~26 MONSP~30 MONSP~32 MONSP~36	DT2 CT2 DT2 CT2 DT2 CT2 DT2 CT2 DT2 CT2 CT2	1,052 1,686,592 1,052 1,686,592 1,052 1,686,592 1,052 1,686,592 1,052 1,686,592 1,052	05-28-98 05-28-98 05-28-98 05-28-98 05-28-98 05-28-98 05-16-98 05-16-98 05-16-98 05-16-98 05-16-98 05-16-98 05-16-98 05-16-98	7:18p 5:48p 5:48p 4:56p 6:01p 6:01p 5:02p 12:37p 12:37p 5:02p	monSNnowT.ct2 monSNnowT.dt2 monSNsseT.ct2 monSNsseT.dt2 monSNsswT.ct2 monSNsswT.dt2 monSPnowT.ct2 monSPnowT.dt2 monSPsseT.ct2 monSPsswT.dt2 monSPsswT.ct2 monSPsswT.ct2
	16 Ille(:	S) 13,50	JI,152 byt	les	

Directory of F:\cat\tide0296

	<	DIR>	06-01-98	4:33p	
	<	DIR>	06-01-98	4:33p	
4502N	CTO	1,052	05-31-98		4502N.ct0
4502N	DTO	11,524	05-31-98		4502N.dt0
4503N	CTO	1,052	05-31-98	9:23a	4503N.ct0
4503N	DTO	11,524	05-31-98		4503N.dt0
4506N	CTO	1,052	05-31-98		4506N.ct0
4506N	DTO	11,524	05-31-98		4506N.dt0
4507AN	CTO	1,052	05-31-98	9:24a	4507aN.ct0
4507AN	DTO	11,524	05-31-98		4507aN.dt0
4507C	CTO	1,052	05-31-98	12:37p	4507C.ct0
4507C	DTO	11,524	05-31-98	~	4507C.dt0
4510N	CTO	1,052	05-31-98	(T)	4510N.ct0
4510N	DTO	11,524	05-31-98	9:20a	4510N.dt0
4511N	CTO	1,052	05-31-98		4511N.ct0
4511N	DTO	11,524	05-31-98	9:16a	4511N.dt0
4514N	CTO	1,052	05-31-98	9:18a	4514N.ct0
4514N	DTO	11,524	05-31-98	9:18a	4514N.dt0
	16 file(s) 1	00,608 byt	ces	

Directory of F:\cat\tide0297

		D.T.D.		101 102700	
•		<dir></dir>	06-01-98		
•		<dir></dir>	06-01-98	4:33p	* *
4502N	CTO	1,052	05-31-98	10:24a	4502N.ct0
4502N	DT0	1,924	05-31-98	10:24a	4502N.dt0
4503N	CTO	1,052	05-31-98	10:37a	4503N.ct0
4503N	DTO	1,924	05-31-98	10:37a	4503N.dt0
4506N	CTO	1,052	05-31-98	10:27a	4506N.ct0
4506N	DTO	1,924	05-31-98	10:27a	4506N.dt0
4507AN	CTO	1,052	05-31-98	10:38a	4507aN.ct0
4507AN	DTO	1,924	05-31-98	10:38a	4507aN.dt0
4507C	CTO	1,052	05-31-98	12:38p	4507C.ct0
4507C	DTO	1,924	05-31-98	12:38p	4507C.dt0
4510N	CT0	1,052	05-31-98	10:36a	4510N.ct0
4510N	DTO	1,924	05-31-98	10:36a	4510N.dt0
4511N	CTO	1,052	05-31-98	10:34a	4511N.ct0
4511N	DTO	1,924	05-31-98	10:34a	4511N.dt0
4514N	CTO	1,052	05-31-98	10:35a	4514N.ct0
4514N	DTO	1,924	05-31-98	10:35a	4514N.dt0
	16 file	(s)	23,808 by	tes	

Directory of F:\cat\tide0996

<DIR> 06-01-98 4:33p .

Sec. 21	<	DIR>	06-01-98	1 22-	
4502N	CTO			-	
		1,052	1997-00 1997-00 (BUA	9:53a	4502N.ct0
4502N	DTO	3,076	05-31-98	9:53a	4502N.dt0
4503N	CTO	1,052	05-31-98	10:00a	4503N.ct0
4503N	DTO	3,076	05-31-98		4503N.dt0
4506N	CTO	1,052	05-31-98		4506N.ct0
4506N	DTO	2,884	05-31-98		4506N.dt0
4507AN	CTO	1,052	05-31-98		4507aN.ct0
4507AN	DTO	2,884	05-31-98		4507aN.dt0
4507C	CTO	1,052	05-31-98		4507C.ct0
4507C	DT0	2,884	05-31-98		4507C.dt0
4510N	CT0	1,052	05-31-98		4510N.ct0
4510N	DTO	2,884	05-31-99		4510N.dt0
4511N	CT0	1,052	05-31-98		4511N.ct0
4511N	DTO	2,884	05-31-98		4511N.dt0
4514N	CTO	1,052	05-31-98		4514N.ct0
4514N	DTO	1,540	05-31-98		4514N.dt0
	16 file(s	5)	30,528 byt		

1

1

U

U

Directory of F:\cat\tide0997

	<[DIR>	06-01-98	4:33p	
	< [DIR>	06-01-98	1991 - 1997 - 1 99	
4502N	CTO	1,052		25-24 C 25-26 C 22 C 27 C	4502N.ct0
4502N	DTO	2,500			4502N.dc0
4503N	CTO	1,052			4503N.ct0
4503N	DTO	2,500			4503N.dt0
4506N	CTO	1,052			4506N.ct0
4506N	DTO	2,500	05-31-98		4506N.dt0
4507AN	CTO	1,052	05-31-98		4507aN.ct0
4507AN	DTO	2,500	05-31-98		4507aN.dt0
4507C	CTO	1,052	05-31-98		4507C.ct0
4507C	DTO	2,500	05-31-98	L	4507C.dt0
4510N	CTO	1,052	05-31-98	÷	4510N.ct0
4510N	DTO	2,500	05-31-98		4510N.dt0
4511N	CTO	1,052	05-31-98		4511N.ct0
4511N	DTO	2,500	05-31-98		4511N.dt0
4514N	CTO	1,052			4514N.ct0
4514N	DTO	2,500			4514N.dt0
	16 file(s)	28,416 byt		

Directory of F:\cat\waves

		<dir></dir>	06-01-98	4:33p	341
		<dir></dir>	06-01-98	4:33p	340 M
BND157	CT1	1,052	05-04-98	10:48a	bnd157.ctl
BND157	DT1	7,220	05-04-98	10:48a	bnd157.dt1
BND202	CT1	1,052	05-04-98		bnd202.ct1
BND202	DT1	7,220	05-04-98		bnd202.dt1
HDMEA~14	CT2	1,052	05-04-98	9:21a	hdmeanNSW.ct2
	DT2	3,364,520	05-04-98	9:21a	hdmeanNSW.dt2
NOWOT	CT2	1,052	05-16-98	4:11p	now0t.ct2
NOWOT	DT2	2,951,536	05-16-98		now0t.dt2
NOW0TN96	CT2	1,052	05-28-98	-	now0tN96.ct2
NOW0TN96	DT2	2,951,536	05-28-98	_	now0tN96.dt2
NOWOTN97	CT2	1,052	05-28-98	2:21p	now0tN97.ct2
NOWOTN97	DT2	2,951,536	05-28-98	2:16p	now0tN97.dt2
NOWOTS96	CT2	1,052	05-28-98	2:22p	now0tS96.ct2
NOW0TS96	DT2	2,951,536	05-28-98		now0tS96.dt2
SSE8	CT2	1,052	05-04-98		sse8.ct2
SSE8	DT2	2,951,536	05-04-98	11:26a	sse8.dt2

		*)			
SSE8T SSE8T SSE8TN97 SSE8TN97 SSW8 SSW8 SSW8T SSW8T SSW8T	DT2 CT2 DT2 CT2 DT2 CT2 CT2 DT2	2,951,536 1,052 2,951,536 1,052 2,951,536	05 - 04 - 98 $05 - 28 - 98$ $05 - 23 - 98$ $05 - 04 - 98$ $05 - 04 - 98$ $05 - 05 - 98$ $05 - 05 - 98$ $05 - 04 - 98$	11:42a 2:22p 2:17p 11:11a 11:11a 8:38a 11:19a	sse8t.dt2 sse8tN97.ct2 sse8tN97.dt2 ssw8.ct2 ssw8.dt2 ssw8t.ct2 ssw8t.ct2
SSW8TN97	CIZ	1,052	05-28-98	2:23p	ssw8tN97.ct2
SSW8TN97	DT2	2,951,536	05-28-98	2:180	ssw8tN97.dt2
		s) 32,9			55.16 cm3 / . uc2
4	20 IIIC()	51 5215	07,550 DY	203	
Directory	y of F:∖	source			
	<	DIR>	06-01-98	4:330	
		DIR>			
		DIR>			
HIMBND		DIR>	06-01-98	4:33p	htmbnd
	0 file(s)	0 byt	ces	
Directory	77	source\hdfl			
÷	<	DIR>	06-01-98	4:33p	
8.8	<	DIR>	06-01-98	4:33p	
CAT	CHC	2,754	03-05-98	10:57a	cat.chc
CHCMEM			03-05-98		
CMPUTE	F		05-16-98		
HDFLOW	F	3,727			
HDFLOW		1,119			hdflow.i
HPQ2UV			05-13-98		
INPUT	F	4,365			
TELEVISION OF THE PROPERTY OF		.,			Tubacot

×	<dir></dir>		06-01-98	4:33p	*
	<dir></dir>		06-01-98	4:33p	
CAT	CHC	2,754	03-05-98	10:57a	cat.chc
CHCMEM	I	513	03-05-98	10:57a	chcmem.i
CMPUTE	F	4,074	05-16-98	2:08p	cmpute.f
HDFLOW	F	3,727	05-13-98	11:25a	hdflow.f
HDFLOW	I	1,119	03-05-98	12:38p	hdflow.i
HPQ2UV	F	1,438	05-13-98	11:36a	hpq2uv.f
INPUT	F	4,365	05-13-98	11:23a	input.f
MAKEFILE		745	05-13-98	10:34a	makefile
PRO	INC	319	03-05-98	10:57a	pro.inc
	9 file(s)		19,054 by	ces	

Directory of F:\source\htmbnd

	<dir></dir>		06-01-98	4:33p	
	<dir></dir>		06-01-98	4:33p	5.411.547
HTMBND	F	1,715	05-04-98	10:36a	htmbnd.f
	1 file(s)		1,715 by	tes	

Directory of F:\workNZ

į

1.3

		<dir></dir>		06-01-98	4:33p	
2942 •4		<dir></dir>		06-01-98	4:33p	121.121
HDFLI1~6	INP		297	06-04-98	12:03p	hdflI13Sn.inp
HDFLI1~8	INP		296	06-04-98	12:02p	hdflll3Sm.inp
M21HDI13	INP		4,082	06-04-98	12:22p	m21hdI13.inp
M21HDSF	INP		4,050	05-30-98	10:17a	m21hdSf.inp
M21HD~12	INP		4,081	05-30-98		m21hdIall.inp
M21TRN-E	INP		566	05-19-98	1:33p	m21trn-e.inp
M21TRN-S	INP		569	05-19-98	3:19p	m21trn-s.inp
M21TR~20	INP		565	05-19-98	2:46p	m21trn-w2.inp
M21TR~22	INP		576			m2ltrn-Ie.inp
M21TR~24	INP		582	05-27-98	5:04p	m2ltrn-In1.inp
M21TR~26	INP		580	05-28-98	12:46p	m21trn-In2.inp
M21TR~28	INP		579	05-27-98	5:26p	m2ltrn-Is.inp
M21TR~30	INP		576	05-27-98	5:23p	m21trn-Iw1.inp
M21TR~32	INP		575	05-27-98	5:24p	m2ltrn-Iw2.inp
M21TR~34	INP		572	05-19-98	1:17p	m2ltrn-nl.inp

M21TR~36 INP 570 05-19-98 1:18p m21trn-n2.inp M21TR~38 INP 566 05-19-98 2:38p m21trn-w1.inp 17 file(s) 19,682 bytes

11

Directory of F:\wrkNSW

~ C

	<dir></dir>		06-01-98	4:330	
	<dir></dir>		06-01-98		
M21SSE8	INP	3,297	05-04-98	10:55a	m21sse8.inp
M21SSW8	INP	3,297	05-04-98	10:52a	m21ssw8.inp
	2 file(s)		6,594 by		

Directory of F:\wrkST

945 -	<dir></dir>		06-01-98	4:33p	-
•	<dir></dir>		06-01-98	4:33p	2. 12.
M21D96~6	INP	2,204	05-29-98		m21D96Snow.inp
M21D96~8		2,202	05-28-98		m21D96Nnow.inp
M21M9~10	INP	2,189	05-16-98	11:22a	m21M97Sssw.inp
M21M9~12	INP	2,192	05-28-98		m21M97Nnow.inp
M21M9~14		2,202		-	m21M97Nsse.inp
M21M9~16	INP	2,206		*	m21M97Nssw.inp
M21M9~18		2,197		-	m21M97Snow.inp
M21M9~20	INP	2,189		L.	m21M97Ssse.inp
	8 file(s)		17,581 byt		
Total fil	les listed:				

336	file(s)	226,480,887	bytes	
69	dir(s)		bytes	

Drawings

是包围 微下的 \$500C BOC

Elevation	(m	PWD)
-----------	----	------

ELCON.	Above		2.0
100 M	0.0		2.0
	-2.0	-	0.0
	-4.0	-	-2.0
	-6.0	-	-4.0
提出由	-8.0	-	-6.0
1.54	-10.0	-	-8.0
22243	-12.0	-	-10.0
	-14.0	-	-12.0
1	-16.0	-	-14.0
1000	-18.0	-	-16.0
all and a	-20.0	-	-18.0
	-22.0	÷	-20.0
	-24.0	-	-22.0
- 22	-26.0	-	-24.0
	Below		-26.0
	Land		

SWMC Client: Bangladesh Water Development Boa Project: Meghna Estuary Study		Client: Bangladesh Water Development Board	
		MIK	
File:	Date: Mon Jun 8 1998	Bathymetry data coverage	Drawing no.
Scale: 1:1500000	^{Init:} p5011	MES bathymetric survey	3.1

athyraw bat-kins athyraw platbat

A

Elevation	(m PWD)	
Above	2.0	

10000	Above		2.0
and the	1.0	-	2.0
1	0.0	-	1.0
諸語語	-1.0	-	0.0
6.45	-2.0	-	-1.0
1.	-3.0	-	-2.0
	-4.0	-	-3.0
	Below		-4.0
調節的	Land		

athyraw bat-spot

SWMC		^{Client:} Bangladesh Water Development Board	
51		Project: Meghna Estuary Study	MIKE
File:	Date: Mon Jun 8 1998	Bathymetry data coverage	Drawing no.
Scale: 1:1500000	hit: p5011	Landsat image, February 1996	3.2

Elevation (m PWD)

1960	Abave		2.0
135	0.0	-	2.0
- d. 68	-2.0	-	0.0
	-4.0	-	-2.0
	-6.0	-	-4.0
	-8.0	-	-6.0
Sec.	-10.0	-	-8.0
15662	-12.0		-10.0
1200	-14.0	-	-12.0
能很	-16.0	-	-14.0
2018	-18.0	-	-16.0
1948	-20.0	-	- 18.0
323	-22.0	-	-20.0
100	-24.0	-	-2.2.0
14/2003	-26.0	-	-24.0
	Belaw		-26.0
	Land		

SWMC		^{Client:} Bangladesh Water Development Board	
51		Project: Meghna Estuary Study	MM
File:	Date: Mon Jun 8 1998	Bathymetry data coverage	Drawing no.
Scale: 1:1500000	hit: p5011	BIWTA sea charts	3.3

Elevation (r	n PWD)
--------------	--------

1966	Above		2.0
2005	0.0	-	2.0
	-2.0	ġ.	0.0
Constant.	-4.0		-2.0
	-6.0	-	-4.0
1000	-8.0	4	-6.0
TIMES!	-100	-	-8.0
and the	-12.0	-	-10.0
ALC: NO.	-14.0	-	-12.0
Sec. Sec.	-16.0	-	-14.0
364	-18.0	-	-16.0
	-20.0	-	- 18.0
STATE:	-22.0	**	-20.0
-	-24.0		-22.0
	-26.0	-	-24.0
	Below		-26.0
重要	Land		

SWMC		^{Client:} Bangladesh Water Development Board	
51	VIVIC	Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998	Bathymetry data coverage	Drawing no.
Scale: 1:1500000	Init: p5011	British Admiralty Charts (CSPS)	3.4

athyraw bat-caps

E	leva	tion	(m	PWD)
-	Cru	LIGHT	lun	1 110

STATE OF	Above		2.0
朝田康	0.0		2.0
1000	-2.0	-	0.0
把做我	-4.0	-	-2.0
	-6.0	-	-4.0
100000	-8.0	-	~6.0
C	-10.0	-	-8.0
	-12.0	-	-10.0
	-14.0	-	-12.0
STATE OF	-16.0	-	-14.0
1254	-18.0	-	-16.0
	-20.0	-	- 18.0
	-22.0		-20.0
1	-24.0	-	-22.0
	-26.0	-	-24.0
	Below		-26.0
See	Land		

	SI	NMC	^{Client:} Bangladesh Water Developn	nent Board
	51		Project: Meghna Estuary Study	MIM
File:		Date: Mon Jun 8 1998	Model bathymetry	Drawing no.
Scale:	1:1500000	^{(nit:} p5011	Meghna Estuary Model	3.5

othy baby fir

Ation (m P Above 2.0 0.0 - 2.0 -2.0 - 0.0 -4.0 - -2.0 -6.0 - -4.0 -8.0 - -6.0 -10.0 - -8.0 -12.0 - -10.0 -14.0 - -12.0 -16.0 - -18.0 -20.0 - -18.0 -20.0 - -18.0 -22.0 - 20.0 Below -22.0 Below -26.0 Lond

Elevation (m PWD)

SI	WMC	Client: Bangladesh Water Develop	
5		Project: Meghna Estuary Study	WIKE
File:	Date: Mon Jun 8 1998	Model bathymetry	Drawing no.
Scale: 1:185000	^{Init:} p5011	Nijhum Dwip Local Model	3.6

	SWMC	Client: Bangladesh Water Development E	Board R
		Project: Meghna Estuary Study	XIM
File:	Date: Thu Apr 23 1998	Hatia	Drawing no.
Scale:	^{Init:} p5011	Wind data for Dry Period Run 1996	4.1

endnotcar hatio0296

C	SWMC	Client: Bangladesh Water Development B	oard 5
		Project: Meghna Estuary Study	MIKE
File:	Date: Thu Apr 23 1998	Hatia	Drawing no.
Scale:	^{Init:} p5011	Wind data for Monsoon Run 1996	4.2

na

SI	NMC	Client: Bangladesh Water Development Board	21
		Project: Meghna Estuary Study	MIKE
File:	Date: Thu Apr 23 1998	Drawing no.	
Scale:	^{Init:} p5011	Wind data for Dry Period Run 1997 4.3	

	SWMC	Client: Bangladesh Water Developmen	Common Section 201
		Project: Meghna Estuary Study	MKK MKK
File:	Date: Thu Apr 23 1998	Hatia	Drawing no.
Scale:	^{init:} p5011	Wind data for Monsoon 1997	4.4

-

1

0

Π

0

0

I

0

U

U

U

U

bothy bedfric bothy bothy/in

	Above		25
	90	-	95
	85	-	90
	2 C	-	85
******	75	-	<u>5</u> S
	76	-	75
	65	177	7.0
	Below		65
	Land		

SI	NMC	^{Client:} Bangladesh Water Development B	oard	E 21
0		Project: Meghna Estuary Study		MIK
File:	Date: Mon Jun 8 1998	Bed friction coefficients	Drawing no.	
Scale: 1:1500000	^{Init:} p5011	Manning Numbers (m 1/3 / 5)	4.5	

X

1

0

[]

0

Dry Season 1996 Chitalkhali (PWD)

p5011

hit:

Scale:

4.8

MIKE 51

v96 sm0296A ros0296 ch02960

Ū	SMMC	client: Bangladesh Water Development Board	p	LZ 3
5		Project: Meghna Estuary Study		MIKI
	Date: Sun May 31 1998	Measured and simulated water level at	Drawing no.	
		Dasminia (DWD)	C V	-
	Init: p5011	Dry Season 1996	4. D	

v96 sm0296A eas0296 das02960

[]

U

U

U

Dry Season 1996

-96 Mm0296A

NU	CIVINO	^{client:} Bangladesh Water Development Board	
2		Project: Meghna Estuary Study	MIK
File:	Date: Sun May 31 1998	Measured and predicted water level at	Drawing no.
Scale:	hit: p5011	Dhulasar (PWD) Dry Season 1996	4.11

-96 SHO296A

U

-96 \$F02964 -50296 0102960

()

U

I

		Client: Danaladoch Water Davialonment Board	12
Ũ	CIVINO		E
Ĵ.		Project: Meghna Estuary Study	MIK
File:	Date: Sun May 31 1998	Measured and simulated water level at	
		Kheerinorra (PWD)	
Scale:	Init: p5011		

96 sm0296A 380296 khe02960

MIKE 51 4.16 Drawing no. Bangladesh Water Development Board Measured and simulated water level at Meghna Estuary Study Dry Season 1996 Kochopia (PWD) Project: Client: Date: Sun May 31 1998 SWMC p5011 Init: Scale: File:

[]

[]

U

96 sm02968 m0296 Kocho0296C

		Client: Dave de de de Mater Davidonament Do	10
NU V	SIMMS	bangiadesn water beveloprinerit bourd	
5		^{Project:} Meghna Estuary Study	MIK
File:	Date: Sun May 31 1998	Measured and predicted water level at	Drawing no.
		Kristishdia Island (DWD)	A 17
Scale:	Init: p5011	Dry Season 1996	÷

 $\gamma \mathcal{O} \overline{\mathcal{D}}$

[]

1

]

0

0

U

96 sm0296A 0296 4510N

VE)

1 ySB tadown

SWMC		Client: Bangladesh Water Development Board Project: Meghna Estuary Study	
Scale: 1:1500000	hit: p5011	M2 amplitude	4.22
¥y96 tideon

	Above		340
	320	÷	340
	300	-	320
	280	÷	300
	260	-	280
	240		260
	220	4	240
	200	-	220
200	180	-	200
4	160		180
	140	-	160
1	120	-	140
22	100	-	120
N.C	80	-	100
-	60	ini.	80
120	40	-	60
	20	-	40
- 12	0	-	20
	Below		0
_	Lond		

SI	NMC	Client: Bangladesh Water Developn	nent Board
51		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998	Tidal analysis, Dry season 1996	Drawing no.
Scale: 1:1500000	^{hit:} p5011	M2 phase	4.23

51		Client: Bangladesh Water Develo	pment Board
51		Project: Meghna Estuary Study	MIKE
File:	Date: Mon Jun 8 1998	Tidal analysis, Dry season 1996	Drawing no.
Scole: 1:1500000	hit: p5011	S2 amplitude	4.24

ky96 tideon

51	NMC	Client: Bangladesh Water Develop	ment Board
51		Project: Meghna Estuary Study	MIKE
File:	Date: Mon Jun 8 1998	Tidal analysis, Dry season 1996	Drawing no.
Scale: 1:1500000	hit: p5011	S2 phase	4.25

¥y96 tidcon

ry95 tidcon

-

SV	MMC	Client: Bangladesh Water Develop	ment Board
51		Project: Meghna Estuary Study	MIK
File:	Date: Mon Jun 8 1998	Tidal analysis, Dry season 1996	Drawing no.
Scale: 1:1500000	hit: p5011	K1 amplitude	4.26

780

ry96 lidco

	Abave		340
	320	e.	340
	300	÷.	320
-	280	÷	300
	260		280
101	240	4	260
称	220	572	240
	200	-	220
8	180	2	200
	160	-	180
	140	-	160
	120	-	140
	100	-	120
	80	-	100
55	60	-	80
2	40	-	60
	20	-	40
	0	-	20
	Below		0
-	Lond		

SI	MAG	Client: Bangladesh Water Develop	oment Board
51		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998	Tidal analysis, Dry season 1996	Drawing no.
Scale: 1:1500000	hit: p5011	K1 phase	4.27

and of	Above		0.30
0300	0.28	-	0.30
CONST.	0.26	-	0.28
65.2	0.24	-	0.26
1000	0.22	_	0.24
1000	0.20	-	0.22
	0.18	-	0.20
Sec. 1	0.16	-	0.18
and the	0.14	-	0.16
2201	0.12	-	0.14
1000	0.10	-	0.12
2273	0.08	-	0.10
和關鍵	0.06	-	80.0
1000	0.04	-	0.06
	0.02	-	0.04
100	Below		0.02
	Land		

SI	MMC	Client: Bangladesh Water Develo	pment Board
5		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998	Tidal analysis, Dry season 1996	Drawing no.
Scole: 1:1500000	hit: p5011	01 amplitude	4.28

	Above		340	
	320	-	340	
	300	4	320	
-	230		300	
	260	-	280	
21	240		260	
25	220	-	240	
175	200	-	220	
	180	-	200	
	160		180	
10	140	-	160	
	120	-	140	
	100	-	120	
1945	80	-	100	
2.22	60	-	80	
803	40	-	60	
	20	-	40	
	0	-	20	
	Below		0	
-	Lond			

SI	MAC	^{Client:} Bangladesh Water Development B	oard	(E 21
51	VIVIC	Project: Meghna Estuary Study		MIK
File:	Date: Mon Jun 8 1998	Tidal analysis, Dry season 1996	Drawing no. 429	
Scale: 1:1500000	^{Init:} p5011	01 phase		-

VQ 2

	SWWC	client: Bangladesh Water Development Board	d d
	>	Project: Meghna Estuary Study	MIK
File:	Date: Sun May 31 1998	ted water level at	Drawing no.
Scale:	Init: p5011	Char Chenga (PWU) Monsoon Season 1997	10.4

40n97 sem0997A reas0997 Chang0997C

0

1

[]

[]

U

IJ

4:93' sm0997A -- m0997 Child997C

Mon97 sm0997A meas0997 Das09970 VIS

0

[]

[]

U

-197 sm0997A -190997 Dou09970

[]

[]

0

0

U

U

Monsoon Season 1997

p5011

Init:

Scale:

-97 sm0997A -090997 Dhuk0997C

4.37 Drawing no. Bangladesh Water Development Board 00:00 09/25 Measured and predicted water level at Meghna Estuary Study 00:00 09/23 00:00 09/21 Hatia Bar (PWD) Project: Client: 00:00 09/19 Date: Sun May 31 1998 SWMC 00:00 09/17 Init: 00:00 09/15 Scale: File: 00:00 09/13 Predicted p(168,157) Simulated 00:00 00:00 09/09 1997 5.01 -3.0+ 4.5-4.0-3.5-1.5-1.0-0.5-3.0-2.5-2.0-0.0 -0.5--1.0--1.5--2.0--2.5ш

Nor97 sm0997A tide0997 4506N 23

MIKE 51

Monsoon Season 1997

p5011

[]

0

[]

1

0

0

[]

[]

0

U

0

U

U

1997 sm09974 160997 4511N

ΰ	CIVINO	^{Client:} Bangladesh Water Development Board	
C		Project: Meghna Estuary Study	MIK
File:	Date: Sun May 31 1998	Measured and simulated water level at	Drawing no.
Scale:	Init: p5011	Khepupara (PWD) Monsoon Season 1997	4.39

Mor97 sm0997A meas0997 Khep0997C

ш

[]

Ü

0

0

U

U

U

Monsoon Season 1997

p5011

Init:

Scale:

U	CIVINO	Bangladesh Water Development Board	
5		Project: Meghna Estuary Study	MIKE
File:	Date: Sun May 31 1998	Measured and predicted water level at	Drawing no.
Scale:	Init: p5011	Normans Point (PWU) Monsoon Season 1997	4.4

Mon97 am0997A tide0997 4510N

;

[]

1

[]

0

0

U

U

U

4.42

Rabnabad Channel (PWD) Monsoon Season 1997

p5011

Init:

Scale:

10	UNNU	client: Bangladesh Water Development Board	12 3
5		Project: Meghna Estuary Study	MIK
File:	Date: Sun May 31 1998	Measured, simulated and predicted	
Scale:	hit: p5011	wated level at Ramdaspur (PWD) 4.43 Monsoon Season 1997	

	00:00
	00:00
	00:00 09/21
	00:00
	00:00
	00:00
	00:00
	00:00
6.0 − − − − − − − − − − − − − − − − − − −	-2.0- -2.5- -3.0- 00:00 09/09

Mon97 sim0997A meas0997 Ram0997C (de0997 4507dN

----- Predicted

[]

[]

0

0

U

40197 sm0997A mea0397 Sord0997C

1

[]

U

IJ

U

U

U

JY ¹ Serti-2tMN 097 H-2(W)1314 1097 H-1(West) 097 H-2(E)2122 297 H-2(New E) 097 H-2(Niew E) 097 H-2(W)2223 097 H-3

1.6*10

1.2*105-

4.0*10*

s/ɛ̯ɯ

0

IJ

0

U

U

U

U

U

U

 $\begin{array}{c} 17 & \text{SmH}-2\text{NEN} \\ \text{sQ97} & \text{H}-2(\text{W})1314 \\ \text{sQ97} & \text{H}-1(\text{West}) \\ \text{measQ97} & \text{H}-2(\text{E})2122 \\ \text{measQ97} & \text{H}-2(\text{New} \text{E}) \\ \text{measQ97} & \text{H}-2(\text{W})1314 \\ \text{measQ97} & \text{H}-2(\text{W})2223 \\ \text{measQ97} & \text{H}-3 \end{array}$

...... H-2 (E) 20-21,meas

4.49

20-21 September 1997 Monpura to Jahajmara H-2 (New East)

p5011

Init:

Scale:

File:

Date: Mon Apr 27 1998

Drawing no.

1

0

[]

U

0

U

N/C		client: Bangladesh Water Development Board	E 31	290
		Project: Meghna Estuary Study	MIK	>
File:	Date: Sun May 31 1998	Measured and simulated water level at		
		Chandraire (DWD)		
Scale:	Init: p5011	1996		

r96 sm0996 tas0996 0809Chan96

0

n96 sm0996A 360996 Chor0996C

MIKE 51

Bangladesh Water Development Board

4.53

Drawing no.

Measured and simulated water level at

Date: Sun May 31 1998

Monsoon Season 1996

p5011

Init:

Scale:

File:

Chitalkhali (PWD)

Meghna Estuary Study

Project:

SWMC

Client:

196 sm0996A 1050996 Chit0996C

0

0

IJ

0

1

U

U

U

96 sm0996A 350996 Das09960

		Client: Banaladesh Water Develonment Board	12
U			Ε
)		Project: Meghna Estuary Study	MIK
File:	Date: Sun May 31 1998	Measured and simulated water level at	
			ł
Scale:	Init: p5011		

m96 sim0996A tas0996 Doul0996C

4.56 Drawing no. Measured and predicted water level at Monsoon Season 1996 Dhulasar (PWD) Date: Sun May 31 1998 p5011 Init: Scale: File:

MIKE 51

ASSESSION SEC.

0 0 []

ш

0

1

[]

]]

U
6.0 p(316,111) Simulated					16 sm-0996A 996 4511N	
5.5-5.0-						
4.5-						
4.0+ 3.5+	24 2 2 2					
3.0-						
2.5- A A A A A A A A A A A A A A A A A A A			· v v V V			
2.0-				V V V		
E 1.5						
1.0						
0.5-						
0.0				NNNNN		
-0.5						
-1.0-						
-1.5-	97.5 197.5 197.5 197.5					
-2.0+						
-0.5						
00:00	00:00	00:00		00:00		
08/24 08/27 1996	08/30	20/60	09/05	80/60		
						ſ
	N/S	VNUC	^{client:} Bangladesh V	Bangladesh Water Development E	Board R	No
)		Project: Meghna Estuary Study	y Study	MIK	
	File:	Date: Sun May 31 1998	Measured and predicted water level at	rater level at	Drawing no.	
	Scale:	Init: p5011	Monsoon Season 1996		1.	

ш

0

0

0

D

006 MT0996A 30966 MT09966

N U	UND	client: Bangladesh Water Development Board	E 31
		Project: Meghna Estuary Study	MIK
	Date: Sun May 31 1998	hulated water level at Drawing	
	hit: p5011	Kochopia (PWU) 4.01 Monsoon Season 1996	_

on96 sm09968 eas0996 Koch0996C

MIKE 31 4.62 Drawing no. Bangladesh Water Development Board Measured and predicted water level at Meghna Estuary Study Monsoon Season 1996 Kutubdia Island (PWD) Project: Client: Date: Sun May 31 1998 SWMC p5011 Init: Scale: File:

U

U

U

-1996 45109

	Bangladesh Water Development Board	
	Project: Meghna Estuary Study	MIKE
Date: Sun May 31 1998	id water level at Drawing	.o.
Init: p5011	Normans Point (PWU) Monsoon Season 1996	4.00

96 pm0996A 1996 4510N Nov

MIKE 31 4.64 Drawing no. Bangladesh Water Development Board Measured and simulated water level at Meghna Estuary Study Rabnabad Channel (PWD) Monsoon Season 1996 Project: Client: Date: Sun May 31 1998 SWMC p5011 Init: Scale: File:

0

0

0

0

0

U

U

-766 sm0996A w0996 4503v

	E 31	MIK		
	Board		Drawing no.	
06:00 09/09	Bangladesh Water Development Board			
06:00 09/07	sh Water D	Meghna Estuary Study	and predicted	96
06:00 09/05	Banglade		Measured, simulated and predicted	Monsoon Season 1996
06:00 09/03	Client:	Project:		Mor
06:00 09/01	CMMC		Date: Sun May 31 1998	Init: p5011
06:00 08/30	U	2	File:	Scale:
06:00 08/28				й
0				

5n96 sim0996A ecs0996 Rom0996C 3e0996 4507cN NI

xv97 sm01974 neos0297 Chand0197C

[]

1

0

0

Dry period Validation, 1997

p5011

Init:

Scale:

Char Chenga (PWD)

4.68

97 sm0197A m0297 Chit0197C C CM

MIKE 51

BANGLADESH WATER DEVELOPMENT BOARD

MEGHNA ESTUARY STUDY

Project:

SWMC

Client:

Measured and simulated water level at

Date: Sun May 31 1998

Chitalkhali (PWD) Dry Season 1997

p5011

Init:

Scale:

File:

4.69

Drawing no.

MIKE 51 BANGLADESH WATER DEVELOPMENT BOARD 4.70 Drawing no. MEGHNA ESTUARY STUDY Measured and simulated water level at Dry Season 1997 Dasmunia (PWD) Project: Client: Date: Sun May 31 1998 SWMC p5011 Init: Scale: File:

Ŋ

1

1

[]

U

U

U

y97 sm0197A 1090297 Dos01970

Ũ

U

U

0

U

U

297 4502N

ΰ	CIVINO	Client: BANGLADESH WATER DEVELOPMENT BOARD	
5		Project: MEGHNA ESTUARY STUDY	MIKI
File:	Date: Sun May 31 1998	Measured and simulated water level at	
		Dhuitin (PWD)	~
Scole:	Init: p5011	266	

97 sm0197A 080297 Dhuk01970 DNA

MIKE 51 Drawing no. BANGLADESH WATER DEVELOPMENT BOARD MEGHNA ESTUARY STUDY Measured and predicted water level at Dry Season 1997 Hatia Bar (PWD) Project: Client: Date: Sun May 31 1998 SWMC p5011 Init: Scale: File:

1

]]

0

0

97 sm0197A 0297 4506N

	UNIN I	Clent: BANGLADESH WATER DEVELOPMENT BOARD	IT BOARD
) IVIVO	Project: MEGHNA ESTUARY STUDY	
File:	Date: Sun May 31 1998	Measured and predicted water level at UNIX	Drawing no.
Scale:	Init: p5011	Dry Season 1997	

97 sm0197A 10297 4511N

1

1

[]

0

[]

[]

0

[]

97 sm0197A m0297 Khep0197C

- Rob

Dry Season 1997

1

Π

,

1

Dry Season 1997

97 MT0 197A

[]

-97 sm0197A

CIVINO	BANGLADESH WATER DEVELOPMENT BOARD	MENT BOARD
	Project: MEGHNA ESTUARY STUDY	
Date: Sun May 31 1998	Measured, simulated and predicted	Drawing no.
	wated level at Ramdaspur (PWD)	481
	Drv Season 1997	

y97 sem0.197A ecs0297 Romdo0.1970 se0297 4507dH

0

97 sm01974 130297 Sond01970 -0297 45070

ш

1

1

þ

37 sen01978

------ Measured p(158,58) Simulated

6.0-

ш

97 sm01978 pit mes4C

209

Dry Season 1997

p5011

Init:

Scale:

0

[]

1

U

U

-97 sm01978 20X

ΰ	UN AC	Client: BANGLADESH WATER DEVELOPMENT BOARD		20
		Project: MEGHNA ESTUARY STUDY	MIK	2
File:	Date: Mon Jun 1 1998		3	
Scale:	Init: p5011	MES 0 (rwu) Dry Season 1997		

97 sim01978 swi mes60

0

[]

' sm0.1978 - seC

SI	NMC	Client: Bangladesh Water Development Board	
51	A IAIC	Project: Meghna Estuary Study	MK
File:	Date: Mon Jun 8 1998	Midx velocities for	ving no.
Scale: 1:1500000	hit: p5011	Spring Tide, Dry Season 1996 Existing situation	5.1

 Above
 4.00

 3.75
 - 4.00

 3.50
 - 3.75

 3.25
 - 3.50

 3.00
 - 3.25

 2.75
 - 3.00

 2.50
 - 2.75

 2.25
 - 2.50

 2.00
 - 2.25

 1.75
 - 2.00

 1.50
 - 1.75

 1.52
 - 1.50

 0.05
 - 0.75

 0.25
 - 0.50

 Below
 0.25

 Lond

51	NMC.	Client: Bangladesh Water Development Board	
51		Project: Meghna Estuary Study	MiM
File:	Date: Man Jun 8 1998		Drawing no.
Scole: 1:1500000	^{hit:} p5011	Spring Tide, Dry Season 1996 Existing situation	5.2

ry95 Nillsh

iry96 hdfbhn

	SI	NNAC	Bangladesh Water Development Board	
	51		Project: Meghna Estuary Study	N N
File:		Date: Mon Jun 8 1998	Max velocities for Neap Tide, Dry Season 1996	Drawing no.
Scale:	1:1500000	hit: p5011	Existing situation	0.0

SI	NMC	Bangladesh Water Development Board	
51		Project: Meghna Estuary Study	MIK
File:	Dote: Mon Jun 8 1998		Drawing no.
Scale: 1:1500000	hit: p5011	Neap Tide, Dry Season 1996 Existing situation	0.4

R

LIBRARY.

10	m/s		
Spe	ed (r	m	/s)
朝鮮	Above		4.00
\$2003	3.75	-	4.00
anzana.	3.50	-	3.75
國南部	5.25	-	3.50
1	3.00	-	3.25
110220	2.75	-	3.00
Constant	2.50	-	2.75
	2.25	-	2.50
Care Services	2.00	-	2.25
	1,75	-	2.00
法律的	1.50	-	1.75
的国际	1.25	-	1.50
台湾	1.00	-	1.25
制度加引	0.75	-	1.00
100	0.50	-	0.75
1000	0.25	-	0.50
	Below		0.25
	Lond		

SWMC		Client: Bangladesh Water Development Board		
51		Project: Meghna Estuary Study	MIKE	
File:	Date: Mori Jun 8 1998		Drawing na. 5.5	
Scale: 1:1500000	^{hit:} p5011	Spring Tide, Monsoon Season 1997 Existing situation		

10097 hotStr

SWMC		Client: Bangladesh Water Development Board Project: Meghna Estuary Study		
				File:
Scale: 1:1500000	^{hit:} p5011	Spring Tide, Monsoon Season 1997 Existing situation	5.6	

SWMC		Client: Bangladesh Water Development Board	
		Project: Meghna Estuary Study	MIK
File:	Date: Mon Jun 8 1998		
Scale: 1:1500000	hit: p5011	Neap Tide, Monsoon Season 1997 Existing situation	5.7

tonis? hollinm

SWMC		^{Client:} Bangladesh Water Developm	ent Board
		Project: Meghna Estuary Study	MIKE
File:	Date: Mon Jun 8 1998	Net flow for	Drawing no.
Scale: 1:1500000	^{Init:} p5011	Neap Tide, Monsoon Season 1997 Existing situation	5.8

10097 INITINO

Taken -

SWMC		Client: Bangladesh Water Developme	ent Board
51		Project: Meghna Estuary Study	MIX
File:	Dote: Mon Jun 8 1998	Contract De Constant	
Sode: 1:185000	hit: p5011	Spring Tide, Dry Season 1996 Existing situation	5.9

SWMC		Client: Bangladesh Water Developr	ment Board
		Project: Meghna Estuary Study	XIW
File:	Date: Mon Jun 8 1998	Net flow for	Drawing no. 5 10
Scole: 1:185000	hit: p5011	Spring Tide, Dry Season 1996 Existing situation	5.10

Spe	ed (m	/s
	Above		
1	3.75		
明初	3.50	$\overline{(2)}$	3.7
	3.25	**	3.5
	3.00	-	3.2
	2.75	-	3.0
14	2.50	-	27
	2.25	-	2.5
	2.00		2.2
1	1.75	-	2.0
24	1.50	-	1.7
	1.25	-	1.5
800	1.00	-	12
100	0.75	-	1.0
14	0.50		
NIKE .	0.25		
(Sec.)	Below		
	Land		

SWMC		Client: Bangladesh Water Developn	nent Board
		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998		Drawing no.
Scale: 1:1500000	^{hit:} p5011	Spring Tide, Dry Season 1996 Intervention Schemes 1 and 3	6.1

SWMC Client: Bangladesh Water Development Board Project: Meghna Estuary Study		Client: Bangladesh Water Developm	ent Board	10 3
			MIK	
File:	Date: _{Mon Jun} 8 1998	Net flow for Drawing no. Spring Tide, Dry Season 1996 6		2
Scale: 1:1500000	hit: p5011	Intervention Schemes 1 and 3	0.2	

ry98 htf13Sn

SWINC		Client: Bangladesh Water Developmen	nt Board
51		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998	Max velocities for Spring Tide, Dry Season 1996	Drawing no. 63
Scale: 1:1500000	hit: p5011	All intervention Schemes, excl. 8	0.5

lry96 hdflex85m

SWMC		Bangladesh Water Develop	ment Board
		Project: Meghna Estuary Study	MIKE
File:	Date: Mon Jun 8 1998		Drawing no.
Scale: 1:1500000	hit: p5011	Spring Tide, Dry Season 1996 All intervention Schemes, excl. 8	6.4

voe Handsm

10	m/s	
Spe	eed (n	n/s)
能回旋	Above	4.00
100002	3.75 -	+ 00
10000	3.50 -	- 3.75
and the	3.25 -	3.50
10 HOARD	3.00 -	3.25
朝朝中	2.75 -	- 3.00
No.	2.50 -	2.75
	2.25 -	2.50
	2.00 -	2.25
	1.75 -	2.00
Contraction of	1.50 -	1.75
STRUE .	1.25 -	1.50
1000	1.00 -	1.25
61958	0.75 -	100
01053	0.50 -	0.75
100	0.25 -	0.50
	Below	0.25
	Land	

SWMC		Client: Bangladesh Water Develop	oment Board
		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998		Drawing no.
Scale: 1:1500000	hit: p5011	Spring Tide, Dry Season 1996 All intervention Schemes	6.5

SWMC		Client: Bangladesh Water Development Boar	d 12
51		Project: Meghna Estuary Study	MIKE
File:	Date: Mon Jun 8 1998	HAT NOW IO	ing no.
Scale: 1:1500000	hit: p5011	Spring Tide, Dry Season 1996 All intervention Schemes	6.6

16 hottialSn

SWMC		Client: Bangladesh Water Developmer	nt Board	21
51		Project: Meghna Estuary Study		MIKE
File:	Date: Mon Jun 8 1998	Max velocities for Neap Tide, Dry Season 1996	Drawing no.	_
Scale: 1:1500000	hit: p5011	Intervention Schemes 1 and 3	0.7	

vy96 hdf81.3km

SWMC		^{Client:} Bangladesh Water Develo	pment Board
51	Project: Meghna Estuary Study		MIKE
File:	Date: Mon Jun 8 1998		Drawing no.
Scde: 1:1500000	hit: p5011	Neap Tide, Dry Season 1996 Intervention Schemes 1 and 3	6.8

*y96 hdn13hn

SWMC		Client: Bangladesh Water Develop	ment Board
		Project: Meghna Estuary Study	MIK
File:	Date: Mon Jun 8 1998		Drawing no.
Scale: 1:1500000	^{hit:} p5011	Neap Tide, Dry Season 1996 All intervention Schemes, excl. 8	6.9

ky96 hdflexBlum

SWMC Client: Bangladesh Water Development Board Project: Meghna Estuary Study		Client: Bangladesh Water Developme	ent Board	E 21
			MIK	
File:	Date: Mon Jun 8 1998	Net flow for Neap Tide, Dry Season 1996	Drawing no. 6.10	
Scole: 1:1500000	hit: p5011	All intervention Schemes, excl. 8	0.10	

ky56 hdilenews

10000	1.13	-	2.00
10422	1.50	-	1,75
1.563次	1.25	-	1.50
	1.00	-	1.25
1453	0.75	-	1.00
	0.50	-	0.75
AAR	0.25		0.50
2.11201	Below		0.25
	Lond		

SWMC		Client: Bangladesh Water Develop	ment Board
5		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998		Drawing no.
Scole: 1:1500000	^{Init:} p5011	Neap Tide, Dry Season 1996 All intervention Schemes	6.11

SWMC		Client: Bangladesh Water Development Board	
		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998		Drawing no.
Scole: 1:1500000	hit: p5011	Neap Tide, Dry Season 1996 All intervention Schemes	6.12

202 NOR

Speed (m/s)

10000000	ADOVE		4.00
1000	3.75	-	400
1000	3.50	-	3.75
65555	3.25	-	350
- TELEP	3.00	-	3.25
160 M	2.75	-	3.00
1000	2.50	-	2.75
	2.25	-	2.50
	2.00	-	2.25
	1.75	-	2.00
101175	1.50	÷	1,75
100M	1.25	-	1.50
Distantial Providence	1.00	-	1.25
HOURS	0.75	1	1.00
	0.50	÷	0.75
and the	0.25	-	050
1000	Below		0.25
	and		

SWMC		^{Client:} Bangladesh Water Developmen	it Board	E 21
51		Project: Meghna Estuary Study		MIK
File:	Date: Mon Jun 8 1998		Drawing no.	
Scale: 1:1500000	hit: p5011	Spring Tide, Monsoon 1997 Intervention Schemes 1 and 3	6.13	

SWMC		Client: Bangladesh Water Developm	nent Board	21
		Project: Meghna Estuary Study		MIKI
File:	Date: Mon Jun 8 1998	Net flow for Spring Tide, Monsoon Season 1997	Drawing no. 614	
Scale: 1:1500000	^{bit:} p5011	Intervention Schemes 1 and 3	0.14	

lon97 hdf113Sn

SWMC		Client: Bangladesh Water Development	Board 5
		Project: Meghna Estuary Study	RK R
File:	Date: Mon Jun 8 1998		Drawing no.
Scole: 1:1500000	hit: p5011	Spring Tide, Monsoon 1997 All intervention Schemes, excl. 8	6.15

 $\begin{array}{ccccc} Above & 4.00\\ 3.75 & = 4.00\\ 3.50 & = 3.75\\ 3.25 & = 3.50\\ 3.00 & = 3.25\\ 2.75 & = 3.00\\ 2.50 & = 2.75\\ 2.25 & = 2.50\\ 2.00 & = 2.25\\ 1.75 & = 2.00\\ 1.50 & = 1.75\\ 1.52 & = 1.50\\ 1.50 & = 1.75\\ 1.52 & = 1.50\\ 1.50 & = 1.52\\ 0.75 & = 1.00\\ 0.50 & = 0.75\\ 0.25 & = 0.50\\ \text{Eetew} & 0.25\\ \text{Lord} \end{array}$

m97 httlex85n

SWMC		Bangladesh Water Developm	nent Board 🛛
		Project: Meghna Estuary Study	MIKE
File:	Date: Mon Jun 8 1998	Net flow for	Drawing no.
Scale: 1:1500000	hit: p5011	Spring Tide, Monsoon Season 1997 All intervention Schemes, excl. 8	6.16

17 horestash

SWMC		Bangladesh Water Developm	ent Board
		Project: Meghna Estuary Study	MIK
File:	Date: Mon Jun 8 1998		
Scale: 1:1500000	hit: p5011	Spring Tide, Monsoon 1997 All intervention Schemes	6.17

10 m/s

Speed (m/s)

٦

lon97 hollows

SWMC		^{Client:} Bangladesh Water Developn	nent Board	E 21
		Project: Meghna Estuary Study		MIK
File:	Date: Mon Jun 8 1998			
Scale: 1:150000	0 ^{hit:} p5011	Spring Tide, Monsoon Season 1997 All intervention Schemes	6.18	

SWMC		Client: Bangladesh Water Development	t Board	21
		Project: Meghna Estuary Study		MIKE
File:	Date: Mon Jun 8 1998	Max velocities for Drawing		1
Scale: 1:1500000	hit: p5011	Neap Tide, Monsoon Season 1997 Intervention Schemes 1 and 3	6.19	

King / Prof. 13/4m

11

1

U

1

And and a second s

10/01

SWMC		Client: Bangladesh Water Developmen	nt Board
		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998		
Scole: 1:1500000	Init: p5011	Neap Tide, Monsoon Season 1997 Intervention Schemes 1 and 3	6.20

287

tor197 hdf113hh

SWMC		Client: Bangladesh Water Develop	ment Board
0		Project: Meghna Estuary Study	MIK
File:	Date: Mon Jun 8 1998		Drawing no.
Scale: 1:1500000	hit: p5011	Neap Tide, Monsoon Season 1997 All intervention Schemes, excl. 8	6.21

SWMC		Client: Bangladesh Water Develop	ment Board
51		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998	Net flow for Drawing n	
Scale: 1.1500000	hit: p5011	Neap Tide, Monsoon Season 1997 All intervention Schemes, excl. 8	6.22

282 homes

01		Client: Bangladesh Water Develop	ment Board
SWMC		Project: Meghna Estuary Study	Drawing no.
File:	Date: Mon Jun 8 1998	Max velocities for Neap Tide, Monsoon Season 1997	6.23
Scole: 1:1500000	hit: p5011	All intervention Schemes	

SWMC		^{Client:} Bangladesh Water Development Boo	ard	21
51	Project: Meghna Estuary Study			MIK
File:	Date: Mon Jun 8 1998			
Scale: 1:1500000	^{hit:} p5011	Neap Tide, Monsoon Season 1997 All intervention Schemes	0.24	

lon97 http://h

SWMC		Client: Bangladesh Water Development E	Board	E 21
		Project: Meghna Estuary Study		MIK
File:	Date: Mon Jun 8 1998			
Scale: 1:185000	hit: p5011	Intervention Schemes 1 and 3	6.25	

SWMC		Client: Bangladesh Water Developme	ent Board	E 21
		Project: Meghna Estuary Study		MIK
File:	Date: Mon Jun 8 1998	Net flow for Spring Tide, Dry Season 1996	Drawing no. 6.26	
Scole: 1:185000	hit: p5011	Intervention Schemes 1 and 3	0.20	

att, or hotedism

SWMC		Client: Bangladesh Water Developr	nent Board
		Project: Meghna Estuary Study	MIK
File:	Date: Mon Jun 8 1998		
Scale: 1:185000	^{hit:} p5011	Spring Tide, Dry Season 1996 All interventions Schemes	6.27

SWMC		Client: Bangladesh Water Developm	ent Board	E 21
5		Project: Meghna Estuary Study		MIK
File:	Date: Mon Jun 8 1998	98 Net flow for Drawing no. Spring Tide, Dry Season 1996 6.2		
Scale: 1:185000	^{hit:} p5011	All interventions Schemes	0.20	

284 Altors

16 And	Above		30.0
	28.0		30.0
	26.0	-	28.0
	24.0	-	26.0
SALAR!	22.0	-	24.0
豊富県	20.0	-	22.0
A later	18.0	-	20.0
	16.0	-	18.0
	14.0	-	16.0
diale.	12.0	-	14.0
	10.0	-	12.0
SHORE	8.0	-	10.0
8888 19	6.0	-	80
CRASH	4.0	-	6.0
水 多	2.0	-	4.0
MISSIN'	Below		2.0
	Land		

SWMC		Client: Bangladesh Water Development Board	
51		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998	LRP salinity data 0.5 m below surface	Drawing no. 7 1
Scale: 1:1500000	hit: p5011	1986/03/21 - 1986/03/28	7.1

d. solini

MIKE 51 7.2 Drawing no. Bangladesh Water Development Board Meghna Estuary Study Salinity, Dry season 1996 Project: Client: 1998 80 Date: Mon Jun p5011 SWMC Init: Scale: File:

-----......

Elev	diff	((m)
101220	Above		0.10
開設	0.03		0,10
1	0.08	14	0.09
20055	0.07		0.08
different.	0.06		0.07
	0.05	-	0.06
	0.04	-	0.05
SIGEN	0.03	-	0.04
COLUMN ST	0.02	-	0.03
(California)	0.01	-	0.02
STATE OF	0.00	-	0.01
1000	Below		0.00
	Land		

SWMC		^{Client:} Bangladesh Water Development Board	12
21	VIVIC	Project: Meghna Estuary Study	XIM
File:	Date: _{Mon} Jun 8 1998	Difference in mean elevations	^{ю.} 7.3
Scale: 1:1500000	nit: p5011	incl - excl the effect of salinity	

A.	R. P.	
(inter	LIBRARY.	24
6		

1000	Abova		30
2000	28		30
1000	26	÷	29
500.08	24	-	26
出版制度	22	-	24
	20	-	22
1-2-1	18	-	20
	16	-	18
	14	-	16
officia-	12	-	14
-	10	-	12
1000	8	-	10
	6	-	8
Sec.	4	-	6
CHANNEL -	2	-	4
W	Below		2
	Land		

Salinity (ppt)

SWMC		Client: Bangladesh Water Development Board Project: Meghna Estuary Study	
Scale: 1:1500000	hit: p5011	Dry season 1996 Existing situation	7.4

202 a com
di admean

Sali	nity (opt)
100	Above	30
1000	28 -	- 30
10005320	26 -	- 28

	26	-	28
202	24	••	26
5.53	22	~	24
の目前	20	-	22
200.01	18	-	20
	16	-	18
	14	-	16
Conter-	12	-	14
160.5	10	-	12
	8	-	10
1. SALE	6	-	8
STATES N	4	-	6
225030	2	-	4
	Belaw		2
	Land		

SWMC		Client: Bangladesh Water Develo	pment Board
51	VIVIC	Project: Meghna Estuary Study	MM
File:	Date: Mon Jun 8 1998	1998 Mean salinities (ppt) Drawin Dry season 1996	
Scale: 1:1500000	hit: p5011	Existing situation	7.5

di odmar

Salation .	Above		30
63.535	28		30
1000	26	-	28
State.	24	-	26
	22	~	24
3.475	20	-	22
CINE ALS	18	-	20
	16	-	18
	1.4	**	16
- entit	12		14
2018	10	~	12
11075	8		10
1000	6	-	8
1000	4	-	6
States.	2	-	4
10.22	Below		2
	Land		

SWMC		Client: Bangladesh Water Developme	nt Board 🛛 🔊
		Project: Meghna Estuary Study	
File:	Date: Mon Jun 8 1998		Drawing no.
Scale: 1:1500000	hit: p5011	Dry period 1996 Existing situation	7.6

Salinity	(ppt)

SWMC		Client: Bangladesh Water Developr	ment Board
51	VIVIC	Project: Meghna Estuary Study	MK
File:	Date: Mon Jun 8 1998	Minimum salinities (ppt) Dry period 1996	Drawing no. 777
Scale: 1:1500000	^{Init:} p5011	Including all interventions	1.1

SWMC		Client: Bangladesh Water Developme	nt Board 🛛
0		Project: Meghna Estuary Study	MIKE
File:	Date: Mon Jun 8 1998		Drawing no.
Scale: 1:1500000	^{Init:} p5011	Dry period 1996 Including all interventions	7.8

Salii	nity	(ppt)
No.	Abour	50

any General	M0005		
10000	29	-	30
257200	26	-	28
1	24	-	26
1	22	-	24
inger	20	-	22
1.552.0	18	**	20
	16		18
	14	-	16
141-121	12	-	14
(STOCH)	10	-	12
City Cal	8	-	10
1000	6	-	8
attain.	4	-	ő
1000	2	-	4
TELE	Below		2
	Land		

SWMC		Client: Bangladesh Water Developme	ent Board	E 21
21		Project: Meghna Estuary Study		MIM
File:	Date: _{Mon} Jun 8 1998	Maximum salinities (ppt) Dry period 1996	Drawing no. 7.9	
Scale: 1:1500000	hit: p5011	Including all interventions		

di odimo

294 and

SWMC		Client: Bangladesh Water Developme	ent Board	E 21
		Project: Meghna Estuary Study		MIK
File:	Date: _{Mon} Jun 8 1998	Model bathymetry for wind—wave model	Drawing no.	
Scole: 1:1500000	hit: p5011	Meghna Estuary Model	0.1	

5 n	→ n		
Hs	(m)		
1000	Above		2.2
副動業部	2.0	÷	2.2
1993	1.8	÷	2.0
TAXABLE .	1.6	-	1.8
Sec.	1.4		1.6
	1.2	-	1.4
	1.0	+	1.2
1.54	0.8	-	1.0
1999	0.6	-	0.8
E MARCE	0.4	-	0.5
(Martin	0.2		
1983	0.0	-	0.2
1000	Below		0.0
	Land		

SWMC		MAG	Bangladesh Water Development Board	
	51		Project: Meghna Estuary Study	
File:		Date: Mon Jun 8 1998		Drawing no.
Scole:	1:1500000	^{hit:} p5011	Waves from SSE, wind 8 m/s	8.2

200 IOVES SSEEL

SWMC		^{Client:} Bangladesh Water Developm	nent Board
		Project: Meghna Estuary Study	MIK
File:	Date: Mon Jun 8 1998		Drawing no.
Scale: 1:1500000	hit: p5011	Waves from SSW, wind 8 m/s	8.3

~~>		
1000000) n	3/yr/m
		, , ,
Transport	t (1	m3/yr/m)
Abov	e	1000000
95000	0 -	1000000
90000	0 -	950000
85000	- 0	900000
80000	- 0	850000
75000	- C	800000
70000	- 6	750000
65000) (700000
500000	- C	650000
550000) -	600000
500000	1 -	550000
450000) -	500000
400000) - (450000
350000	2 -	400000
300000) -	350000
250000) (300000
200000) -	250000
150000) -	200000
100000	- (150000
50000	- 1	100000
Below		50000
Land		

SWMC		Client: Bangladesh Water Develo	opment Board
		Project: Meghna Estuary Study	MIK
File:	Date: Mon Jun 8 1998		Drawing no.
Scale: 1:1500000	hit: p5011	Dry season 1997, Spring tide No waves	9.1

ed drySthowT

SWMC		^{Client:} Bangladesh Water Development Board		21
5		Project: Meghna Estuary Study		MIKI
File:	Date: Mon Jun 8 1998	Sediment transport rates Dry season 1997, Neap tide	Drawing no.	
Scde: 1:1500000	hit: p5011	No waves	9.2	

Tran	sport	(1	m3/yr/m)
	Above		1000000
	950000	-	1000000
	900000	2	950000
	850000	-	900000
1.1.1	800000	÷	850000
The second	750000	-	800000
Sectors.	700000	-	750000
E STOL	850000	-	700000
407-08	600000	-	650000
能带道	550000	-	600000
100	500000	-	550000
100	450000	-	500000
10	400000	-	450000
1000	350000	-	400000
a second	300000	-	350000
CONTRACTOR OF	250000	-	300000
1.140	200000	_	250000
finand.	150000	-	200000
	100000	-	150000
	50000	-	100000
	Below		50000

SWMC		Client: Bangladesh Water Development Board		21
51		Project Meghna Estuary Study		MIKI
File: Date: Mon Jun 8 1998		Sediment transport rates Monsoon 1997, Spring tide	Drawing no.	
Scale: 1:1500000	hit: p5011	Waves corr. to wind of 8 m/s from SSE	9.5	

208

edi mortSPase

100	→ 00000	m	n3/yr/m
Tra	nsport	(1	m3/yr/m)
	Above		1000000
			1000000
	000000	2	950000
	850000	-	900000
	800000	-	850000
Essele-	750000	-	800000
ECT254	700000	-	750000
有限制度			700000
States of	600000	-	650000
	550000	-	600000
-571	500000	-	550000
	450000	-	500000
	400000	-	450000
	350000	-	400000
	300000	-	350000
Res of	250000	-	300000
1000	200000	-	250000
な認識	150000	-	200000
1.4.3	100000	-	150000
2.20	50000	-	100000
100	Below		50000
	CALCULATION OF		

File: Date: Mon Jun 8 1998		Client: Bangladesh Water Development Board		21
		Project: Meghna Estuary Study		MIKE
Scale: 1:1500000	hit: p5011	Waves corr. to wind of 8 m/s from SSW	9.4	

edi monSPriceT

100	> 0000	m	13/yr/m
Trar	nsport	(r	m3/yr/m)
	Above		1000000
	950000	-	1000000
	900000	÷	950000
	850000	-	900000
	800000	-	850000
Constant of the second	750000	-	800000
200000	700000	-	750000
11409	650000	-	700000
STEELED B	600000	-	650000
10,200.0	550000	-	600000
101	500000	-	550000
Sec.	450000	-	500000
ternet.	400000	-	450000
1000	350000	÷	400000
1000	300000		350000
	250000	-	300000
CARGO IN	200000	-	250000
	150000	-	200000
1000	100000		150000
	50000	-	100000
	Below		50000
	Lond		

SWMC		Bangladesh Water Developm	nent Board	5 21
		Project: Meghna Estuary Study		MIN
File:	Date: Mon Jun 8 1998		Drawing no.	
Scale: 1:1500000	^{hit:} p5011	Monsoon 1997, Spring tide No waves	9.5	

?

550000

525000

500000

475000

0000

adi monSNese T

254

>

٦ Land

1000000 m3/yr/m

Transport (m3/yr/m)

SWMC		Client: Bangladesh Water Development Board Project: Meghna Estuary Study	
Scale: 1:150000	0 hit: p5011	Waves corr. to wind of 8 m/s from SSE	9.6

Transport	(1	m3/yr/m
20 C C C C C C C C C C C C C C C C C C C		1000000
		1000000
		950000
850000	-	900000
800000	-	850000
750000	-	800000
700000	i.	750000
650000	-	700000
600000	-	650000
550000	-	600000
500000	-	550000
450000	÷	500000
400000		450000
350000		400000
300000	1	350000
250000	-	300000
200000	-	250000
150000	1	200000
100000	-	150000
50000	-	100000
Below		50000
Land		

ed mon

SWMC		NNAC	Client: Bangladesh Water Development Board Project: Meghna Estuary Study	
File:		Date: Mon Jun 8 1998	Sediment transport rates Drawing no. Monsoon 1997, Neap tide 9.7	
Scale	1:1500000	hit: p5011	Waves corr. to wind of 8 m/s from SSW	

SWMC		Client: Bangladesh Water Development Board Project: Meghna Estuary Study	
Scole: 1:1500000	hit: p5011	No waves	9.8

edi manSNeowT

25F

