World Bank Government of the People's Republic of Bangladesh

Gumti Phase II Sub-Project Feasibility Study

BN-198 A-182 FINAL REPORT ANNEX C

GROUNDWATER INVESTIGATIONS

September, 1993

Mott MacDonald Limited in association with Nippon Koei Company Limited House of Consultants Limited Desh Upodesh Limited World Bank Government of the People's Republic of Bangladesh

Gumti Phase II Sub-Project Feasibility Study

FINAL REPORT

ANNEX C

GROUNDWATER INVESTIGATIONS

September, 1993

Mott MacDonald Limited in association with Nippon Koei Company Limited House of Consultants Limited Desh Upodesh Limited

STENTS

R

LIBRARY.

3

Page No.

0

[]

1

C.7	Groundwater Development Potential					
	C.7.1	Methodology for Evaluating Groundwater Development Potential	C.7-1			
	C.7.2 Groundwater Resource Potential under Existing Conditions					
	C.7.3	C.7.3 Special Groundwater Modelling Techniques				
		C.7.3.1 Modelling Multi-layered Aquifer Conditions	C.7-7			
		C.7.3.2 Upcoming of Saline Groundwater	C.7-13			
		C.7.3.3 Implications of Modelling for Resource Potentials				
	C.7.4 Impact of Possible FCD and FCD/I Interventions					
	C.7.5 Impact of Reduced Surface Water Irrigation on Groundwater Resources		C.7-17			
	C.7.6	Impact of Groundwater Irrigation on Drinking Water Supplies	C.7-19			
C.8	Econor	nics of Groundwater Development	C.8-1			
	C.8.1	Costs of Groundwater Development	C.8-1			
	C.8.2	Comparative Analysis of Suction and Force Mode Wells	C.2-1			
C.9	Conclu	sions and Recommendations	C.9-1			
	C.9.1 Conclusions					
	C.9.2	Recommendations	C.9-2			

4

TABLES

C.2.1	Comparison of Previous Recharge Assessments	C.2-6
C.2.2	Comparison of Current Abstraction with Resource Estimates	C.2-8
C.3.1	Stratigraphic Column for Southeast Bangladesh	C.3-1
C.3.2	Thana Average Permeabilities of the Main Aquifer	C.3-3
C.3.3	Correlation Between Lithology and Specific Yield	C.3-4
C.3.4	Estimation of Specific Yield from Water Level Fluctuations	C.3-5
C.4.1	Comparison of DTW Salinities with Previous Surveys	C.4-2
C.4.2	Chemical Analyses of Groundwater from the BGS Regional Hydrochemical Survey	C.4.3
C.4.3	Chloride/Bromide and Chloride/Iodine Ratios in Groundwater	C.4-4
C.4.4	Hydrochemical Patterns and Trends with Increasing Salinity	C.4-5
C.4.5	Drinking Water Quality of Hand Tubewells	C.4-8
C.5.1	Inventory of Minor Irrigation Equipment Operating in March 1991	C.5-1
C.5.2	Comparison of Minor Irrigation Estimates	C.5-2
C.5.3	Growth in Numbers of Minor Irrigation Equipment	C.5-4
C.5.4	Deep Setting of Shallow Tubewells	C.5-5
C.5.5	Crop and Irrigation Water Requirements at Comilla	C.5-6
C.6.1	Constraints on Groundwater Development	C.6-1
C.7.1	Unconstrained Groundwater Potential: Depth - Storage Analysis	C.7-3
C.7.2	Comparison of Current Abstraction with Resource Estimates	C.7-5
C.7.3	Analysis of Future Groundwater Development by STWs Only	C.7-6
C.7.4	Analysis of Future Groundwater Development by STWs and DSSTWs	C.7-6
C.7.5	Analysis of Future Groundwater Development by Suction and Force Mode Wells	C.7-6
C.7.6	Appraisal of Potential Recharge and Depth - Storage Modelling Results	C.7-8
C.7.7	Aquifer Configuration for the SCTM Model	C.7-12
C.7.8	Predictions of Saline Interface Upcoming for 14 l/s FMTWs	C.7-14
C.7.9	Effect of Full Flood Protection on Usable Recharge	C.7-16
C.7.10	Impact of Non-Availability of Gumti River Water on	
	the Surface Water Irrigation	C.7-17
C.7.11	Comparison of Resource Estimates With and Without	
	Reduced Flows in the Gumti River	C.7-18
C.8.1	Indicative Capital and Operating Costs for Possible Tubewell Technologies	C.8-3
C.9.1	Technology Requirements for Full Groundwater Irrigation Development	C.9-1

Page No.

[]

П

1

FIGURES

6

C.3, J	Topography	Following	C.3-1
C.3.2	Schematic Hydrogeological Cross Section Through the Project Area	Following	C.3-2
C.3.3	Thickness of Aquitards	Following	C.3-2
C.3.4	Piezometric Surface: January 1989	Following	C.3-4
C.3.5	Depth of Water in the Main Aquiter: April 1989	Following	C.3-4
C.4.1	Distribution of Salinity (EC) in the Main Aquifer	Following	C.4-1
C.4.2	Groundwater Salinity Investigations in Muradnagar	Following	C.4-1
C.4.3	Location of BGS Hydrochemical Sampling Sites	Following	C.4-3
C.4.4	Sea Water Mixing Plots - 1	Following	C 4-5
C.4.5	Sea Water Mixing Plots - 11	Following	C.4-5
C.4.6	Redox Conditions of Groundwater	Following	C.4-6
C.4.7	Variation of Oxygen-18 with Chloride	Following	C.4-6
C.4.8	Nitrate in Groundwater	Following	C.4-6
C.5.1	Growth in Minor Irrigation	Following	C.5-2
C.5.2	Location of Deep Tubewells	Following	C.5-5
C.5.3	Unionwise Distribution of Shallow Tubewells in: 1987	Following	C.5-5
C.5.4	Unionwise Distribution of Shallow Tubewells in: 1991	Following	C.5-5
C.6.1	Groundwater Development Constraints	Following	C.6-1
C.6.2	Force Mode Tubewell Design Options	Following	C.6-4
C.7.1	Incremental Irrigation to 90% of Cultivable Area	Following	C.7-10
C.7.2	Resource Usage with Groundwater Irrigation	Following	C.7-10
C.7.3	SCTM Model Hydrographs for Full Groundwater Development	Following	C.7-12
C.7.4	Sensitivity Analysis: Vertical Permeability of the Lower Aquitard	Following	C.7-13
C.8.1	Pumping Cost as a Function of Water Table Depth	Following	C.8-3
C.8.2	Economic Comparison of Deep and Shallow Tubewell Irrigation	Following	C.8-3
C.9.1	Groundwater Development Zones	Following	C.9-1

APPENDICES

- Appendix C.1 Survey of Natural Gas Discharges in Tubewells
- Appendix C.II Minor Irrigation Statistics for 1991
- Appendix C.III Groundwater Hydrographs
- Appendix C.IV Average Lithological Profiles by Thana
- Appendix C.V Output from the Groundwater Models
- Appendix C.VI Documentation for the Single Cell Thana Model
- Appendix C.VII Theoretical Analysis of Deep and Shallow Tubewell Operation under Comparable Conditions

v

B

		Acronyms
Aman	-	Rice planted before or during the monsoon and harvested in November or December
AST	-	Agricultural Sector Team (funded by CIDA)
Aus	-	Rice planted during March to April and harvested during June and July
B aman	-	Broadcast Aman
BBS	-	Bangladesh Bureau of Statistics
BIWTA	2	Bangladesh Inland Water Transport Authority
Boro	2	Rice transplanted in December or January and harvested in April to May
BUET	8	Bangladesh University of Engineering Technology
BWDB	3	Bangladesh Water Development Board
CIDA	7	Canadian International Development Agency
DAE	5	Department of Agricultural Extension
DHI	2	Danish Hydraulies Institute
DOF	2	Department of Fisheries
DTW	-	Deep Tube Well
ECNEC	-	Executive Committee of the National Economic Council
EIA	ы.) С	Environmental Impact Assessment
EIRR	-	Economic Internal Rate of Return
EMP	-	Environmental Management Plan
FAP	-	Flood Action Plan - also projects under the FAP eg FAP1, FAP2 etc
FCD		Flood Control and Drainage
FCDI	50	Flood Control Drainage and Irrigation
FCD+I		FCD initially, then converted to include Irrigation
FFW		Food For Work
FMTW	-	Forced Mode Tubewell
FPCO	-	Flood Plan Coordination Organization
FRSS	-	Fishery Resources Survey System
GM	-	General Model
GPA	-	Guidelines for Project Assessment (from FPCO)
HTW		Hand Tubewell
HYV	-	High Yield Variety
IICA	170	Japanese International Cooperation Agency
JRC		Joint Rivers Commission
KSS	1.00	Krishni Sambaya Samity Local Government Engineering Department
LGED	-	Locally Improved Variety
LIV LLP	-	Low Lift Pump
	-	Surface water computer model developed by Danish Hydraulics Institute
MIKE11 MLGRD	120	Ministry of Local Government Rural Development
MOFL	-	Ministry of Fisheries and Livestock
MOFL	-	Ministry of Irrigation, Water Development and Flood Control
MPO		Master Plan Organization
NAM		Computer model which derives run-off and groundwater recharge from rainfall
NCA		Net Cultivable Area
NCS	-	National Conservation Strategy
NEMAP		National Environmental Management Action Plan
NFC	2	National Flood Council
NPV	-	Net Present Value
NPVR	-	Net Present Value Ratio
NWC	-	National Water Council
NWP	-	National Water Plan
ODA	-	Overseas Development Administration (UK)
Paddy	-	Unhusked rice
RRI		Rivers Research Institute
SCF		Standard Conversion Factor
SERM		South East Regional Model - a computer hydraulic model of the south-east region of
		Bangladesh

SERS		South East Regional Study - also known as FAP5
SIA		Social Impact Assessment
SPARRSO	121	Space Research and Remote Sensing Organization
SRDI	-	Soil Research Development Institute
STW	-	Shallow Tubewell
SWMC		Surface Water Modelling Centre - the MPO office responsible for the computerized
CIVEND		modelling of flows, levels and groundwater
SWSMP		Surface Water Simulation Modelling Project
SSFCDIP	(**)	Small Scale Flood Control Drainage and Irrigation Project
T Aman		Transplanted Aman
TCCA		Thana Central Cooperative Association
Thana	123	Small administrative unit (formerly termed upazila)
TNO	-	Thana Nirbahi Officer
UNDP	-	United Nations Development Programme
Union	.70	Division of a thana
[W]		With project - economic evaluation of the future situation with the proposed project
[WO]		Without project - economic assessment of the probable future value of production if no project is implemented
WRPO	-	Water Resources Planning Organization

Π

[]

[]

U

U

U

1

C.1 Introduction

This Annex describes the hydrogeology, groundwater resources and groundwater based irrigation in the Gumti Phase II Study area. The Terms of Reference (TOR) draw special attention to the previous studies of groundwater resources by Annex C of the previous Feasibility Study (BCL/Halcrow, 1990, a.k.a the '1990 Study') and the Draft Regional Plan of the South East Regional Water Resources Programme (FAP:5, a.k.a 'SERS'). The principal objectives set out in the TOR are: 0

review the groundwater findings of the 1990 and FAP:5 studies;

- evaluate and map additional data in order to assess the area's developable groundwater potential, including consideration of:
 - hydraulic and water quality characteristics of the aquifer;
 - groundwater flow patterns and hydrographs;
 - inventory of wells and abstractions;
 - the groundwater balance;
 - zoning according to groundwater development potential and technology requirements;
 - environmental consequences of full groundwater development;

The scope of the report goes beyond the Terms of Reference in several regards. First, it considers the effects of various FCD and FCD/I interventions on the groundwater resources. Second important constraints on groundwater development were either not recognised or inadequately addressed in the 1990 and SER studies, and were considered too important to ignore. These constraints are the effects on natural gas discharges on shallow tubewells and (to a much lesser extent on) deep tubewells, and the occurrence of saline water in the deeper parts of the aquifer system in some areas. Neither of the previous studies considered gas constraints, while the SERS had access to only the preliminary results of the Deep Tubewell II Project's investigations into salinity (MMI, 1992) and hence could not present a full evaluation.

C.2.1 General Review

There are a significant number of reports describing the geology and groundwater resources of the Gumti Phase II area. Some details are given in the national reports by UNDP (1982), MMP/HTS (1982) and MPO (1987, 1991). Specific regional studies include:

И

Geological Survey. Quaternary Geomorphic Evolution of the Brahmanbaria-Noakhali Area. Bakr (1977). An important paper on the geomorphology and Quaternary geology of the project area, emphasising the multiple courses of the Gumti and Titas rivers, especially during historical times.

UNDP. Hydrogeology of Comilla District. 1981.

This was the first attempt to produce a comprehensive report on the area, based on nine exploratory holes, pumping tests and water quality analyses. The report still contains valuable data, but has been largely superseded by later work. The work formed part of the national review 'Hydrogeological Conditions of Bangladesh' by UNDP (1982).

BADC. Deep Tubewell II Project. Phase 1 Completion Report. 1986.

The report builds on the UNDP/BWDB report, by concentrating on the analysis of the BADC DTWs in the area. A more detailed statistical definition of the lithological profile in each thana was established. The project included a water quality survey and recognised for the first time the existence of saline groundwater in the southern part of Comilla District, although did not identify high salinity water in the Gumti Phase II area. The failure to identify saline groundwater in the west of the study area was due to the almost complete absence of DTWs in that area. The recommendations of this report led to the inclusion of the thanas of Muradnagar, Debidwar, Daudkandi and Brahmanpara and most of Brahmanbaria District in the construction activities of the project.

MPO. National Water Plan Phase 1. 1987.

Although national in scope, this project estimated the potential recharge and calculated depth-storage curves for the study area. MPO recognised salinity as a constraint on groundwater development in parts of Comilla and Brahmanbaria Districts, and indicated that this was not due to sea water intrusion, but might be 'correlated with east-west faults cutting across gas bearing Miocene formations at considerable depth'. MPO included part of Debidwar thana as one of their groundwater special study areas.

BWDB. Hydrogeological Report on Barura, Sharastri, Hajiganj, Chandpur, Matlab, Homna, and Daudkandi (WSP 488). 1987.

This report was drawn toour attention by comments on Inception Report, and contains *inter alia* chloride and TDS measurements from different depths from BWDB's water quality network. Wells in Homna and Daudkandi thanas in the Gumti Phase II area are included. No water quality problem was identified.

BWDB. Hydrogeological Report on Barura, Sharastri, Hajiganj, Chandpur, Matlab, Homna, and Daudkandi (WSP 488). 1987.

This report was drawn toour attention by comments on Inception Report, and contains *inter alia* chloride and TDS measurements from different depths from BWDB's water quality network. Wells in Homna and Daudkandi thanas in the Gumti Phase II area are included. No water quality problem was identified.

BWDB. Hydrogeological Map of Greater Comilla (WSP 489). 1987

This composite map at a scale of 1:250,000 and accompanying panel diagram and tables, is compiled mainly from data in the UNDP (1981) report, BWDB's water level monitoring data and geological data from the Geological Survey of Bangladesh (GSB). Three zones and 12 sub-zones are recognised. No salinity problem was identified. The accompanying tables report values of potential recharge much lower than used by the MPO or FAP studies.

BARI. Groundwater Resources of Comilla Sadar. Rashid et al. 1988 and 1990.

A team from BARI carried out a World Bank/BARC funded investigation of Comilla thana. The reports are broad in scope, but cover only a small part of the Gumti Phase II area. No major constraints were identified, but further study was recommended.

BARD. Irrigation Water Quality in Comilla Sadar. Sharfiullah. 1990.

Detailed description of water quality at 12 tubewells in Comilla thana; all samples were suitable.

BWDB. Gumti Phase II Sub-project Feasibility Study. BCL/Halcrow. 1990.

The '1990 Report' (Annex C of the Final Report) is reviewed in detail in Section C.2.2.1.

FAP:5. South East Region Water Resources Development Programme. 1991.

The ongoing 'SERS' study presented analyses of groundwater as part of the 'Regional Plan' and are described in detail in section C.2.2.2.

BRDB/LGEB. Master Plan for Kachua, Nabinagar, Bancharampur and Debidwar Thanas. JICA. 1991.

The analysis of groundwater resources given in this report covers the whole of the Gumti region, and is drawn directly from the 1987 BWDB Hydrogeological Map.

BADC. Deep Tubewell II Project. Final Report. 1992.

This multi-volume report is the largest source of primary data on the area; the relevant volumes are 2.1 (Natural Resources), 2.1/2 (Groundwater Planning and Monitoring), and 2.1/3 (Groundwater Salinity Study). Of these the most important is the salinity study, which presents a detailed analysis of lithological data from 300 or so

DTW records in the Gumti area, presents regional contour maps of the thicknesses of the aquifers and aquitards, water level maps and aquifer properties. The report identified a range of hypotheses to explain the origin of the saline groundwater, which was recognised (for the first time) to be causing crop damage to irrigated *boro* rice in Muradnagar. The DTW II project carried out a survey of the EC in more than 200 operating wells, and in conjunction with BARI a sub-study of the yield response of rice to saline irrigation water.

DTW II also conducted drilling investigations at two (abandoned) DTW sites of high salinity (5600 and 7200 μ S/cm), which showed that (in the worst areas at least) the two aquifers are separated by a 20-30 metre thick layer of sandy silt; where the upper aquifer is fresh but the lower, main aquifer is saline throughout its depth. It was concluded that the most likely origin of the saline water is that it is connate¹ water remaining from the deposition of the silt layer in an estuarine environment approximately 12-14,000 years ago. Following these conclusions, the BARI study, and a review of international literature, DTW II offered the following guidelines for irrigation water:

	$< 1,000 \ \mu S/cm$	unrestricted use
1,000	- 2,000 µS/cm	unsuitable for vegetables
	> 2,000 µS/cm	use for wheat only

British Geological Survey. Hydrogeochemistry of N E Bangladesh. Davies and Exley. 1992.

As part of a regional survey, the British Geological Survey (BGS) collected water samples from the special investigation of the DTW II project in Muradnagar. These groundwater samples have been analysed for major and minor ions and stable environmental isotopes. The results were published during the course of the present study, but BGS made their basic data available in advance of publication, and have been incorporated into Chapter 4.

Other Data Sources

In addition BWDB and BADC maintain records of basic data. BWDB maintain a network of piezometers which are measured manually on weekly basis; tabulations of these data are published annually. BWDB also carries out regular water quality monitoring on a limited number of wells. BADC hold construction records of several hundred deep tubewells, of which those constructed under the DTW II Project are available as dBASE IV computer files. BADC also maintains automatic water level recorders in the thanas of Kasba, Debidwar and Muradnagar, and conducts early and late dry season water level monitoring in approximately one operational DTW per union. Results for 1986 to 1991 were published in the DTW II Final Report. Information from the MPO's special study areas in Debidwar is held on file by WRPO and would be helpful.

C.2.2 Detailed Review of the 1990 and SERS Groundwater Studies

The Terms of Reference require a review of these studies; this section describes the studies in a general way, while section C.2.3 concentrates on the resource potential issues.

The original water in which a sediment was deposited.

C.2.2.1 The 1990 Study

The 1990 Study (Annex C of the Final Report) is essentially a review of existing data, concentrating on the lithological data of UNDP (1981) and the potential recharge estimates, and methodology, of the National Water Plan Phase 1 (MPO, 1987). Further data on minor irrigation are contained in Annex H of the 1990 study.

The analysis follows the standard practice in Bangladesh, of defining a depth-storage curve as a basis of predicting the quantities of groundwater available to each tubewell technology. The 1990 Study used the 9 UNDP wells and records of 16 BADC DTWs to construct panel diagrams, and hence assign typical profiles to 14 polygons. The 1990 Study collected no primary data, but did highlight the inadequacy of lithological data in the western and central parts of the area. The 1990 study noted, but did not take explicit account of, UNDP's (1981) observation of 'temporary disequilibrium' of the piezometric surface due to pumping (i.e. effects of layering and pumping from different aquifers). The approach follows the standard practice of the MPO, which does not allow for the effects of layering.

By not checking the water quality of operating tubewells in areas where none existed before 1986, the 1990 Study incorrectly concluded that there are 'no major groundwater quality hazards', and hence did not recognise the extensive occurrence of saline groundwater in the main aquifer. The BWDB did not identify natural gas discharges as a constraint on either suction or force mode tubewells.

C.2.2.2 Southeast Regional Study. Draft Regional Plan

In 1991, this component project of the Flood Action Plan produced two complementary reports on the hydrogeology of the area:

- Groundwater Resources and Salinity
- Geology and Groundwater Resources

Together the reports of the South East Regional Study (SERS) contain a thorough review of existing data, and make extensive use of (then) unpublished data from the Deep Tubewell II Project (DTW II), as well as 25 determinations of electrolytic conductivity (EC) in operating tubewells (as a planned supplement to the DTW II survey). For the first time it was recognised that groundwater salinities may exceed 2000 μ S/cm in Muradnagar and Daudkandi thanas. Based on DTW II well records, the study identified the existence of an extensive lower aquitard in the depth interval 30-60 m bgl, in the central part of the study area. The SERS also carried out a detailed reappraisal of the MPO recharge and resource potential estimates; and in particular how these would be affected by full or partial flood protection. The project developed a new model for groundwater planning called the Single Cell Thana Model (SCTM). The model, however, was used with basic data from Phase 1 of the National Water Plan, which appears not to have recognised the importance of the lower aquitard, and as noted earlier was based on insufficient (due to the small number of wells) lithological data in the central and western parts of the area. The model is well suited to evaluating the resource potential of a two layered aquifer system where force mode tubewells may pump from the lower aquifer and suction mode wells from the upper aquifer. SERS defined a salinity limit of 1,000 μ S/cm for irrigation as a planning constraint for the development of groundwater; this is considered to be too conservative for the climatic conditions and agricultural practices of south-east Bangladesh. The SERS also did not identify natural gas discharges as a constraint on either suction or force mode tubewells.

C.2.3 Groundwater Development Potential

The resource analysis in the BWDB Study was based upon data and analysis from Phase 1 of the MPO National Water Plan (NWP), whereas the SERS analysis represents mainly an upgrading and revision of the NWP Phase 2 work. However, the SERS was also took advantage of new lithological data from the DTW II project.

15

Table C.2.1 compares the total groundwater potential by thana as estimated by the various studies. The potentials are given in terms of a depth of water averaged over the full area of the thana, and as such may be directly compared with the net irrigation requirement of *boro* rice, which is around 500mm. From Phase 1 to

Phase 2 of the NWP, recharge estimates were increased substantially in most thanas (except for Nabinagar² and Daudkandi). SERS estimates are generally very close to or somewhat higher than the MPO Phase 2 estimates, and notably increased them in Nabinagar and Daudkandi. Compared to MPO Phase 1, SERS estimates of total groundwater potential are increased in every case and with the exception of Bancharampur (for which the MPO did not have a complete data set) they are increased by at least 44%. Even without taking account of existing surface water irrigation or the definition of irrigable, it follows from both the MPO Phase 2 and the SERS estimates, that the vast majority of the area could be irrigated with groundwater (without consideration to technology or cost).

The SERS (as part of a regional plan) did not estimate the irrigated area in the Gumti area, but quotes only thana totals and is therefore not directly comparable. The present study has made use of the AST/CIDA survey of March 1991 (see Chapter 5 for details). The BWDB collected data for the years 1986 to 1989, and used the year 1987 as the basis for design. There are very important differences between the BWDB Study estimates and the more recent estimates. In the BWDB assessment, it assumed that the total 'irrigable' area is about 110,000 hectares, of which only 27,000 ha are currently under irrigation, with about 10-12,000 ha of this provided from groundwater sources. The BWDB Study indicates that "... the present limit for tubewell development is in the order of 35-40,00 ha", and that (in the case of the FCD scheme) "it is unlikely that more than 25-30,000 ha would be irrigable by LLPs" and hence that "... only some 50 - 70,000 ha is likely to have dry season irrigation". However, the 1991 AST survey shows that there is already 65,000 ha under irrigation, of which 27,000 ha use groundwater sources.

The BWDB Study did not give a detailed assessment of current groundwater abstraction, although they did note the difficulty of making accurate estimates. The SERS estimated water use from the numbers of irrigation units operating, and was the first study of its type to take explicit account of the beneficial effects of surface water irrigation in increasing the groundwater potential. The SERS assumes a higher unit rate of groundwater use than the DTW II estimates. The SERS data refer to 1990 and are based on only DTW, STW and LLP numbers (from MPO records) together with synthesised (national average) command areas assuming:

- 1 DTW of 2 cusec capacity irrigates 16 hectares
- 1 DTW is equivalent to 4 STWs (4 hectares)
- 1 LLP is equivalent to 0.8 DTWs (12.8 hectares)

The MPO Phase 2 estimate for Nabinagar is considered unrealistic, and is probably a data processing error.

TABLE C.2.1

Thana	MPO Phase I	MPO Phase II	Change From	Southeast Regio	onal Study		
	Available	DTW1	Previous Estimate	DTW1	Change From		
	Recharge (1)	Potential		Potential	Previous Estimates		
	mm/yr	mm/yr		mm/yr	MPO I	MPO II	
Akhaura	375	738	97%	738	97%	0%	
Kasba	300	506	69%	613	104%	21%	
Nabinagar	390	288	-26%	673	73%	133%	
Bancharampur	400	431	8%	431	8%	0%	
Homna	375	507	35%	540	44%	7%	
Daudkandi	375	364	-3%	539	44%	48%	
Muradnagar	345	425	23%	708	105%	67%	
Debidwar	325	566	74%	566	74%	0%	
Brahmanpara	290	597	106%	496	71%	-17%	
Burichang	285	482	69%	495	74%	3%	
Comilla		486		493	-	1%	

Comparison of Previous Recharge Assessments

Notes :

1. As quoted in the BWDB Study (BCL/Halcrow, 1990)

2. For practical purposes the 1 cusec deep tubewell (DTW1) potential is effectively the total groundwater potential.

The DTW II report makes use of the AST-CIDA census data and indicate different average command areas:

- 1 DTW irrigates 19 hectares
- 1 STW or DSSTW irrigates 4.7 hectares
- 1 LLP irrigates 8.3 hectares
- 1 manual tubewell irrigates 0.2 hectares

Thus the area of groundwater irrigation given by SERS is liable to be underestimated, and the area of surface water irrigation overestimated. It may be noted that the DTW II project was able to correlate the AST results for DTWs with its own monitoring of project wells; and further, in the adjacent areas of Greater Dhaka and Kishorganj, found a good correlation between the total irrigated areas reported by AST and those derived from analysis of LANDSAT TM imagery for the same period (MMI, 1992; vol 5.1/1).

In the case of both the DTW II and SERS reports, the volume of groundwater abstracted is calculated from the areas irrigated, and hence the differences noted above are carried over. Southeast used an average net crop requirement for *boro* rice of 625mm, although an analysis by DTW II suggests a somewhat lower figure of about 500mm. Thus in spite of using a lower unit water requirement, in all cases except Bancharampur, the quantity of groundwater withdrawn estimated by DTW II is higher³. Even so the differences are quite small compared to the total groundwater resources indicated earlier.

Table C.2.2 compares the DTW II estimate of net groundwater abstraction with the estimated potentials for various technologies given by MPO Phase 2 and the SERS. Net abstraction exceeds the STW potential (MPO II) in eight of the eleven thanas, however, with the exception of Burichang and Comilla, AST reported no DSSTWs in those thanas in 1991 (indicating the potential has not been exceeded). This is not necessarily an inaccuracy in the MPO analysis, but perhaps due to the failure to take account of the beneficial effect of recharge from existing surface water irrigation. In fact, in some thanas this may even exceed groundwater abstraction. The SERS methodology does take account of the recharge from LLPs. Table C.2.2 also suggests that the DSSTW potential has been exceeded in Comilla, Burichang and perhaps Brahmanpara. In Brahmanpara, it has certainly not been exceeded, while in Burichang there are a handful of DSSTWs, probably in the south where dry season water levels are deepest. In Comilla, there were reported to be 103 DSSTWs and 410 STWs. Clearly water levels are a constraint for suction mode tubewells over a large part of the thana, however, DSSTW potential has not been exceeded (except perhaps immediately adjacent to the hills). In no thana does the present abstraction reach even 50% of the estimated potential for (1 cusec, 28 l/s) DTWs.

In summary, it may be concluded on the basis of the previous studies there is some potential for additional STW development in most parts of the project area, considerable potential for more DSSTWs, and great potential for DTW development (in fact probably in excess of demand). However, these assessments have not given sufficient attention to the constraints imposed by saline groundwater, and natural gas discharges in suction mode wells. Further, they have not considered the effect of the lower aquitard, and its implications for the various technologies.

There is a particularly large difference in the case of Brahmanpara, however, the SERS report contains a definite error in the number of DTWs operating.

TABLE C.2.2

Comparison of Current Abstraction with Resource Estimates (1991)

Thana	Net MPO Phase II Estimates		Southeast Regional Study		st Regiona	I Study			
	Groundwater		stw	DSSTW	DTW1	D	SSTW	DTW1	Comments
	Abstraction	Po	tential	Potential	Potential	Po	tential	Potential	
	mm	r	nm/yr	mm/yr	mm/yr	п	nm/yr	mm/yr	
Akhaura	84	٠	74	242	738		190	738	No deep setting reported in 1991
Kasba	122	٠	101	183	506	٠	106	613	No deep setting reported in 1991
Nabinagar	23		16	59	288		126	673	No deep setting reported in 1991
Bancharam	pur 49		93	171	431		171	431	
Homna	79		78	150	507		178	540	No deep setting reported in 1991
Daudkandi	47	٠	42	85	364		159	539	No deep setting reported in 1991
Muradnaga	r 38		65	109	425		142	708	
Debidwar	72		84	147	566		113	566	
Brahmanpa	ra 166	٠	132	248	597	٠	116	496	No deep setting reported in 1991
Burichang	166	٠	73	* 134	482	٠	134	495	5% of STWs deep set in 1991, SWL of 9m in S
Comilla	204	*	86	* 164	486	*	157	493	20% of STWs deep set in 1991, SWL of 12m in S

Notes :

¢

1. * indicates current abstraction greater than estimated potential

2. DTW1 - 1 cusec (28 l/s) Deep Tubewell

C.3 Hydrogeology

C.3.1 Geology and Geomorphology

The study area lies between the Meghna River and the Tripura Hills (roughly coincident with the Indian Border). The topography of the area is shown in Figure C.3.1. The surface geology and geomorphology of the area have been described by Morgan and McIntire (1959), Bakr (1977) and Alam et al (1990). The hills and terraces are of Lower or Middle Pleistocene age, while the floodplains are Holocene. The principal landform is the Old Meghna Estuarine Floodplain (also known as the Tippera Surface or the Chandina Deltaic Plain) which is about 1.5 - 2 metres higher than the adjacent than the adjacent Middle Meghna and Surma - Kushiyara River Floodplains, and is characterised by an almost level landscape of smooth broad ridges and basins. Major changes in the drainage pattern have occurred during the last 200 years following the shift in the bulk of the flow of the Brahmaputra to the Jamuna channel. Bakr (1977) has documented a series of westward shifts in the Titas and Gumti rivers in a process of readjustment that is apparently still not complete. It should be noted from Figure C.3.1 that there is a large depressed area of internal drainage near the borders of Homna, Bancharampur and Muradnagar.

TABLE C.3.1

Age	Stratigraphic Unit	Lithology	Reference
Holocene	Meghna river floodplain deposits	alluvial sand and silt	FAO/UNDP (1988), Alam et al (1990)
Holocene	Surma - Kushiyara river floodplain deposits		FAO/UNDP (1988)
Late Pleistocene - Holocene	Chandina Formation	Upper sandy sequence Lower silty sequence	Bakr (1977), MMI (1992)
Lower Pleistocene	Madhupur Clay	red-brown silty clay (residuum)	Bakr (1977), Monsur (1990)
Plio-Pleistocene	Dupi Tila Formation	yellowish brown fine - medium sand	
Middle Miocene	Tipam Group	sandstones and shales	Holtrup and Keiser (1967)
Early Miocene	Surma Group	mainly sandstone	Holtrup and Keiser (1967)

Stratigraphic Column for Southeast Bangladesh

The stratigraphic column for this part of Bangladesh is shown in Table C.3.1; only the Dupi Tila and younger strata are exposed at the surface. The area lies on the eastern side of the Bengal Basin and the western flank of the Indo-Burman Ranges, which consist of folded Tertiary sediments. In terms of groundwater development the Tipam and Surma Groups are only of relevance in so far as their folded structure may have influenced the sedimentation of the younger strata. descriptions of the sedimentology and structure of the Tertiary deposits

Figure C.3.1

are given by Holtrup and Keiser (1967), Johnson and Alam (1990) and Khan (1991). The Quaternary geological framework of the area was defined by Morgan and McIntire (1959) and Bakr (1977). The uplifted terrace and hill areas have a cap of Madhupur Clay overlying highly weathered alluvial sands of the Dupi Tila Formation. The Madhupur Clay is now interpreted to be residual soil horizon (Alam et al, 1990) and hence intimately related to the origin of the landforms on which it occurs; Monsur (1990) has used magnetostratigraphic techniques to infer its formation between 730,000 and 900,000 years ago. The deposits underlying the Old Meghna Estuarine Floodplain have been given the name Chandina Formation; radiocarbon dating by the Geological Survey and Brammer (1971) has shown that the surface deposits are no more than about 6,000 years old. The deposition of the late Quaternary sediments was controlled by global sea level fluctuations, in particular during the last glacial maximum of the Pleistocene when sea level fell to about 130 metres below its present level approximately 18,000 years before present (BP), which led to the formation of incised channels along the Meghna and Old Brahmaputra valleys. Thus the definition of the Chandina Formation has been extended to include a transgressive sequence of alluvial and deltaic sediments laid down during the period of rapidly rising sea level between 18,000 and 6,000 BP. The higher elevation of this older floodplain was attributed to tectonic uplift by Morgan and McIntire (1959) but may alternatively be explained by the slightly higher sea levels prevailing between 6,000 and 2,000 BP.

121

C.3.2 Groundwater Conditions

The general hydrogeology of the area has been described by Klinski (1981), MPO (1987) and especially in the volume 2.1/3 of the Deep Tubewell II Project Final Report (MMI, 1992). Groundwater is developed for irrigation principally from the Dupi Tila sands, and to a lesser extent the Chandina Formation. For drinking water the proportions are reversed. Despite its importance for public health the volume of groundwater withdrawn for domestic purposes is insignificant compared to that for irrigation. There are very significant abstractions of groundwater by both deep and shallow tubewells (STWs) in most thanas, while abstraction by manual methods is quantitatively insignificant. The groundwater reservoir is recharged annually by infiltration of rainfall and floodwater; the recharge process has been studied in detail by MPO (1987, 1991). The potential recharge estimates are based on infiltration through the top aquitard. However, it has been shown by MMI (1992) that groundwater abstraction often occurs from at least two aquifers in partial hydraulic separation. The semi-confining layer that separates the aquifers is sufficient to maintain different piezometric levels (up to 9 metres in the adjoining areas of Kishorganj) during the dry season while fully recharging both aquifers in the monsoon. Figure C.3.2 shows a schematic (east - west) hydrogeological section through the study area, while Figure C.3.3 shows the thickness of the upper aquitard, the areas where a lower aquitard is present and the thickness of the lower aquitard.

Deep Fresh Water Aquifer Hypothesis

Current investigations for the Noakhali North Feasibility Study have clearly shown the existence of a fresh water aquifer below 150 metres in Noakhali and Lakshmipur districts, beneath the brackish/saline aquifer. This aquifer is already being exploited (apparently successfully, but without a formal monitoring programme) by BADC DTWs. Given the apparent similarity of the geology, this lends weight to speculations that there may be an exploitable fresh water aquifer beneath the saline aquifer in Muradnagar. For the purpose of long term planning, this hypothesis is worthy of testing¹. However, a higher priority should be given to evaluating the potential of the shallow fresh water aquifer, which may be constrained by gas discharges.

For instance by drilling a borehole to 200 metres at the Yusufnagar test site.

Figure C.3.2 Schematic Hydrogeological Cross Section Through the Project Area

C.3.3 Aquifer Properties

Twelve transmissivity determinations from pumping tests in the Greater Comilla have been reviewed by MMP (1986), BCL/Halcrow (1990) and MMI (1992) and average 724 m^2/d with a standard deviation of 408 m^2/d . However, these tests are too few to give an accurate picture of the spatial variability of permeability. A better representation may be obtained from estimating permeability from commissioning tests on DTWs². Individual results are less accurate, but this is far outweighed by the benefits of having around 400 data points in the project area. MMI (1992) smoothed the effect of dubious wells data by contouring union average permeabilities and there is remarkably little variation in the properties of the main aquifer. Thana average permeabilities are given in Table C.3.2. These permeabilities nearly all represent the Dupi Tila Formation, and are comparable with determinations in the greater districts of Dhaka and Mymensingh, however, some wells are almost certainly screened partly in the Chandina Formation are likely to give rise to higher average permeabilities. Despite the smaller average grain size, it is expected that the Chandina Formation will have higher permeabilities because it is basically unweathered, but unfortunately there have been no tests performed exclusively on this unit that could prove this hypothesis.

TABLE C.3.2.

Thana Average Permeabilities of the Main Aquifer

Thana	Nr of Wells	Permeability (m/d)	Thana	Permeability (m/d)
Daudka	ndi	30.4	Kasba	24.6
Muradn	agar	23.2	Nabinagar	27.2
Debidwa	ar	22.1	Bancharampur	21.2
Brahma	npara	22.0		

20

Analysis of pumping tests generally indicates a leaky aquifer condition and that the specific storages should be in the range of 7×10^{-6} to 5×10^{-5} , and will serve to simulate the short term pumping response of wells. However, monitoring of static water levels shows that over periods of weeks to months the aquifer behaves as a regionally unconfined system, and hence that specific yield is the critical parameter. In Bangladesh, special attention has been given to the variation of specific yield with depth.

Apart from the estimation of potential recharge, the other key component of groundwater resource planning in Bangladesh has been the depth - storage concept. Having determined what quantity might infiltrate to the aquifer in a year, the planner needs to know what will be the lowering of the water table (or piezometric surface) for a given level of abstraction since this determines the type of tubewell technology that will be required. Hence the variation of specific yield must be known. Specific yield may be determined from pumping tests, but this gives an answer for one water level depth (and also tends to underestimate the long term

² Using the Logan approximation method to calculate transmissivity, and taking the well screen length plus 10% as the effective aquifer thickness.

water level response). The only practical solution is to establish a correlation between lithology and specific yield. This type of analysis is not new, but under the National Water Plan Project it was developed to an unusual degree of sophistication. The MPO's correlation between lithology and specific yield was refined by the DTW II for the northeast of Bangladesh, and these values (Table C.3.3) were used in the present study. The analysis of these data to estimate groundwater potentials for each technology in each thana area described in Chapter 7.

TABLE C.3.3

Correlation Between Lithology and Specific Yield

Lithology	Specific Yield		
Clay	0.02		
Silt	0.05		
Fine sand	0.09		
Medium Sand	0.15		
Coarse sand	0.25		

C.3.4 Groundwater levels

C.3.4.1 Piezometric Surface

Groundwater levels are monitored routinely by both BWDB and BADC. Figure C.3.4 shows the elevation of the piezometric surface (as measured in BWDB piezometers) in January 1989. The month of january was chosen because the natural recession is well established, but has not been significantly affected by pumping for irrigation, and so gives a good indication of the natural patterns of flow. There are insufficient data points to interpret the detailed pattern of flow around the rivers, and some of the datum elevations in the west might be questioned, however the general trends are clear. Groundwater flow occurs dominantly from east to west, although there are reversed gradients in the Homna and Bancharampur areas, which appear to correlate with the region of internal drainage seen in Figure C.3.1. Generally the hydraulic gradients are low and lateral groundwater flow must be quite slow. There do, however, appear to be steep gradients between the Indian border and the Titas river near Akhaura.

Figure C.3.5 shows the depth to water (as recorded in DTWs) in the drought period of April 1989, which generally represents the deepest dry season groundwater levels on record. It should be noted that the levels were taken at non pumping time, after the wells had been allowed to recover overnight. These measurements are made from the top of the casing on deep tubewells (which are built on raised ground) and so are probably are 0.5 to 1.0 metre more than might apply to shallow tubewells. Also, it may be noted that, even in the same general area, shallow tubewells tend to be sited on lower lying land. The overall pattern is of a very similar depth to water across the area. Water levels lie closer to the surface in Daudkandi, and only in Burichang and Comilla are water levels likely to pose serious problem to suction mode wells.

Figure C.3.4 Piezometric Surface : January 1989

- 20

Figure C.3.5 Depth to Water in the Main Aquifer : April 1989

C.3.4.2 Hydrographs

Selected groundwater hydrographs from each zone are shown in Appendix C.III, in each case showing both a conventional time series plot, and with several years data superimposed on a common annual scale. All hydrographs show that the aquifers are fully recharged every year, and the broad monsoonal peaks of the hydrographs indicate further that there are usually several months of 'rejected recharge'. Most of the hydrographs show little response to response to pumping (usually a marked inflection of the curve in early February), which as will be shown in Chapter C.7, is not surprising because only Comilla, Burichang, Kasba and Brahmanpara is net groundwater abstraction significantly greater than deep percolation losses from surface water abstraction. Natural recession of groundwater continues into March or April, but any component of the hydrograph due to pumping can only occur between February and April. Hence it can be seen that in all parts of the study area, the effect of pumping is a minor part of the annual fluctuation. Using the abstractions and 'surface water recharges' estimated in Chapter C.7 it is possible to calculate (approximately) the specific yield of the aquifer. The results are shown in Table C.3.4; the calculated specific yield is very similar to that predicted from the lithology (Appendix C.IV) for Kasba, but is somewhat greater than predicted in Burichang.

TABLE C.3.4

Estimation of Specific Yield from Water Level Fluctuations

Thana	Burichang	Kasba
Piezometer	C-002 (BWDB)	BADC Autorecorder
Average water level decline from February to April	3.4 m	0.70 m
Groundwater Abstraction	190 mm	122 mm
Recharge from surface water irrigation	25 mm	52 mm
Storage change	165 mm	70 mm
Calculated specific yield	0.049	0.028
Predicted specific yield	0.034	0.030

C.3.3.3 Monitoring Network

The water level monitoring networks established by BWDB and BADC are generally adequate for keeping a check on impact of groundwater development. However, there is a particular need to monitor levels in both the shallow and deep aquifers where significant force mode development either exists or is anticipated. The principal requirement is to install automatic water level recorder in both aquifers in Muradnagar, and a second recorder in Debidwar so that both shallow and deep aquifers may be monitored. Installation of an automatic water level recorder in Brahmanpara is also recommended.

C.4 Groundwater Quality

C.4.1 Groundwater Salinity

C.4.1.1 Distribution of Salinity

Very detailed field surveys of the electrolytic conductivity (EC) of operating DTWs were carried out in 1991 and 1992 by the DTW II Project (MMI, 1992) and supplemented by a smaller survey by FAP:5 (SERS, 1991). These results represent the salinity of the main aquifer. These surveys could not include the few DTWs in Homna thana, however, one of these (DTW-3 in Homna Mouza) was measured May 1993 and found to have an EC of 800 μ S/cm, which defines a western limit to the area of high salinity in Muradnagar.

The distribution of EC tubewells pumping from the main aquifer is shown in Figure C.4.1. It is seen that there are major variations of groundwater quality in the study area. In the east (roughly corresponding to Zones A and B) the groundwater is extremely fresh ($<250 \ \mu$ S/cm). Brackish (defined here as $> 2,000 \ \mu$ S/cm) groundwater occurs mainly in an elongate belt in the west of Muradnagar thana, approximately following the boundary between Zones C and D, and also in small pockets in Zone D. It is emphasised that groundwater in excess of 2,000 μ S/cm occurs only in a small proportion of the study area. Areas of intermediate salinity are conspicuously elongate, being drawn out towards the north or north-east, apparently mirroring the shape of the estuary in which the lower part of the Chandina Formation was deposited, and suggesting the presence of two embayments, in the Nabinagar and Brahmanpara areas.

The SERS and DTW II surveys measured the salinity of adjacent DTWs and HTWs at six sites. In every case the salinity of the DTW was similar to or higher than the HTW. The distribution of salinity in the shallow aquifer (as measured in HTWs and STWs) is similar to that in the main aquifer but the salinity rarely exceeds $1,000 \ \mu$ S/cm and never exceeds $2,000 \ \mu$ S/cm.

The DTW II conducted drilling investigations into the vertical distribution of salinity at two of the worst affected DTWs in Muradnagar. There results are summarised in Figure C.4.2, and show that a thick silty aquitard (considered to be the lower part of the Chandina Formation) separates the main and shallow aquifers. The thickness of the upper aquifer is approximately 35 metres and the lower aquifer is approximately 30 metres. The aquitard itself contains the most saline water of all. The main aquifer was shown to be saline from top to bottom. One piezometer was sunk below the main aquifer and showed a slight decrease in salinity¹.

Combined with recent evidence from Noakhali and Lakshmipur Districts, and chemical characteristics described in Section 5.2, there is reason to think that there may be a deep fresh water aquifer beneath this zone.

90° 45'

Figure C.4.1 Distribution of Salinity (EC) in the Main Aquifer

C.4.1.2 Temporal Trends in Salinity

In May 1993 project staff attempted to measure the salinity of DTWs that had previously been measured in the DTW II surveys of 1985/86 and 1990/91, as shown in Table C.4.1. This certainly does not indicate any deterioration of water quality, and possibly a slight (but probably not significant) improvement.

32

TABLE C.4.1

1992/93 1985/86 1990/91 Mouza Thana µS/cm µS/cm µS/cm 250 210 Not operating due Burichang Sindurapara to non-payment of electricity bill. 190 190 ditto Parawara Burichang 520 520 280 Daudkandi Gazipur 600 550 655 Bangora Muradnagar

Comparison of DTW Salinities with Previous Surveys

C.4.2 Water Chemistry

Muradnagar

Lazair

Working in conjunction with the DTW II Project, the British Geological Survey (Davies and Exley, 1992) collected and analysed a large number of water samples from (or very close to) the Gumti Phase II area. That survey was on a regional scale and gave only a brief interpretation of the data from Comilla, while MMI (1992) interpreted the field data and isotopic analyses. The BGS chemical analyses are given in Table C.4.2 and the location of the sampling sites are shown in Figure C.4.3.

870

890

810

The DTW II surveys aimed at differentiating between a (basically) sea water origin of the saline groundwater or leakage of deep formation waters known to exist in the producing horizons of the Bakhrabad Gas Field. The SERS (1991b) identified the deep water as having distinctive Cl/Br and Cl/I ratios quite different to standard sea water. However, no halide ratios were available until the BGS survey. Table C.4.3 shows that the Cl/Br ratios are very similar to sea water, although the Cl/I ratios have a less obvious interpretation.

TABLE C.4.2

Chemical Analyses of Groundwater from the BGS Regional Hydrochemical Survey

Sample Number	Bang 70	Bang 71	Bang 72	Bang 73	Bang 74	Bang 75	Bang 76	Bang 77	Bang 78	Bang 79	Bang 80	Bang 81	Bang 82	Bang 83	Bang 86	Bang 95	Bang 96	Bang 128	Bang 129	Bang 130
Lab Number	920482	920483	920484	920485	920486	920487	920488	920489	920490	920491	920492	920493	920494	920495	920498	920487	00	0)	15	ic.
Thane	Daudkandi	Daudkaudi	Daudkandi	Daudkandi	Muradnagar	Muradnagar	Muradnagar	Muradnagar	Muradnagar	Bunchang	Muradnagar	Muradnagar	Debidwar	Debidwar	Debidwar	Debidwar	Daudkandi	Muradnagar	Muradhapar	Muradnapar
Source	MIG	HTW	DTW	WIH	HIW	MIII	WTH	DTW	WTH	Diw	DTW	MLH	DTW	-	-	MIG	DTW	Picz.	Piez.	Picz
Date Collected	15/2/92	15/2/92	15/2/92	15/2/92	16/2/92	16/2/92	16/2/92	16/2/92	16/2/92	16/2/92	17/2/92	17/2/92	17/2/92	20/2/21	17/2/92	20/2/01	20/2/61	3/3/92	3/3/92	20/1/2
Well Number	24	24	52	25	36	26	38	53	53		7	7	90	92		6	o	۲		
Village					B.Chapitala	B.Chapitala	B.Chapitala	Chandneil	Chandmail			22					è	.1	Viendance	Variation V
Well screen (m)	70-95	18-24	71.112	12-14	63-60	-	. 9	11.75	10.01	20 07	011 02	20.00	10.00					i i	18 deutosa 1	rusuinagar
Average depth (m)	83	21	16	EI .	8	16	8	15	12-51	79-95	68	24	58	19-19		19-32	63.106	103-109	63-70	19-22
Temp C	28.3	23.8	26.8	25.4	25.1	25.8	25.8	26.1	22	27.3	26	X	26.1	24	22.4	25.8	26.3	7.52	26.2	3.56
E.C. (µS/cm)	1073	431	950	787	3700	10800	267	1605	921	194	619	645	743	016	2190	2410	ARG	10201	04.04	1961
Field pH	6.83	77.7	6.98	7.38	7.28	623	7.27	7.35	7.66	6.99	6.82	7.24	7.28	7.54	64.0	609	699	640	6.3	1071
Held Fb mV	168	144	182	56		275	611	173	11	247	215	8	163	89	159	237	154	266	1. 18	215
		mg/l	1/2m	mg/l	Vgm	ngn	ngl	Ngm	µg∕1	mg/l	hgm	mg/l	ng1	mg/l	ng/l	hgm	me/1			
Calcium	63.8	49.7	63	38.5	22.6	146	34.8	1.01	16	1.9	1.95	31	18.2	33.7	1.72	53.3	22.5	226	103	27.4
Magnesium	26.7	12	23.6	46.9	24.1	161	30.9	6	28.7	5.7	17.2	31.6	21.4	9.05	24.3	35.2	1.01	101	85.2	36.3
Sodium	94.7	32.8	68	46.5	634	1610	13.8	342	140	24.4	43	39.2	86.6	107	335	308	43.5	304	668	188
Potassium	£	3.6	4.4	9.4	13	27.9	5.7	5.5	9.5	3	2.7	8.4	10.6	8.5	3.2	10.1	2.2	9.4	18	12.2
Manganese Iron	0.78	0.53	1.68	0.07	0.17	2.2	0.14	0.14	0.07	0.16	0.28	0.07	0.12	0.06	0.14	0.33	0.28	2.1	0.29	0.11
Zine	0.059	200	50	14	55	ę.	01	1.5	F	0.8	7.5	2.6	1.5	1.9	3.1	4.5	01	41	16	1.5
Aluminium			0.119	1.77	0.06	1.74	0.11	101	100	100	000		com	1.0	61.0	50.0	50.0	3.2	0.14	
Strentium	0.398	0.168	0.435	0.342	0.239	1.37	0.219	0.104	0.203	0.079	0.28	0.261	0.229	875.0	0.241	0 101	0.177	1.47	500	010
Barium	0.133	0.02	0.105	0.035	0.061	0.112	0.017	0.024	0.006	0.014	0.032	0.014	0.079	0.016	0 MS	0118	5010	SAL O	96m	1100
Lithium	0.0082		0.0076			0.05								-	-	0.014	11111	0.174	0000	0.014
Boron	0.129	0.05	0:039	0.129	0.49	0.639	0.039	61170	0.27			0.019	0.079	0.189	0.119	0.129		0.039	0.239	0.27
Bicarbonate	239	382	180	493	317	141	293	424	580	86	161	337	220	566	278	176	205	102	434	605
Sulphate	0.1		0.1	0.1	5.32	345	2.14	0.1	0.1	0.1	0,1	1.0	0.1	0.1	0.1	0.5	0.1	43	0.27	0.1
Flucride	0.27	0.22	0.19	0.16	1.02	0.13	0.17	2.08	0.27	0.18	0.15	0.19	0.28	0.23	0.39	0.32	0.23	0.14	0.16	0.29
Chloride	265		961	14	1030	3200	15.5	370	35.5	3.7	150	45.5	140	54.5	530	620	72.5	1190	1450	178
Bromide	1.24		1.32	0.152	4.02	13.2	0.081	1.66	0.228	0.02	0.585	0.198	0.714	0.33	2.15	2.58	0.374	4.76	6.66	0.88
Indide	0.51	0.094	0.61	101.0	0.83	1.6	0.0204	0.47	0.111	0.0039	0.0401	0.0984	0.169	0.277	0.259	0.37	0.142	0.259	2.3	0.33
Nitrate (NO3-N)	<0.3	2	<0.3	072	83	<0.3	1.2	3.6	10.6	¢03	<0.3	6.6	4.8	6.0	<0.3	<0.3	6.5	<0.3	<0.3	10.8
Silicate		121	8	8.7	10.9	19.5	26.7	17.9	17	28.2	27.4	19.9	1.2.1	17.5	19.2	19.2	24,9	27.5	22.8	11.5
Photophate		-	0.6	th.	0.7	1.2	1.5	1.4	1.1			2.4	0.7	2,8	0.7	0.4	1.3	0.5	3.1	2.2
Isotopic Analyses																				
delta H-2 delta O-18	-21		-18		64	-43	8 1 1	-30	61-	-40	-28	-26	-32	.20	-33	SE.	-26	-22	-50	-25
			1	-	2	710-	01-	-4,0	1.7-	5.6-	-3.6	-3.7	-4.8	-2.6	-2	ŝ	3.2	4.2	1.1.	L.b.

Π

[]

[]

[]

[]

1

IJ

C.4-3

m

Figure C.4.3 Location of BGS Hydrochemical Sampling Sites

90° 45'

TABLE C.4.3

35

Source	Cl/Br	C1/I
Standard Oceanic Water	292	290,000
Shallow Aquifer	156-230	197-760
Main Aquifer	148-256	321-3741
Gas Field Waters	37-47	341-1075

Chloride/Bromide and Chloride/Iodide Ratios in Groundwater

The interpretation of the chemical patterns and trends with increasing salinity are summarised in Table C.4.4. The most important trends were investigated by comparing the analyses with a model of simple (non-reactive, non-equilibrium) mixing, assuming chloride to behave as a conservative tracer, between three waters:

standard ocean water (Cl⁻ 19,500 mg/l).

groundwater from 6-9 metres (HTW, sample BANG-76) at Brahman Chapitala in Muradnagar (Cl⁻ 16 mg/l), which is considered to be screened in the uppermost part of the Chandina Formation.

groundwater from 58-82 metres (DTW, sample BANG-79) in Burichang (Cl⁻ 4 mg/l) which is thought to be drawn from the Dupi Tila Formation.

In the interpretation of this model, if simple mixing occurs then the data points plot on, or between the mixing lines. Data points that parallel, but are displaced from the mixing lines may indicating reactions that indicate either flushing or intrusion depending the direction of displacement. The trends for four parameters (Br, K, Na/Cl and sodium adsorption ratio) are shown in Figures C.4.4 and C.4.5. The trends of bromide and Na/Cl ratio very strongly indicate mixing with sea water as the origin of salinity in groundwater. The general pattern is the main aquifers is undergoing flushing as involving loss of calcium and potassium from solution and the addition of sodium through ion exchange and/or dissolution of feldspars. The higher concentrations of potassium and magnesium (in water of equivalent chloride content) in the shallow aquifer reflects the abundance of biotite mica. In many cases such as sodium adsorption ratio and strontium, the one analysis from below the main aquifer (deep aquifer) shows the opposite trend to the main aquifer, or has an extreme value, and in general clearly has a different origin to the water in the main aquifer. In fact, some of the hydrochemical patterns from the deep aquifer point to intrusion of a fresh aquifer by saline water, rather than the flushing of a saline aquifer noted in the main aquifer.

TABLE C.4.4

Bo

Hydrochemical Patterns and Trends with Increasing Salinity

Parameter	Shallow Aquifer	Main Aquifer	Deep Aquifer	Anomalies / Comments
Sodium	Wide variation at low salinity	Generally follows simple mixing trend	Depleted with respect to simple mixing trend	Counterio
Poatssium	Higher concentrations than fresh water in main aquifer.	Parallel to, but depleted with respect to simple mixing trend	Depleted with respect to simple mixing trend	Potassium removed from solution by ion exchange in more strongly leached main aquifer.
Calcium	Similar concentrations to fresh water in main aquifer	Rough parallel to mixing trend, but more calicium in solution than predicted	Strongly enriched in calcium relative to mixing line	Main aquifer leached.
Magnesium	Higher concentrations than fresh water in main aquifer.	Generally follows simple mixing trend, but depleted depleted in moderate salinity range (Cl 100-1000 mgl/l)	Lies close to mixing line	
Sodium Adsorption Ratio	Moderate to high SAR	Suggests mixing with sea water combined with ion exchange adding sodium to solution.	Indicates strong depletion of sodium compared to simple mixing.	SAR is considered a good indicator of ion exchange processes:
Sodium chloride Ratio	Wide variation at low salinity, highest of project area.	Follows simple mixing trend but with both depletion and enrichment in sodium.	Depleted with respect to simple mixing trend	Na:Cl ratio is considered a key indicator of ion exchange processes
Fluoride	Little variation, similar to main aquifer	Most samples show fall within a small range, similar to the shallow aquifer and compatible with mixing hypothesis	Similar to main aquifer	Main aquifer strongly enriched in fluoride in the north of Muradangar
Bromide	Little variation	Closely follows simple mixing trend	Follows simple mixing trend	Best evidence for sea water mixing hypothesis (Cl and Br are both
lodide	Lower concentrations than main aquifer, but enriched in iodide	Strongly to very strongly enriched with respect to simple mixing line. Enrichment increases with salinity.	Enriched compared to mixing hypothesis	conservative tracers) lodide enrichment may be due reaction with shallow marine
Sulphate	Very low concentrations	Generally very low concentrations, strogly depleted. One sample follows near mixing line.	Present, but depleted.	sediments. Regulated by sulphate reducing bacteria.
Phosphate	Contains the highest concentrations	Low concentrations, does not follow mixing tend	Low concentration, not on mixing line	Possible anthropogenic source
Boron	Hgher than fresh water in main aquifer	Good fit to simple mixing trend	Depleted with respect to simple mixing trend	Good indication of sea water mixing
Barium	Very low concentrations	Enriched compared to mixing hypothesis	Enriched compared to mixing hypothesis	Main aquifer strongly enriched at Yusufnagar (Muradnagar) site
Strontium	Similar to fresh water in the main aquifer	Good fit to simple mixing trend	Enriched with respect to simple mixing trend	Good indication of sea water mixing
ron	Mostly <5mg/l, lower iron concentrations than main aquifer	Wide range, generally increases with depth. Highest concentrations in saline water.	Very high concentration	Concentrations probably related to both En-pH and sulphate concentrations.
Manganese	Lower concentrations than main aquifer	Not related to mixing. Sharp increase below 90 metres.	High concentration	Concentrations probably related to both Eh-pH and sulphate
Redox Potential	Mosst reducing conditions. No trend with depth.	Relatively more oxidising than shallow aquifer, and generally more so with depth.	Relatively oxidising	concentrations. Trend with depth opposite to normal pattern (i.e. along a flow path)
рН	Generally highest pH. No trend with depth.	Relatively more acidic than shallow aquifer, and a marked decrease with depth.	Relatively acidic	Shallow aquifer buffered by organic matter.
litrate	Low to high concentrations, always present.	Often below detection limits, but modearte concentraions at some sites.	Not detectable	Potential progressive contamination of aquifer. May act as tracer for modern recharge.

Notes: 1. Chloride is used as the reference for salinity in the simple mixing model.
2. The end members for the simple mixing model were shallow groundwater from Muradnagar (BANG-76), Burichang (BANG-79) and standard sea water
37

Figure C.4.4 Sea Water Mixing Plots - I

Figure C.4.5 Sea Water Mixing Plots - II

38

Figure C.4.6 shows the oxidation - reduction (redox) conditions in the aquifers by means of an Eh-pH diagram, on which the concentrations of dissolved iron (in mg/l) are shown as data labels. The diagram also shows the approximate position of the boundary between the (thermodynamic) stability fields of dissolved ferrous iron and solid ferric hydroxide. Almost all waters fall in the stability field of dissolved iron, and are therefore potentially corrosive to steel; while the concentrations of dissolved iron tend to increase in the direction of more oxidising (high positive Eh) parallel to the boundary of the stability fields. The two samples with exceptionally high iron concentrations are both highly saline. The concentrations of manganese in water have a similar pattern to that of iron when plotted on an Eh-pH diagram. What is remarkable about Figure C.4.7 is that there is no overlap between the ranges of the shallow and main aquifers, and even more so that water in the shallow aquifer is consistently more reducing. This is the exact opposite to the pattern that would be expected along a flow path (as source of oxygen are gradually consumed. The implication of this is that the groundwater in the main aquifer is not derived from vertical recharge through the upper aquifer and lower aquitard. Possible alternative explanations are that water in the main aquifer has been emplace by lateral flow, or that it is virtually static and was in place before deposition of the overlying silts and sands.

The BGS study included analysis of stable isotopes of oxygen and hydrogen in water. Davies and Exley (1992) have shown that the isotopic composition of groundwater lies close to the New Delhi and Shillong Hills meteoric water lines, although with some evaporation, indicating that the water originated as rainfall under a broadly similar climatic regime to the present, and therefore by implication not by upward leakage from deep strata. However, water from the main aquifer is isotopically lighter than in the shallow aquifer, indicating that it was recharged under a cooler and/or drier climate than now. The sample from the 'deep aquifer' at Muradnagar is isotopically similar to the shallow groundwater, and further emphasises its different origin to that in the main aquifer. Figure C.4.7 shows that there is a good correlation between δO^{18} and chloride, pointing to a connection between the origin of the saline water and particular climatic conditions. A regression line has been fitted to the data from the main aquifer (ignoring the one erratic point); project towards higher salinity this line intersects the chloride content of ocean water (19,500 mg/l) at an isotopic composition of $\delta^{18}O \approx 9.5$. It is well known that the isotopic composition of sea water has varied widely during the Pleistocene ice ages, comparison with the curves of Fairbanks (1989, quoted in Dawson, 1992) shows that the saline groundwater cannot be the product of mixing with pure sea water, that the estuary waters must have been greatly diluted by isotopically light river water.

Nitrate

Analyses of nitrate in groundwater have been received from the British Geological Survey's (BGS) regional hydrochemical investigation². Samples were collected from deep tubewells, piezometers and hand tubewells for drinking water. Nitrate analyses ranged from below detection limits (0.3 mg/l N0₃-N) to 10.8 mg/l N0₃-N. The Bangladesh Standard³ for nitrate in drinking water is 10 mg/l. Figure C.4.8 shows the distribution of nitrate with depth, and also the relationship between nitrate concentrations and redox conditions. The highest concentrations are found in (domestic) hand tubewells in the shallow aquifer, and conversely all samples below detection limits were obtained from below 70 metres. Nitrate concentrations in excess of 10 mg/l in the shallow

² Not included in the report by Davies and Exley (1992)

The WHO European Standards of 1970 established a 'recommended' limit of 11.3 mg/l (NO₃-N) and a 'maximum acceptable' limit of 22.6 mg/l. The WHO International Standards of 1971 took account of higher water intake and bacterial levels in some non-european countries and made 10 mg/l the limit. The US EPA also adopted 10 mg/l. The EEC directive (1980, effective from 1985) makes 11.3 mg/l the maximum admissible level, and 5.6 mg/l the guide level.

Figure C.4.6 Redox Conditions of Groundwater

Figure C.4.7 Variation of Oxygen-18 with Chloride

Figure C.4.8 Nitrate in Groundwater

aquifer are clearly a concern for public health. Less obviously, but perhaps of equal or greater concern, is that water with nitrate concentrations of 3-7 mg/l have penetrated the aquifer to depths of 50-80 metres. This suggests the possibility of progressive contamination of the aquifer, threatening the practicality of mitigating the nitrate problem by installing deeper wells. Figure C.4.8(b) indicates a strong redox control over nitrate concentrations, and moreover a control that is not directly related to depth. It appears that nitrate acts a tracer for the penetration of modern recharge into the aquifer system. The likely sources of nitrate in the aquifer system are:

2

- (i) faecal sources (human and animal wastes)
- (ii) oxidation and leading of organic N compounds in the soil
- (iii) leaching of artificial fertilisers.

In practice, it is often difficult to differentiate between (ii) and (iii) since they are mixed and the same processes control their fate in the soil zone. It is important to differentiate between human and animal wastes on the one hand and agricultural sources on the other, because the policy implications for reducing the long term risks to human health are quite different. If faecal sources are dominant, then the emphasis should be on sanitation:

- increased use, and improved quality, of latrines
- better sanitary protection around drinking water tubewells

however, if the sources are mainly agricultural attention should be given to:

- on-farm management of fertilisers
- post harvest soil management.

The results obtained from the Gunti area are not typical of all areas sampled in the BGS survey (nitrate concentrations were notably low in wells on the Madhupur Tract) but similar conditions may be anticipated in other parts of the Old Meghna Estuarine Floodplain at least, and perhaps over the Holocene floodplains in general. Further investigations and research should be undertaken to determine the extent of the problem, establish a baseline, identify the relative importance of different sources of nitrate, predict long term trends and hence establish a general, but coordinated, strategy to minimise the long term health risks.

C.4.3 Water Use Criteria

C.4.3.1 Drinking Water

No microbiological tests of groundwater quality have been conducted under the project. There is little doubt, however, tubewells offer the best chance of obtaining bacteriologically pure drinking water without treatment. Wherever, significant quantities of nitrate are present in groundwater, bacteria should also be suspected. From a chemical standpoint, the quality of groundwater for drinking is compared with the Bangladesh Standards (very similar to those of WHO) in Table C.4.5, where the analyses have been grouped to draw attention to the differences between the shallow and deep (main for irrigation) aquifer. Currently, the vast majority of drinking water is drawn from the shallow aquifer, but in some areas drinking water is drawn from DTWs during the dry season where suction pumps fail temporarily. This deeper aquifer is also a feasible alternative source of drinking water in the event of the shallow aquifer becoming contaminated.

TABLE C.4.5

20

Drinking Water Quality of Hand Tubewells and Deep Tubewells

Well Type	Har	awadul br	Hand Tubewells in the Shallow Aquifer	allow Aqui	fer				á	wagni daa	Deep I upeweils in the Main Aquiler	Main Aquin	1				neangradesn
Sample Nr	Bang 71	Bang 73	Bang 76	Bang 78	Bang 81	Bang 83 Bang 130	3ang 130	Bang 79	Bang 80	Bang 70	Bang 72	Bang 77	Bang 82	Bang 86	Bang 95	Bang 96	Standard
Thana	Daudkandi	Daudkandi	Muradnagar	Muradnagar	Muradnagar Muradnagar Dehidwar	Dehidwar	Muradnagar	Burichang	Muradnagar	Daudkandi	Daudkandi	Daudkandi Muradnagar	Debidwar	Debidwar	Debidwar	Daudkandi	
Source	WIH	WIH	HTW(Piez.)	WIH	WIH	WTH	HTW(Piez.)	DIW	DTW	MIC	WIG	WLC	DIW	WLG	DIW	MIG.	
Well Screen (m)	18-2	12-1-	6-9	19-2%	23-2(17-2(19-22	19-22	58-82	68-11(70-95	71-112	30-7:	30-86		55-9	63-106	
Ыq	7.8	7.4	7.3	7.7	7.2	7.5	6.9	7.0	6.8	6.8	7.0	7.4	7.3	6.5	6.9	6.7	6.5-8.
	gm	'âm	gm	'gm	'ng⁄	ng⁄l		'ng'n	mgA		/dui	дш	Ш	mg	/dui	¶/∄m	
Calcium	49.7	38.5	34.8	16	31	33.7	27.4	9.1	39.1	63.8	63	10.1	18.2	27.1	53.3	22.5	25
Magnesium	12	46.9	30.9	28.7	31.6	808	36.3	5.7	17.2	26.7	23.6	6	21.4	24.3	35.2	10.1	3/02
Sodium	32.8	46.5	13.8	140	39.2	107	188	N	43	94.7	80	342	86,6	335	308	43.5	150/20
Potassium	3.6	9.4	5.7	9.5	8.4	8.5	12.2	2	2.7	Э	4.4	5.5	10.6	3.2	10.1	2.2	12
Manganese	0.53	0.07	0.14	0.07	0.07	0.06	0.11	0.16	0.28	0.78	1 58	0.14	0.12	0.14	0.33	0.28	1.0
Iron	0.0	2.7	10	1.1	2.6	1.9	1.5	0.8	7.5	7.8	3.3	1.5	1.5	3.1	4.5	10	0.3/1.
Zinc						0.1				0.059			0.03	0.13	0.03	0.03	
Aluminum		1.77	0.11	0.04				0.04	0.09		0.119	0.03					0.2
Barium	0.02	0.035	0.017	0.006	0.014	0.016	0.014	0.014	0.032	0.133	0.105	0.024	0.079	0.048	0.118	0.125	0.5
Boron	0.05	0.129	0.039	0.27	0.019	0.189	0.27			0.129	0.039	0.419	0.079	0.119	0.129		1.0
X					100		100			000	001	T CT	000	010	176	300	MAC
Bicarbonate	288	493	582	086	331	000	cno		101	607	100	424	220	017		200	
Sulphate (SO4)		0.1	2.14	0.1	0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.1	300
Flumide	0.22	0.16	0.17	0.27	0.19	0.23	0.29	0.18	0.15	0.27	0.19	2.08	0.28	0.39	0.32	0.23	1.0
Chłoride		37	15.5	35.5	45.5	54.5	178	3.7	150	265	196	370	140	530	620	72.5	250/60
Iodide	0.031	0.101	0.0204	0.111	0.0984	0.277	0.33	0.0039	0.0401	0.51	0.61	0.47	0.169	0.259	0.37	0.142	SAN
Nitrate (NO3-N)	1.4	7.0	1.2	10.6	10	10	10.8	<0.3	<0.3	<0.3	<0.3	3.6	4.8	<0.3	<0.3	6.5	01
Silicate	13.8	20.7	26.7	17	19.9	17.5	11.5	28.2	27.4		22	17.9	15.1	19.2	19.2	24.9	NY:S
Physiciate	-	Э	1.5	4.1	2.4	2.8	2.2				0.6	1,4	0.7	0.7	0.4	1.3	6.0

Parameter exceeds Bangladesh Standard for Drinking Water Parameter between desirable and permissible values Not yet specified

NYS

[]

0

1

D

C.4-8

44

The most pervasive groundwater quality problems are iron and manganese. Manganese is less of a problem in the shallow aquifer than the deep aquifer, two samples exceed the limit (0.1 mg/l) slightly and only one (0.53 mg/l) exceeds it greatly. All samples from the main aquifer exceed the limit, and have a maximum of 1.68 mg/l. Almost all samples from both aquifers exceed the recommended limits for iron by up to ten times. According to the WHO Guidelines for Drinking Water (1984) both iron and manganese are essential nutrients, but are objected to reasons other than health (such as taste and the tendency to form oxidised precipitates).

Most of the water from the shallow aquifer exceeds the desirable limit for magnesium. The concern over magnesium in water is not clear, but, it is often considered that the sulphates of magnesium, calcium and sodium may cause problems (WHO, 1984). However, since sulphate does not exceed 2 mg/l magnesium this is not like; y to be a problem. The origin of magnesium in the shallow aquifer (as with potassium which exceeds the standard in one sample) is through weathering of the aquifer minerals, and is therefore not expected to increase with time. Sodium (which at high intake levels is linked to heart disease), exceeds the maximum permissible limits in two samples from the main aquifer. In both cases, high sodium is associated with high chloride, and a generally high salinity. These waters which may be acceptable for irrigation, are not recommended for drinking.

Anomalously high concentrations of fluoride and aluminium were noted in single samples in excess of the standards. Analytical and/or sampling errors are suspected, however, these determinations cannot be dismissed, and re-testing is recommended. Nitrate is considered to be a serious long term health concern and was discussed in detail in section C.4.2.

C.4.3.2 Irrigation

Field investigations carried out by the Bangladesh Agricultural Research Institute (as part of DTW II) concentrated on *boro* rice. However, locally other crops, such as vegetables, may be important near the larger towns or they may be inserted in the cropping sequence prior to boro rice cultivation. Vegetables are generally less salt tolerant than rice and above an EC_w of 1000 μ S/cm some yield reduction is likely, the amount will be dependent upon the salt tolerance of that particular crop. Wheat is an important crop, and has better salt tolerance than rice. Wheat is generally grown as a rainfed crop but could be irrigated with water having an EC_w of 3000 μ s/cm, and would result in a substantial increase in yield compared to rainfed cultivation. At present it appears that the following advisory levels can be set for irrigation water use:

< 1000 µS/cm	unrestricted use;
1000 - 2000 µS/cm	restrictions on vegetables only;
2000 - 3000 µS/cm	use only for wheat.

Salinity is most harmful at certain stages of crop growth such as germination or seed setting. Germination for rice is best effected by using better quality water in the transplant seedling beds. BARC (1990) quote a germination rate of 82% at EC_w of 2000 μ S/cm. Other crops are similarly affected but if they can be germinated on residual soil moisture following the monsoon rains, then irrigated, germination loss can be reduced.

According to BARC (1990) rice yield is not affected by soil salinity either in early growth or the reproductive stage provided EC_e is less than 3,000 μ S/cm. Provided water is maintained on the surface, and an EC_w of 2000 μ S/cm is the upper limit applied then the field water salinity, allowing for some evaporation should not exceed 3000 μ S/cm, which under salivated conditions, should maintain an EC_e between 3,000-4,000 μ S/cm in the root zone. BARC (1990) also report that even higher soil salinities have no effect on the reproduction stage of rice growth. Therefore it appears from the above that the use of water up to EC_w of 2000 μ S/cm is fully justified for the irrigation of boro rice.

For crops other than rice, salinity stress builds up in the root zone as water evaporates from the soil. To counteract this more frequent irrigations will moderate the salinity stress. A further strategy which can be used for row crops (often sensitive to salt) is to use a ridge and furrow system, plant the crop on the side of the ridge and furrow irrigate more frequently than normal. Salts in the water will be moved (and will accumulate) on the tops of the ridges leaving the crop root zone relatively free of salt.

C.5 Minor Irrigation Development

C.5.1 Modes of Development

Most data on minor irrigation are collected through either BADC and/or DAE. Until the mid-1980's almost all minor irrigation equipment was distributed through BADC. However, since the privatisation of the LLP and STW sub-sectors, data collection has become inherently more difficult. The BWDB Study carried out its own surveys for the project area for the years 1986 to 1989, and curiously used 1987 as the baseline year for project evaluation. In recent years, rigorous surveys of minor irrigation were organised by CIDA funded Agriculture Sector Team (AST) through DAE. Their 1989 survey recorded only the numbers of equipment operating, while the 1991 also included the irrigated area. Although not perfect, the AST surveys are widely regarded as the best available national data, and their March 1991 survey has been accepted as the baseline for the present resource evaluation. The AST results are shown in Table C.5.1, while Table C.5.2 compares the AST data with those of the BWDB study for the design year of 1987 and the final surveyed year of 1989.

There has apparently been a very rapid growth in irrigation coverage, by both groundwater and surface water, during the last six years, and thus the use of 1987 statistics is quite misleading as regards the current conditions. There is a further complication in that the BWDB statistics do not count the areas irrigated by manual tubewells and traditional methods, which bring the total irrigation coverage in 1991 up to 65,077 hectares. This may be compared with an 'irrigable' area which is probably of the order of 110,000 hectares, but might conceivably be as high as 130,00 hectares. The growth of modern minor irrigation is illustrated by Figure C.5.1 (and Table C.5.3) which shows the numbers of LLPs, STWs and DTWs operating for those thanas that are completely enclosed in the project area. The data have been plotted as the nominal 'cusec equivalent' capacity' in order to keep the importance of each technology in proper proportion. These data give a clear indication there was indeed a rapid expansion in all forms of modern minor irrigation during the second half of the 1980's, which gained impetus due to the privatisation of the LLP and STW markets and the extension of the Deep Tubewell II Project into Comilla and Brahmanbaria from 1987. There has been some indication of a reduction in the growth rate in the early 1990's, probably due to the diesel price rises that occurred after the Gulf War. Smoothed forms of the curves shown in Figure C.5.1 would probably give a reasonably reliable indication of the underlying trend. However, it must be mentioned that there are numerous factors, that go far beyond the scope of this feasibility study, that will determine the future demand for irrigation. The most important of these are the Government's policies on privatisation, energy pricing policy, as well as general food policy including import of wheat and the possible establishment of an intervention purchasing policy to smooth the price of rice through the year.

Where DTW = 2 cusec, STW = 0.5 cusec and LLP = 1 cusec.

Figure C.5.1 Growth of Minor Irrigation

Inventory of Minor Irrigation Equipment Operating in March 1991

	Numbe	Numbers of Equipment Installed:	pment h	nstalled:				4	Area Irrigated by each Technology:	ated by ear	ch Techne	ology:							
Upazila	MLS	WTG WTSSG WTS	WLD	LLP	LLP	LLP	LLP	WIW	WTS	WTSSU	WIG	LLP	LLP	LLP	TLP	MLW	Traditional Total Irrigation	Total Ir.	rigation
				<1 cs	1 cs	2 cs	3 cs					<1 cs	1 cs	2 cs	3 cs		Methods		% of
									ha	ha	ha	ha	ha	ha	ha	ha	ha	ha	Gross area
Akhaura	156	0	23	50	42	100	-	14	993	0	567	118	263	1,225	53	4	1,860		80%
Kasba	401	0	92	8	52	133	1	55	2,614	0	2,240	32	488	2,094	283	53	1,633	9,438	
Nabinagar	81	0	27	54	122	360	1	40	645	0	535	311	1,354	6,769	40	24	677		37%
Bancharampur	411	0	13	1	45	208	0	442	1,937	0	230	-	324	2,929	0	62	1,735	7,236	
Homna	407	0	1	50	108	138	0	4323	2,279	0	20	156	867	1,708	0	708	580	6,319	41%
Daudkandi	168	0	13	2	123	233	2	280	1,195	0	235	4	1,079	3,404	162	72	414	6,565	
Muradnagar	105	0	51	4	38	168	ŝ	14	852	0	1,385	9	476	2,965	160	5	206		
Debidwar	174	0	L	ý	16	30	6	0	811	0	141	12	83	009	81	0	147		
Brahmanpara	318	0	68	22	6	46	2	1	2,389	0	1,808	62	63	585	57	0	137		
Burichang	137	4	16	0	0	34	0	3	803	24	2,840	0	0	60L	0	1	141		
Comilla	85	20	32	0	L	30	0	1	552	177	868	0	53	759	0	1	45	2,485	69%
Total	2,443	24	418	197	562	1,480	12	5,173	15,071	201	10,899	720	5,080	23,748	835	948	7,575	65,077	45%
Notes:								67	Total Groundwater irrigation by suction mode wells	ndwater irr	igation by	suction n	llaw abor	s	16,219				
1. Source : AST/CIDA (1991)	/CIDA (1	(166						\$7	Total Groundwater irrigation	ndwater irr	igation				27,118				
2. 'See Appendix C.II for full details	ix C.II for	full details							Total Surface Water irrigation by low lift pumps	ce Water in	rrigation b	y low lift	sdund		30,384				
3 Data refer to that part of the thana within the Gumit Phase II area.	that part o	f the thana	within t	he Gumit	Phase II a	irea.		12	Total Surface Water irrigation	ce Water it	rrigation				37,959				
)								

LIBRARY.

48

Irrigation Mode	1987 (BWDB)	1989 (BWDB)	1991 (AST)
LLP	15,725	24,519	30,384
STW & DSSTW	5,888	12,517	16,219
DTW	5,414	7,625	10,899
Total	27,027	44,661	57,502

Comparison of Minor Irrigation Estimates

Note : All numbers in the table are total irrigated areas in hectares.

The most rapid expansion of minor irrigation has occurred with shallow tubewells, which is particularly striking since (as will be shown in Chapter C.6) they are unable to operate in a significant part of the project area. In general, deep setting of STWs is limited importance in the study area. In many cases, DSSTWs are probably not a permanent method of irrigation, but rather a seasonal response to drought. The numbers of deep set wells in recent years are given in the AST/CIDA surveys.

It appears from Table C.5.4 that deep setting is only a normal condition in Burichang and Comilla thanas, and that in the rest of the study area STWs are not currently constrained by water levels. This conclusion is entirely consistent with the piezometric surface map shown in Chapter C.3. A possibly contradictory note was sounded by the public participation meetings, which frequently recorded the view that STWs suffer from deep water levels in April. This may just be the natural decline in discharge to be expected from any suction pump when the groundwater level is falling. It appears that this is an acceptable inconvenience to most farmers, otherwise they would set the pump in a pit to 'save' their crop.

C.5-3

Growth in Numbers of Minor Irrigation Equipment

Thana	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91
Low Lift Pumps (all sizes)																	
Akhaura													70	78	91	149		193
Kasba	154	169	170	176	212	182							150	171	130	158		194
Nabinagar	312	333	334	331	355	335										606	540	644
Bancharampur	164	197	136	140	156	152							94	137	170	257	350	254
Homna	92	122	83	107	121	112							82	98	140	198		296
Daudkandi	241	269	257	255	310	252										760		772
Muradnagar	114	134	107	93	100	97										449		375
Debidwar	73	77	81	49	52	52										179	192	10
Brahmanpara													35	35	39	166		79
Burichang	70	81	82	77	71	70										80		59
Comilla	76	66	77	82	71	69	75	106	102	96	90	89	104	313	282	270		122
Total	1,296	1,448	1,327	1,310	1,448	1,319	75	106	102	96	90	89	535	832	852	3,272	1,082	3,089
Deep Tubewells																		
Akhaura												11	10	8	13	11		23
Kasba	0	12	33	46	54	52						113	84	83	82	73		92
Nabinagar	0	0	0	1	5	9						29				7	26	3.
Bancharampur	0	0	0	0	0	0						0	0	0	0	0	16	1.
Homna	0	0	0	0	0	0						0	0	0	0	0		
Daudkandi	0	0	0	3	4	12						37				21		8
Muradnagar	0	0	0	0	0	0						10				13		63
Debidwar	19	35	24	38	45	65						89				85	92	8
Brahmanpara												17	17	22	19	12		6
Burichang	11	14	8	36	56	68						123				82		12
Comilla	168	200	189	204	238	205	210	201	231	241	250	280	270	271	283	282		30
Total	198	261	254	328	402	411	210	201	231	241	250	709	381	384	397	586	134	88.
Shallow Tubewel	ls (inclu	lino deen	set tube	wells)														
Akhaura												24	42	53	76	130		150
Kasba		15	0	0	2	8						356	194	226	207	370		40
Nabinagar		15	0	0	1	3						28		36		172	173	12
Bancharampur		0	8	0	0	1						21	76	134	213	387	440	41
Homna		11	3	0	2	4						43	68	78	104	337		40
Daudkandi		0	0	0		14						112	00	82	104	181		19
Muradnagar		8	4	1		3						40		6		146		10
Debidwar		25	16	3		27						409		253		352	428	39
Brahmanpara			10		5							182	137	255	228	274	420	31
Burichang		0	3	50	98	149						509	101	200		540		41
Comilla		0	44	129	244	370	339	426	527			537		519	515	633		51
						210					_			227	- 4-	000		21

Sources:

[]

AST/CIDA (1991), BBS (for areas) Min. Ag (1975) MMP (1986, 89, 92)

Sharfiullah (1990)

1. Totals are for the full thana

2. All numbers are total operating numbers

3. Old data include Brahmanpara under Burichang

Notes:

Thana	198	7/88	198	8/89	199()/91
	STW	DSSTW	STW	DSSTW	STW	DSSTW
Akhaura	99	10	127	3	156	0
Kasba	289	1	364	4	401	0
Nabinagar	102	1	171	1	128	0
Bancharampur	303	0	387	0	411	0

Deep Setting of Shallow Tubewells

Source : AST/CIDA (1989, 1991)

C.5.2 Distribution of Irrigation

Daudkandi

Muradnagar Debidwar

Brahmanpara

Burichang

Comilla

Figures C.5.2 to C.5.4 show the distribution of deep and shallow tubewells on the project. For the Deep Tubewell II project area it has been possible to show individual well locations, while all other data are shown as the number operating in each union (according to the AST/CIDA survey). There are particularly dense concentrations of DTWs along the piedmont areas of Comilla, Burichang, Brahmanpara and Kasba. The general concentration of DTWs in the east of the area is partly a product of the larger proportion of high and medium high land, but is also the result of a regulated supply of DTWs over the years. The distribution of shallow tubewells by union are shown both for 1987 in Figure C.5.3 and 1991 in Figure C.5.4. There is a particularly striking contrast between the piedmont area where there may be as many as a hundred STWs in a union, and the Muradnagar area where several adjoining unions contain none at all. The main reason for the anomalously low numbers of STWs is the widespread occurrence of natural gas in the top 40 metres of the aquifer. In some areas this is combined with a general shortage of screenable aquifer material in the top 60 metres. The area of low STW numbers in Burichang is probably not a constrained area, but rather is particularly favourable for surface water development, however, this may change in response to irrigation development in India.

C.5.3 Crop and Irrigation Water Requirements

A detailed examination of the crop and irrigation water requirements by thana was carried out by MMI (1992) using the FAO computer program CROPWAT and a back analysis of the operational monitoring records of the DTW II project wells. Strictly speaking the results apply only to deep tubewell irrigation, however, in the absence of any other evidence these have been used as the basis for assessing irrigation water use by other technologies. Their estimates of irrigation requirements (i.e. that part of the irrigation water applied that goes to crop consumptive use) for Comilla are given in Table C.5.5.

TABLE C.5.5

Crop and Irrigation Water Requirements at Comilla

Climate station analysed	Comilla
Average transplanting date (at DTWs)	10 February
Effective rainfall	285 mm
Deep percolation rate	5.0 mm/d
Crop requirement	509 mm
Irrigation Requirement	886 mm
Deep Percolation	505 mm

Source : MMI (1992)

Irrigation requirements may vary greatly from year to year depending on the intra-seasonal rainfall. MMI (1992) showed that the net irrigation requirement (excluding deep percolation losses) varied between 387 mm in 1989 and only 95 mm in 1990.

From interviews carried out during the public participation meetings, and from the theoretical analysis presented in Appendix C.VII, it appears that STW irrigation and some LLP irrigation are associated with a different farming system which practises deliberate under-irrigation. The reason behind this that STWs and LLPs sited on khals or beels that dry towards the end of the dry season cannot maintain their full discharge throughout the irrigation season. This contrasts with deep tubewells where, by adjusting the engine speed, it is practical to maintain a more or less constant discharge. Rapidly declining discharges are an inherent characteristic of wells with suction pumps and falling water tables. It appears that STW irrigators plant HYV seeds and take advantage of the good discharge early in the season and apply full water requirement in January and February. As the water supply reduces during March and April the crops suffer slightly and grow at less than the maximum rate, but farmers hope for some rains at this time to supplement the irrigation water and carry the crop through to reasonable harvest. It is tentatively suggested that the rice yields may be a little under 3 tons per hectare if there is rain at the right time, but may fall to around 1.5 tons/ha if there is no rain. This compares with typical yields of over 4 tons/ha with full irrigation. It is quite possible that this low input - low output production system is actually an optimum economic response to the nature of STW technology; it may also be associated with different patterns of fertiliser and pesticides inputs, and warrants further investigation.

C.6 Key Concepts for Groundwater Development

C.6.1 Salinity Constraints

Chapter C.4 described the distribution and origin of groundwater salinity in the study area. For irrigation purposes it was shown that no impact on the yields of either rice or wheat would be expected if the irrigation water does not exceed 2,000 μ S/cm, although yield reductions might be expected with certain vegetables if irrigated with water of more than 1,000 μ S/cm. Long term historical precedent indicates that irrigation will continue to be dominated by rice and/or wheat. Therefore, for resource planning it is assumed that groundwater may be recommended for irrigation wherever the salinity does not, or will not, exceed 2,000 μ S/cm. The shallow aquifer zones, down to about 40 metres, may exploited throughout the Gumti Phase II area. In effect, it may be said that salinity is not a constraint on suction mode tubewell development in the area. Where it is proposed, or necessary to, exploit the deeper aquifers the 2,000 μ S/cm contour in Figure 4.1 should serve as a fairly reliable guide, although some caution (or optimism) should be shown when drilling within a kilometre or two of the boundary of this zone. The 2,000 μ S/cm contour was used to define the area of salinity constraints in Figure C.6.1 and Table C.6.1. Where a well or test drilling encounters saline water it should be abandoned and an alternative shallow, low capacity design considered.

TABLE C.6.1

Thana	Gross	% of Gross A	rea Affected	
	Area	STW	DTW	DTW
	(in project)	Gas	Gas	Salinity
,	ha	Constraint	Constraint	Constraint
Akhaura	9,489	0%	0%	0%
Kasba	20,732	10%	0%	0%
Nabinagar	32,007	54%	5%	1%
Bancharampur	21,595	9%	0%	3%
Homna	17,947	4%	0%	4%
Daudkandi	12,025	31%	5%	7%
Muradnagar	24,541	76%	5%	22%
Debidwar	7,519	38%	5%	0%
Brahmanpara	12,851	0%	0%	0%
Burichang	9,864	0 %	0%	0%
Comilla	4,648	0%	0%	0%

Constraints on Groundwater Development

Figure C.6.1 Groundwater Development Constraints

57

The comments above apply to short to medium term pumping, perhaps for a period of years. However, it should be recognised that there is a possibility that large scale exploitation of groundwater from the shallow aquifer, where the deeper aquifer is saline, might promote the upward migration (upconing) of saline water. Because highly saline water only appears to be present where there is a thick lower aquitard, it is considered that this effect will be minimal, or occur at such a slow rate that the saline water is so diluted that it does not limit the use of the water for irrigation. These issues are explored further through the use of various models in section 7.3. Lateral migration of saline groundwater in the main aquifer is a possibility if there is intensive abstraction from this deeper zone in the adjoining areas (actually it is likely to be divided between the shallow and deep zones). But again the possibility of this effect being significant is very unlikely. Although it has not been 'measured' the saline interface in the main aquifer is likely to be so diffuse that sudden failure of any well would not occur. Nevertheless, it is important the salinity of wells near to the saline areas should be monitored regularly.

B

Even though the saline groundwater is a finite body of connate water, thousands of years old, it is unlikely that it would ever be economically viable to 'clean up' the aquifer. This view is most strongly supported by the probability of being able to extract the desired quantities of groundwater from shallow aquifers at the same locations. Eventually the aquifer system would be 'cleaned up' by the flushing action of natural groundwater flow regime, but this is likely to take thousands of years. Nonetheless, if problems of saline upconing are encountered, the use of scavenger wells' could be a viable option to control the problem, or simply to allow the use of higher capacity pumps in the shallow zone.

C.6.2 Natural Gas Constraints

Discharges of natural gas to tubewells are very common, especially in Zones C and D. Although it is widely recognised by farmers to be a constraint on irrigation, apparently none of the studies conducted before 1992 identified the problem (here, or apparently in other areas). Further, the conventional MPO style assessments of groundwater potential do not recognise gas as a constraint. Consequently the project has conducted a special survey of the occurrence of gas in irrigation wells, and is described in full in Appendix C.I. A summary of the findings is given below.

Gas discharges have been noted from DTWs, STWs and hand tubewells for drinking water. Gas is observed coming out of solution during the operation of wells. Many times the gas may be ignited, indicating the presence of methane. Chemical analyses indicate that significant concentrations of dissolved carbon dioxide are present in the water, and traces of hydrogen sulphide are also noted from their smell. The redox conditions and the abundance of organic matter probably account for the production of gases in the shallow groundwater environment, although leakage from deep strata in the Bakhrabad Anticline² is an alternative source for the gas. Drilling contractors report striking larger pockets of gas during drilling, which sometimes lead to abandonment of the hole, and are a potential danger to the workers. Drillers report that gas problems occur predominantly in the shallow aquifer. There are no records of gas discharges being an actual safety hazard at operating tubewells.

A double pumping system, where a lower well or pump extracts salt water and discharges to waste.

² A commercial gas field.

The locations of deep tubewells with reported gas problems and the documentary evidence are given in Appendix C.1. Problem wells are largely restricted to Zone C. In the majority of cases gas is a nuisance for DTWs, and may reduce the working life of pumpsets by promoting corrosion, but only a very small proportion of 'problem wells' cannot be operated usefully.

It is more difficult to quantify the constraint on STWs. However, there is no doubt that high speed, surface mounted suction pumps are inherently more susceptible to interference from gas discharges, which cause loss of suction. Interviews with BADC, BRDB and DAE officials, STW drillers, pump mechanics and farmers indicate serious problems in some areas. Indirect evidence is provided by the intensity of STW irrigation (see Figures C.5.3 and C.5.4). It is seen that these areas closely coincide. Also the BADC STW inventory in 1987 showed that the areas of lowest STW intensity also had the highest rates of abandonment³, indicating that STW irrigation was desired but found not feasible. The areas where STW development is constrained are shown in Figure C.6.1 and Table C.6.1.

Gas in HTWs is extremely common, supporting the shallow origin of the gas, and as with DTWs is a nuisance but does not prevent the operation of wells. This is presumably due to the very slow operating speed of pump. Local people are generally aware where gas from hand tubewells can be ignited, these areas, if mapped, should be the same as those where STWs do not operate effectively, and offer a rapid reconnaissance method for examining other areas.

The distribution of gas occurrences in groundwater closely resembles that of salinity distribution in the main aquifer. This is probably explained by the high organic matter content of the upper part of the Chandina Formation and perhaps especially so in the estuarine silts. This unfortunate combination locally results in areas where gas makes STWs impractical in the upper aquifer and salinity makes DTWs impractical in the lower aquifer.

C.6.3 Aquifer Configuration and Water Levels

Over most of the project area, the (exploited) aquifers may be treated as a single system in which the variation of piezometric level with depth is less than about a metre. However, a thick lower aquitard is present in large parts of Muradnagar, Debidwar and Daudkandi, and in small parts of Nabinagar and Kasba. In these certain circumstances it is possible to develop irrigation wells either above or below this aquitard, and in some cases in appears that some DTWs have been screened both above and below. Under comparable conditions in Kishorganj District, it has been shown (MMI, 1992) that a water level difference of as much as 9 metres may develop during the dry season, such that STWs may operate with ease in the shallow aquifer but are completely inoperable in the deep aquifer. These large head differences develop for a number of reasons:

- the proportion of abstraction taken from each aquifer,
- the shallow aquifer is unconfined while the lower aquifer is (semi-)confined.
- deep percolation losses from all types of irrigation recharge the shallow zone, where water levels respond rapidly.

⁴ The data are reported by union, and reasons for abandonment are not given

Hence the resource potentials (by technology) are a function of not only the aquifer conditions but also of the modes of development. Unfortunately, there have been no determinations of the permeability of the lower aquitard and the present monitoring system and/or the low abstractions from each aquifer make it impossible to say with certainty that the same effects will be observed in the Gumti area, however, it is expected that they will be locally significant if groundwater abstraction is intensified. The possible consequences of multi-layered aquifers are examined further in section C.7.3.

C.6.4 Choice of Tubewell Technology

Groundwater abstraction technologies in Bangladesh may be usefully classified into four groups on the basis of two criteria - whether the pumps are suction mode (surface mounted) or force mode (down the well), and whether they are mechanically or manually powered. As shown in Chapter C.5 manual pumps are of little importance for irrigation in the study, but on the other hand they probably account for well over 90% of safe drinking water supplies. The operation of suction mode wells with surface mounted pumps is limited to water level depths of between 5 and 7 metres, depending on discharge and aquifer conditions. Where they work, suction mode wells are always cheaper to construct that their force mode equivalent, and are therefore widely preferred.

Where water levels exceed these depths, either force mode wells must be developed or the suction pump must be placed in an excavation. In northwest Bangladesh, suction pumps have been set as deep as six metres, however, in most of the Gumti area it is unlikely to be practical to set pumps deeper than an about 2 metres. Practically, the deep setting option only applies to mechanically powered irrigation pumps; for drinking water supplies, more expensive piston pumps (the 'Tara') replace the popular UNICEF Nr 6 pump, with an associated increase in cost of from \$90 to about \$230 for a well that can serve up to about a hundred people. For irrigation purposes, force mode tubewells have been virtually synonymous with the BADC 2 cusec deep tubewell. However, with the current plans for privatisation there is likely to be a major shift towards lower capacity wells, the use of cheaper well components, shorter screen lengths, and lower quality but cheaper pumps and engines. A particular uncertainty in areas such as the Comilla region is whether force mode wells would continue to be screened in the deeper medium to coarse sand aquifer, or whether they will be screened in the shallow fine to medium sand aquifer normally exploited by shallow wells. This would reduce capital costs, but would probably increase drawdowns and, in some areas, gas problems and clogging of screens by fines. The range of force mode tubewell design options are set out in Figure C.6.2.

Where gas discharges occur, either the efficiency of shallow tubewell pumps is severely impaired or they do not work at all. The best solution in these areas would be to use force mode wells, either in the deeper parts of the aquifer where there is less gas, or to construct shallow, low capacity force mode tubewells in the same aquifer that would otherwise normally be exploited by STWs. It has been suggested⁴ that shallow tubewells might be overcome the gas problem if they were constructed with a separate suction pipe suspended inside a larger diameter well casing. In fact, in this case the well itself would be basically the same as for a force mode well, and as such it be simple and convenient to test this idea under the same programme as a force mode demonstration. However, the increased capital cost of such a STW might negate the fundamental advantage of the technology - its extremely low initial cost.

D. Gisselquist, personal communication to project consultants.

Figure C.6.2 Force Mode Tubewell Design Options

61

Where salinity problems occur, the first alternative for groundwater irrigation is to exploit the shallow aquifer, and preferably the upper part of it. Most of the saline areas are also constrained by gas in the upper aquifer, and hence shallow force mode tubewells (SFMTWs) or manual tubewells will be required. The SFMTW has not yet been demonstrated in the gas constrained areas. Gas and salinity may both promote corrosion of well and pump components (see also Figure 4.7) and hence the use of resistant materials such as PVC or fibre glass (or stainless steel) is to be preferred. In any case, plastics would almost certainly be preferred on economic grounds. The typical design of a 15 l/s SFMTW would probably include a single diameter (either 150 or 200mm) string of casing and screen. The screen would best be constructed of PVC, but either with a smaller slot size than is conventionally used on DTWs, or perhaps with geotextile type screen (equivalent to brass STW screen). Blank casing could be of either PVC or steel. The screen diameter mentioned above is larger than needed from a consideration of screen entrance velocities, but in order to keep the screen depth to a minimum it might be better to position the pump intake in the screened section or in an additional section of blank pipe below the screen. The pump could be either a vertical turbine or an electric submersible⁵.

C.6.5 Influence of Surface Water Irrigation

There is a tendency in some quarters to regard minor irrigation as a choice between surface water and groundwater. While this may be a legitimate choice when siting an individual pump, on a regional scale the two should be seen as complimentary. When surface waters are delivered to dry land to irrigate rice, some of this water will percolate to the aquifer. This occurs at a time when natural recharge by infiltration through the soil zone would otherwise be minimal. This recharge reduces the lowering of the water table that would occur if irrigation were provided from groundwater alone. Thus, the more surface water irrigation provided in an area, the greater is the groundwater potential.

Unfortunately it is particularly difficult to obtain accurate estimates of water use from LLP schemes. Deep percolation losses must therefore be assumed to be related to percolation from tubewell irrigation in the same area, which has been analysed by MMI (1992). Nevertheless it is considered that deep percolation losses from LLP irrigation are lower than for DTW irrigation because of lower water applications and possibly greater run-off and interflow, and in the analyses in Chapter C.7 percolation losses from LLP irrigation were arbitrarily reduced by two thirds. In some areas (e.g. Nabinagar) deep percolation from LLP irrigation probably exceeds the total withdrawal by tubewells. On average, losses from LLP irrigation would be in the order of one third of the crop requirement.

If, however, surface water irrigation is reduced, there would be an adverse effect on the groundwater resources. End of dry season groundwater levels would be deeper than at present. This is a particularly serious concern along the upper reaches of the Gumti river, where it is understood that the dry season flows from India may be reduced in the foreseeable future.

If an electric submersible pump is installed below the well screen it would be necessary to add a pump through to ensure of the motor.

C.7 Groundwater Development Potential

C.7.1 Methodology for Evaluating Groundwater Development Potential

Section C.6 gave a qualitative presentation of the various constraints influencing the potential development of groundwater. In this chapter, these results are brought together to give quantitative estimates of the scope for further expansion of groundwater irrigation in each thana and by each mode. The methodology for the evaluation of the potential under existing conditions is set out below:

- (i) The starting points for the assessment are the maximum infiltration of water at the ground surface, the existing groundwater abstraction and the current coverage of irrigation. The maximum infiltration through the soil zone, or potential recharge, is the fundamental limiting resource. The potential recharge figures determined by SERS, which are basically a refinement of the National Water Plan Phase II estimates, have been used. This figure represents the ultimate limit for groundwater development on an annually renewable basis, i.e. without inducing either a progressive (over years) or permanent¹ lowering of groundwater levels. Estimates of irrigated area are taken from the AST/CIDA (1991) survey (Appendix C.II), and groundwater use from MMI (1992).
- (ii) It has been assumed that 90% of the cultivable area is the maximum that might ever be irrigated (in fact it is probably less, but 80% is already irrigated in Akhaura). The first step is to decide whether the potential recharge is sufficient to irrigate the remaining un-irrigated land. Unit irrigation requirements by thana were determined by MMI (1992), and hence allows the volume of irrigation water to be calculated. The residual potential is simply the total potential recharge minus the current (net) abstraction. This indicates either that recharge is in excess of agricultural requirements, or what percentage of the remaining land might be irrigated. It follows for the potentials for each mode of groundwater abstraction to be evaluated.
- (iii) The key to evaluating (unconstrained) potential by mode is the depth storage curve for each thana, which determines the point (or range) of transition from suction mode to force mode pumping. This becomes complicated in the areas with a multi-layered aquifer configuration, where potentials by mode are dependent on the proportion of abstraction from each aquifer. However, it is reasonable to assume that suction mode wells will be developed first, and then take account of the impact of pumping from deeper aquifers later (if it is required at all). Ironically, the consideration given to the double aquifer condition in the Inception and First Progress reports is now recognised to be less significant than previously thought precisely because the areas where the hydraulic separation of the upper and lower aquifers is greatest are also the areas where the salinity constraints on the lower aquifer are greatest.

Also, this is not the same as 'mining', for sustainable development of groundwater in excess of the potential recharge (as defined by the MPO) is possible by producing a large cone of depression which reaches a state of equilibrium by intercepting major rivers and inducing additional recharge there from. This situation is common with municipal and industrial abstractions from major cities, such as Dhaka. This mode of development is excluded here.

For the purposes of regional planning it is necessary to define limiting water levels for suction mode wells. The limiting water table depth for suction mode development is defined here as that at which the nominal discharge of STWs and DSSTWs is reduced by two thirds to 5 1/s (0.18 cusec). Details of the calculation scheme are given in Appendix C.VII. Assuming an average permeability of 20 m/d, the limiting water table depth for STWs is about 5.5 metres. For DSSTWs it is assumed that pits will be unlined and of an average depth of 2 metres, and are therefore limited to water table depths of about 7.5 metres. The limiting water table (or rather piezometric) depth for force mode tubewells is debatable², but in reality is unlikely to be of significance in the study area. A limit of 20 metres has been assumed. A limiting upper water table depth must also be defined for the determining the volume of water that may be released from storage during the irrigation season. The beginning of the irrigation season is taken here as mid to late January. Fortunately, although the peaks and troughs of the groundwater hydrographs vary widely, the January levels vary little from year to year (Chapter C.3).

The adopted correlation between lithology and specific was taken as the Deep Tubewell II (MMI, 1992) revision of the MPO (1987) estimates. The specific yield profiles, in one metre intervals, were taken from analysis BADC DTW records (Appendix C.IV), except for Akhaura and Comilla where MPO data were used. For Homna, where only three records were available, the average of Muradnagar, Daudkandi and Bancharampur profiles was used. The DTW lithological records are referenced to the average land elevation of the thana. Thus for unconstrained development the potentials are simply the volumes of water released between the mid-January water level and 5.5, 7.5 and 20 metres for STWs, DSSTWs and DTWs respectively. Potentially irrigated areas are calculated by dividing these volumes by the appropriate water requirement. The results and methodology of the depth storage - analysis are shown in Table C.7.1.

- (iv) First the areas where specific modes cannot operate (and hence have zero potential) are defined. These are defined as:
 - where gas prevents operation of STWs and DSSTWs;
 - where the main or deep aquifer is too saline to be used by DTWs;
 - where water levels are too deep for STWs and DSSTWs to operate;
 - where the shallow and deep aquifers have significantly different water levels during the irrigation season.
- (v) Natural gas discharges have been concluded to be a negligible constraint on FMTW development, although, a minor constraint of 5% was applied to DTW development in certain thanas where problems have been encountered. Natural gas is a significant constraint on STWs and DSSTWs; and salinity is a locally serious constraint on DTW development. The effects of these constraints are incorporated into the evaluation in two ways. First, the unconstrained potentials by mode (as a volume of water) are reduced in direct proportion to the area affected. However, since the potential recharge is often in excess of the irrigation requirements, it is also necessary to reduce the area of additional potentially irrigated land (groundwater transfer not being a serious option).

² Being affected by such factors as maintaining straightness and verticality of pump chambers.

TABLE C.7.1

.

Unconstrained Groundwater Potential : Depth - Storage Analysis

Thana	Kasba	Nabinagar	Bancharampur	Homna	Daudkandi	Muradnagar	Debidwar	Brahmanpara	Burichang
Total Area (ha)	20,732	32,007	21,595	17,947	12,025	24,541	7,519	12,892	9,864
Cultivable Area	18,245	28,166	19,435	15,273	10,341	21,350	6,617	9.279	7,238
Potential Recharge (mm)	613	673	431	540	539	708	566	2	
Av. Ground Elevation (m PWD)	4.8	4.0	3.5	3.5	3.0	4.0	4.0	5.0	
January Water Level (m PWD)	4.4	1.5	2.1	2.3	2.0	2.3	3.5		
Depth to water (m bgl)	0.4	2.5	1.4	1.2	1.0	1.7	0.5	0.5	1.7
Integrated Specific Yields									
Sp. yld to Jan. WL (integer)		0.020	0.035	0.030		0.024			
Sp. yld to Jan. WL (integer+1)	0.020	0.021	0.042	0.036	0.041	0.024	0.020	0.021	0.022
Sp. yld to Jan. water level	0.020	0.021	0.039	0.033	0.041	0.024	0.020	0.021	0.022
Specific yield to 5 m	0.028	0.032	0.053	0.046	0.051	0:033	0.024	0.027	0.024
Specific yield to 6 m	0.030	0.036	0.056	0.048	0.053	0.035	0.024	0.029	0.025
Specific yield to 7 m	0.032	0.040	0.059	0.051	0.055	0.038	0.025	0.032	0.028
Specific yield to 8 m	0.033	0.043	0.062	0.053	0.057	0.041	0.025	0.034	0.030
Specific yield to 20 m	0.049	0.062	0.076	0.070	0.074	0.060	0.041	0.051	0.048
Vol of water released to Jan WI.	8	51	54	38	40	42	11	Ξ	38
Vol of water released to 5.5m	160	187	300	258	286	187	132	154	135
Vol of water released to 7.5m	244	311	454	390	420	296	188	248	218
Vol of water released to 20m	980	1240	1520	1400	1480	1200	820	1020	996
Unconstrained STW Potential	152	136	246	220	246	145	121	144	16
Unconstrained DSSTW Potential	236	260	400	352	380	254	171	237	179
Unconstrained DTW Potential	613	673	431	540	539	708	566	496	495
DTW Potential as % of recharge	100%	100%	100%	100%	100%	100%	100%	100%	100%
If 100%, what is deepest WL									
WL to extract 100% of recharge	15	13	7	L_{0}	6	13	16	12	13
Integrated Specific yield at depth:	0.041	0.053	0.059	0.056	0.058	0.052	0.035	01-0-40	0.039
Depth of water released (mm):	615	689	413	545	522	676	560	480	507
Propertion of methanor withdrawn	100.4%	102.4%	95.9%	100.8%	96.9%	95.5%	36.9%	96.7%	102.4%

Notes: 1. Because of insufficient lithological data, the specific yields used for Homna are the average of Daudkandi, Bancharampur and Muradnagar 2. See Appendix IV for lithological and specific yield profiles

65

Thus groundwater development potential is defined in a number of ways, and are technology dependent. These potentials are first derived for the unconstrained conditions, and then reduction factors are applied to take account of the various constraints.

- (vi) The positive impact of surface water irrigation may be incorporated in the analysis by estimating the volume of percolation losses from LLP and traditional methods between mid-January and the end of april. This volume is then added to the unconstrained potential for each tubewell technology. It has been assumed, for the purposes of assessing groundwater potential, that surface water irrigation will remain at its 1991 level. This is not a statement of project policy, merely a planning convenience, and it should be noted that any increase in surface water irrigation will also increase the groundwater potential.
- (vii) For thanas where various combinations of abstractions from partially hydraulically separated aquifers are possible, the evaluations have been carried out on an individual basis incorporating the SCTM model results.

C.7.2 Groundwater Resource Potential under Existing Conditions

Table C.7.2 gives a comparison of the constrained and unconstrained resource potentials estimated by the present study and previous studies. The unconstrained potentials have increased chronologically partly because of the inclusion of the effects of surface water irrigation and partly because of the updated lithological data. According to the MPO Phase II estimates, current abstraction has exceeded the STW potential in most thanas, while according to project estimates it is only clearly exceeded in Burichang (which has deep water levels and a record of deep setting), and has been equalled in Comilla, Brahmanpara (where there is a history of deep setting) and Muradnagar (where STWs are severely constrained by gas). Inclusion of surface water irrigation in the analysis is the main reason for the change in resource estimation in Akhaura, Nabinagar, Homna and Daudkandi. Previous estimates indicated that the DSSTW potentials has been exceeded in some thanas, whereas the current estimates indicate that all thanas have additional DSSTW potential - which is consistent with the evidence given in Chapters C.3 and C.5.

Tables C.7.3 to C.7.5 describe the probable impact of increased groundwater irrigation, without project intervention, which has been assessed on the assumption that it would occur in three phases:

- additional STWs up to suction limits (without deep setting)
- additional STWs and DSSTWs up to suction limits
- development by suction mode wells first, followed by force mode wells where land resources remain un-irrigated

TABLE C.7.2

Comparison of Current Abstraction with Resource Estimates

							Unconstrained Potentials	otentials	Constrained Potentials	otentials
Thana	Net Groundwater	MPO Phase II Estimates STW DSSTV	I Estimates DSSTW	DTW(1)	SERS Potentials DSSTW	s DTW(1)	(Present Study) STW	MTSSU	(inc. SW irrigation) STW	tion) DSSTW
	Abstraction mm/yr	Potential mm/yr	Potential mm/yr	Potential mm/yr	Potential mm/yr	Potential mm/yr	Potential mm/yr	Potential mm/yr	Potential mm/yr	Potential mm/yr
Akhaura	84 *	* 74	242	738	190	738	ри	pu	177	296
Kasba	122 *	-	183	506	•	613	152	236	183	259
Nabinagar	• 19	• 16	59	288	126	673	136	260	120	177
Bancharampur (1)	49	93	171	431	171	431	246	400	273	413
•										
Homna	* 62	* 78	150	507	178	540	220	352	266	392
Daudkandi	59 *	* 42	85	364	159	539	246	380	261	353
Muradnagar	44	65	109	425	142	708	145	254	* 43	69
Debidwar	62	84	147	566	113	566	121	177	111	146
Brahmanpara	166 +	* 132	248	597	• 116	496	* 144	237	+ 165	258
Burichang	* 061	* 73 *	134	482	• 134	495	* 26 *	179	• 122	204
Comilla	* 179 *	* 86 *	164	486	* 157	493	pu	pu	• 170	210

Notes :

1. * indicates current abstraction greater than estimated potential

2. The constrained potentials for the present study include the additional (dry season) recharge derived from surface water irrigation

3. "nd' indicates 'not determined'

Quantities of water are expressed as a depth of water averaged over the gross area of the thana (inside the the project)
SERS - South East Regional Study (FAP:5)

Thana	Total	Cultivable			Net	% of	Water table o	at full develops	ment
	Area	Area	Suction	Force	GW	Constrained	Est.	Int.	Vol.
	Irrigated	Irrigated	Mode	Mode	Abstn.	Potential	SWL	Specific	Released
	ha	%	ha	ha	mm	Recharge	m	Yield	mm
Akhaura	5 753	90%	1 668	567	120	14%		S. ₽	
Kasba	11 914	65%	5 1 4 3	2 240	183	28%	5.0	0.028	184
Nabinagar	16 855	60%	7 168	535	120	16%	2.4	4 0.020	124
Bancharampur	17 492	90%	12 272	230	272	58%	5.1	0.053	3 272
Homna	13 468	88%	10 136	20	266	46%	5.3	0.046	263
Daudkandi	9 307	90%	4 008	235	166	28%	1.0	0.041	169
Muradnagar(2)	6 055	28%	857	1 385	44	8%	2.0	0.024	1
Debidwar	2 6 3 2	40%	1 567	141	111	19%	3.(0.020	108
Brahmanpara	5 1 4 8	56%	2 389	1 808	167	32%	5.5	5 0.028	\$ 164
Burichang	4 519	62%	828	2 840	190	37%	7.1	2 0.028	8 188
Comilla	2 483	69%	729	898	179	33%	X	-	() =)
Total / Average	95 625	67%	46 764	10 899	165	29%	4.3	2 0.026	5 138

TABLE C.7.3

9

TABLE C.7.4

Analysis of Future Groundwater Development by STWs and DSSTWs

Thana	Total	Cultivable			Net	% of	Water table a	t full develop	ment
	Area Irrigated ha	Area Irrigated %	Suction Mode ha	Force Mode ha	GW Abstn. mm	Constrained Potential Recharge	Est. SWL m	Int. Specific Yield	Vol. Released mm
Akhaura	5 753	90%	1 668	567	-			-	÷
Kasba	14 947	82%	8 1 7 6	2 2 4 0	259	39%	6.9	0.031	258
Nabinagar	20 487	73%	10 800	535	177	24%	3.9	0.026	177
Bancharampur	17 492	90%	12 272	230				5 - 3	•
Homna	13 746	90%	10 414	20	273	48%	5.4	0.047	273
Daudkandi	9 307	90%	4 008	235	17				×
Muradnagar(2)	7 343	34%	2 1 4 5	1 385	69	13%	3.0	0.024	68
Debidwar	3 163	48%	2 098	141	146	25%	4.0	0.024	144
Brahmanpara	7 459	81%	4 701	1 808	258	50%	7.6	0.032	254
Burichang	4 794	66%	1 103	2 840	204	39%	7.9	0.028	3 208
Comilla	2 773	77%	1 019	898	210	38%			53
Total / Average	107 264	75%	58 403	10 899	145	25%	5.5	0.021	131

TABLE C.7.5

Analysis of Future Groundwater Development by Suction and Force Mode Wells

Thana	Total	Cultivable			Net	% of	Water table at full development		
	Area Irrigated ha	Area Irrigated %	Suction Mode ha	Force Mode ha	GW Abstn. mm	Constrained Potential Recharge	Est. SWL m	Int. Specific Yield	Vol. Released mm
Akhaura	5 753	90%	1 668	567	567				-
Kasba	16 420	90%	8 176	3 713	295	44%	7.9	0.032	297
Nabinagar	25 349	90%	10 800	5 397	253	34%			
Bancharampur	17 492	90%	12 272	230	230	2			
Homna	13 746	90%	10 414	20	20				
Daudkandi	9 307	90%	4 008	235	235	×			
Muradnagar(2)	19 215	90%	2 145	13 257	301	55%	7.8	0.039	
Debidwar	5 955	90%	2 098	2 933	328	55%	10.0		- -
Brahmanpara	8 324	90%	4 701	2 673	293	57%	8.3	0.034	
Burichang	6 5 1 4	90%	1 103	4 561	293	56%		A CONSIGNATION	
Comilla	3 238	90%	1 019	1 363	261	48%		()=)	-
Total / Average	131 314	90%	58 403	34 950	280	32%	8.2	0.020	160

The principal conclusion of this analysis is that in all thanas it is possible to irrigate all remaining land from groundwater by some method without exceeding (a maximum of) 58% of the groundwater resource. This is the highest value for % constrained potential recharge on Table C.7.3. The only reservation on this statement is that it assumes the area with both salinity and gas constraints can be irrigated by shallow force mode tubewells, which are untested in the area. Akhaura, Bancharampur and Daudkandi thanas could be brought under full irrigation with the installation of STWs only. Homna is in a similar position but would require some deep setting. However, at certain locations in these four thanas, force mode wells might be required to overcome gas problems, or might even be preferred economically, and therefore should not be excluded. In the other thanas force mode wells will be required if 90% of the cultivable area is to be brought under irrigation³. The results of this analysis are also shown graphically in Figures C.7.1 and C.7.2.

Table C.7.6 gives a brief description of the groundwater resource potential of each thana of each project zone, however, the comments apply **only** to the results of the potential recharge and depth - storage analysis. In some cases, the conclusions are final, but in others they are partial and require modification or qualification by the detailed modelling using the SCTM and SUTRA models to take account of the effects of salinity and layered aquifer conditions. Indeed, these preliminary results determine where special modelling is needed. For instance, there is no need to consider different abstractions by DTWs from the lower aquifer where the available land can be fully developed by suction mode wells in the upper aquifer.

C.7.3 Special Groundwater Modelling Techniques

The results and analysis described in sections C.7.1 and C.7.2 require qualification to take account of the influence of multi-layered aquifer conditions, and the possible effect of upconing of saline water from the deep to the shallow aquifer. The modelling approach used the Single Cell Thana Model (SCTM) to look at the effect of layering on water levels, and a numerical model of solute transport (SUTRA).

C.7.3.1 Modelling Multi-Layered Aquifer Conditions

Although multi-layered aquifer conditions are present in three areas - Daudkandi, Muradnagar-Debidwar, and Kasba-Nabinagar (Figure 3.2). However, it is not necessary to evaluate the impacts on water levels in Daudkandi or Kasba-Nabinagar because the preceding analysis has shown that the these areas may be fully developed by suction mode wells which would be preferentially constructed in the shallow aquifer, hence only two thanas have been evaluated.

³ Economically and socially it might be better to irrigate less than 90% of the land if the increment of land is small, and it would require replacing less many shallow tubewells to bring this land under irrigation.

TABLE C.7.6

]

n

11

1

Appraisal of Potential Recharge and Depth - Storage Modelling Results

Zone	Thana	Observations	Further Analysis Required
A	Comilla and Burichang	Hydrogeologically these (partial) thanas may be considered as one unit. Already has high	None
		irrigation coverage (66%). Calculated potentials	(It is noted, however,
		show the development is between the STW and	that there is no water
		DSSTW limits, which is totally consistent with	level monitoring well
		observed water levels and deep setting in 1991.	in this part of the
		No further potential for STWs, but small increase	thana.)
		in DSSTW coverage possible (up to 71% of	
		cultivable area). Further expansion will require	
		additional force mode wells (which are already	
		well established) and deep setting of some	
		existing STWs. Abandonment of a few DSSTWs	
		possible, but unlikely (unless for economic	
		reasons).	
	Brahmanpara		None
	Diampara	Quite good existing, mixed mode, irrigation	
		coverage (56%). Almost saturated with surface	
		set STWs, as shown by constrained potential	
		equal to abstraction (1991), and deep setting noted	
		in 1989 but not 1991. Good potential for	
		expansion of DSSTWs (up to 81% of area) and	
		any further demand may be met by moderate	
		expansion of force mode wells. No abandonment	
		of DSSTWs anticipated, even at full development.	
	Debidwar	The second s	Use SCTM to
		Very low existing irrigation coverage (28%)	investigate the effect
		based on mixed STW and LLP) mainly due to gas	of double aquifer
		constraints on suction mode wells and a	condition on water
		historically restricted 'supply' of DTWs. Useful	levels.
		expansion of DSSTWs (up to 48% of area)	125 W 220 0 H 20 0 H 20 0 H
		possible, but only in some areas. Expansion of	
		irrigation in gas prone areas requires large	
		increase in force mode tubewells, however, this	
		natural zoning will moderate drawdown effects on	
		suction mode wells.	

В	Kasba Akhaura	Moderately good existing, mixed mode, irrigation coverage (52%), but mainly from LLPs. There are no major constraints. Some expansion of surface set STWs possible (up to 65% of area), and increase of deep setting could provide all future irrigation requirements (up to 82% of area). Force mode wells probably not required (unless preferred economically). Almost fully irrigated (80%), any further requirement can be met by expansion of surface set STWs.	None
	Nabinagar (minor part)	Only two unions included, but apparently subject to gas constraints, and may require irrigation development by force mode wells.	
C	Muradnagar	Very low existing irrigation coverage (28%) and most constrained groundwater development opportunities, with both gas and salinity problems. The 'supply' of DTWs was restricted until 1987. Current abstraction already equal to the STW limit. Expansion of DSSTWs possible (up to 34% of area), but only in very restricted areas. However, normal DTWs or low capacity FMTWs can be developed in most of the thana, and low capacity FMTWs (and manual tubewells) can be developed in the shallow aquifer in the area affected by salinity and gas.	Use SUTRA to investigate long term migration of saline groundwater from the deep aquifer to wells pumping from the shallow aquifer. Use SCTM to assess differential drawdowns in deep and shallow aquifers.
	Nabinagar (major part)	Moderate existing irrigation coverage (37%) dominated by surface water sources. STWs heavily constrained by gas problems, and 'supply' of DTWs restricted until 1987, but still has significant scope for expansion of both STWs (up to 60% of area) an DSSTWs (up to 73%), but not in all areas . Promotion and expansion of force mode tubewells will be required in areas of gas constraints. Water levels, however, are of relatively little concern here.	None

Γ

D Daudkandi	Existing irrigation coverage is high (63%), dominated by surface water, and some STWs. There are localised gas constraints on STW development, and a minor salinity constraint on DTW development. The latter is no significance, because that area may be fully developed by suction mode wells in the shallow aquifer. On average the residual area could be irrigated by STWs alone, but in practice FMTWs will be required at some sites because of gas problems. Water level drawdown due to pumping will not be of concern, and will be difficult to distinguish within the natural hydrograph.	None
Homna	Existing irrigation coverage is moderate (41%), with surface water and STWs of roughly equal importance. No DTWs were installed until 1991. There is a small salinity and gas constraints in the east (as Muradnagar) where shallow, low capacity force mode tubewells will be required. Elsewhere demand for irrigation can be met by expansion of STWs. Deep setting will be negligible, except perhaps in drought years.	Evaluate salinity effects using SUTRA (as Muradnagar).
Bancharampur	Similar to Homna. Moderate existing irrigation coverage (37%), but surface water sources are more important. Small gas and salinity constraints in the south east, where shallow, low capacity force mode tubewells may be required. Elsewhere demand for irrigation can be fully met by expansion of STWs. Again no significant deep setting is expected.	As Homna.
Nabinagar (minor part)	Groundwater development in these three unions in the west of Nabinagar are seriously constrained by gas problems and will require FMTWs.	None

Π

1

[]

1

Ľ

8
Sec. 2. 1983

% of Cultivable Area Irrigated

Figure C.7.1 Incremental Irrigation to 90% of Cultivable Area

Note : 90% of cultivable area may be irrigated in all thanas if force mode tubewells are used.

Figure C.7.2 Resource Usage with Groundwater Irrigation

Percentage

Percentage

Percentage

Perceutago

The Single Cell Thana Model (SCTM) was originally developed for the South East Regional Study (FAP:5). Its formulation is similar to the model developed for the Special Study Areas of the National Water Plan (MPO, 1990). Basic documentation for the model is given in Appendix C.VI. The model functions as a single cell, finite difference model simulating the groundwater hydrograph for actual rainfall records for the period 1972 to 1989, and a synthesised flood hydrograph. The model was used with each cell equivalent to a thana. The model has the flexibility to be used with either two layer or four layer geometries. Only the latter is considered here:

		Model Name	Typical Lithology
SCTM four layer model:	-	upper aquitard	clayey silt
	3 7 3	upper aquifer	fine to medium sand
		lower aquitard	sandy silt
	-	lower aquifer	medium to coarse sand

Different permeabilities may be assigned to each layer, vertical permeabilities to the aquitards to control recharge and leakage between the aquifers; and horizontal permeabilities to the aquifers (even though there is no horizontal flow) to calculate drawdowns in pumping wells. There is a particular uncertainty in specifying the permeability of the upper aquifer because no pumping tests have been carried on it. On the basis of grain size, it might be expected that the upper aquifer would be less permeable, however, it is thought that the upper aquifer is part of the Chandina Formation and the lower part of Dupi Tila Formation. By comparison with Greater Dhaka it thought that the younger, unweathered Chandina Formation (and approximate time equivalent of the Dhamrai Formation) may be at least as permeable as the Dupi Tila, where the intrinsic permeability has been reduced by the formation of secondary clay and iron minerals. There are also no determinations of the permeability of the lower aquitard.

Specification of the model parameters has made full use of the latest data available from the DTW II Project and the 1991 AST-CIDA irrigation census. The DTW records were processed using a modification of the DTW II database programs. The model aquifer geometries and permeabilities adopted for each thana were derived from the average profiles in Appendix C.IV and are shown in Table C.7.7. The base of the lower aquifer was taken as the average depth of deep tubewells.

In the model, it is assumed that STWs, DSSTWs and manual tubewells draw water from the upper aquifer, and the proportion of abstraction from the upper and lower aquifers must be specified. Initially the proportion from the lower aquifer was taken as the force mode tubewell abstraction required for full development in Table C.7.3. The objective is to abstract as much additional groundwater as possible from suction mode wells in the upper aquifer.

The current areas irrigated by each technology were taken from the AST/CIDA inventory of minor irrigation for March 1991. Groundwater abstraction may be specified to be from either the upper or lower aquifers. A specified proportion of cultivable land is irrigated from surface water; in the model existing surface water irrigation is held constant with time. This does not imply a prediction of future irrigation patterns except in that it is not expected to decrease. For most of the area, static surface water irrigation approximates a probable worst case for groundwater development, in that any increase in surface water irrigation would also increase the availability of the groundwater resource through increased deep percolation.

C.7-11

TABLE C.7.7

Aquifer Configuration for the SCTM Model

1	Muradnagar	Debidwar
Average Elevations (m)		12
Ground Surface	4.0	4.8
Upper Aquitard	-3	-18
Upper Aquiter	-33	-29
Lower Aquitard	-43	-44
Lower Aquifer	-95	-104
Permeabilities (m/d)		
Upper Aquitard	0.1	0.1
Upper Aquifer	20	20
Lower Aquitard	0.01	0.01
Lower Aquifer	23	22

Non-agricultural abstraction of groundwater is predominantly for domestic use. A planning allocation of 100 l/head/day was made (much greater than actual abstraction) in line with the FAP:5 regional plan. The volume of water withdrawn was based on the 1981 census data inflated to 1992 at 2.2% a year.

Results

The SCTM Model presents its results by predicting what would have been the impact of full groundwater development on the historical meteorological data for the period 1972 to 1989. The main output is in the form of groundwater hydrographs as shown in Figure C.7.3. It must be emphasised that these figures describe the whole of the thana within the project, and in reality there will be significant variations, and in particular do not give full weight to force mode tubewells development in the main aquifer, which if significant would reduce the head differences. In both cases, for the most probable representative set of hydrogeological parameters, it is anticipated the significant head differences will develop between the upper and lower aquifers. For Muradnagar, where the upper aquifer is thicker, the head differences may be of the order of 3-4 metres, with static levels in the lower aquifer falling to around 7 m below ground, while levels in the upper aquifer should lie comfortably within suction limits (although gas constrains this mode of development). Larger head differences of 6 - 8 metres are considered probable. Levels in both the upper and lower aquifers are expected to be deeper than in Muradnagar, and water levels in the shallow aquifer may constrain suction mode wells (in the gas free areas).

The SCTM Model has identified the critical importance of the vertical permeability of the lower aquitard, especially in Debidwar. There are field determinations of permeability of this layer in the Gumti Phase II area, and there are also uncertainties about the lateral continuity of the lower aquitard, which would also affect the rate of leakage between the aquifers. Figure C.7.4 shows the critical sensitivity of the model results for Debidwar to the vertical permeability of the lower aquitard. The most probable permeability is thought to be

of the order of 0.01 m/d. However, if the range of parameter uncertainty is considered to be plus or minus one order of magnitude, then it is seen that the possible aquifer responses is between no significant head difference on the one hand and many tens of metres on the other. Actually the lowest permeability case in Figure C.7.4 is not a credible development scenario because before such water levels are attained, expansion of irrigation would stop because well construction is too difficult or the pumping cost becomes uneconomic. To properly evaluate the potential of the lower aquifer in Debidwar, it is necessary to have a better definition of the permeability of the lower aquitard. This may be done by direct measurement or (better) by careful monitoring of water levels and abstraction in both aquifers through a complete recharge - discharge cycle (e.g. December to July).

C.7.3.2 Upconing of Saline Groundwater

Conceptual Model

Salinity has been identified as a constraint to groundwater development from the main aquifer in the western part of Muradnagar and small parts of adjoining thanas. The hypothesis to be tested here is whether it is possible to abstract groundwater for irrigation through shallow force mode tubewells in the upper aquifer without contaminating the upper aquifer by saline upconing from the lower aquifer. Conceptually, the possibility of saline upconing has been considered in relation to the geological conditions in the west of Muradnagar as revealed by the two boreholes shown in Figure 4.3. This has been simplified as:

layer 1 - 3 metres of clayey silt
layer 2 - 30 metres of grey unweathered, fine to medium sands, with a horizontal permeability of 20 m/d, and containing fresh water with an average salinity of 250 mg/l. This is the potential aquifer for exploitation by shallow force mode tubewells.
layer 3 - 30 metres of grey fine sandy silt, the vertical permeability is not known and therefore a value of 0.5 m/d has been assumed. This value is very probably too high, however, assuming a high value leads to a safer model prediction.
layer 4 - 25 metres of grey, weathered medium to coarse sand with a permeability of 23 m/d and containing brackish water with a salinity of 4,000 mg/l. This is the main aquifer exploited by DTWs when not saline.

The analysis assumes that wells would have a nominal half cusec (14 l/s) capacity and be constructed with 12 metres of well screen. To minimise any risk of upconing the well screen would be set as high in the aquifer as possible without running into dewatering problems at the end of the dry season. The problem does not require stability under steady state conditions because the pumping period each year would not exceed 100 days and would be followed by a 265 day recovery period. The possibility of upconing has been analysed using both analytical and numerical models. The models employed do not directly allow the inclusion of layering, but require that these effects are incorporated as anisotropic permeability. Hence in the models, horizontal permeability is defined as the arithmetic mean (K_h 25 m/d) of the layer permeabilities above the saline interface, and the vertical permeability as the geometric mean (K_v 0.25 m/d). And since vertical permeability is critical in determining the rate of upconing, the analysis was also carried out with the vertical permeability increased by a factor of ten. A porosity of 25% was used throughout.

Figure C.7.4 Sensitivity to the Vertical Permeability of the Lower Aquitard in Debidwar

Analytical model of Schmorak and Mercado (1969)

This model analyses with the rise of a sharp interface beneath a partially penetrating pumping well. The initial interface is assumed to be horizontal, and that hydrodynamic dispersion is negligible. The aquifer is of infinite horizontal extent and receives no recharge (which is not unreasonable for the dry season). Schmorak and Mercado presented equations for the calculating the position of the interface at any time after the start of pumping, and for the critical interface rise and associated discharge at which salt water enters the well with a sudden jump. Vertical permeability is the most uncertain parameter, but affects only the rate of upconing and not the absolute rise of the interface. The design factors that control upconing are the discharge and the distance between the base of the well and the initial interface position. It is strongly recommended that only low discharge tubewells (say 14 1/s) are promoted in the saline areas. The results of the model (Table C.7.8) are most usefully expressed in terms of the critical upconing distance and the time taken for the critical upconing to be attained. The results in Table C.7.8 suggest that provided the depth of the well is kept within 30 metres of ground level there should be a negligible risk of upconing, and as was suggested earlier, the vertical permeabilities quoted in the table are probably too high, but if so this merely reinforces the conclusion. Appendix C.V gives further details of the model and its results.

80

TABLE C.7.8

Depth to Base	Distance above	Critical Upconing	Time for Critica	al Upconing (years)
of Well	Interface	Distance	where	and
m	m	m	$K_{\rm v}=0.25~m/d$	$K_v = 2.5 m/d$
18	47	11.8	14.4	2.9
24	41	10.3	8.5	1.7
30	35	8.8	4.8	0.95
36	29	7.3	2.5	0.50
42	23	5.8	1.2	0.25

Predictions of Saline Interface Upconing for 14 l/s FMTWs

Numerical Solute Transport Model

The analytical model described above does not consider the effects of dispersion, which were considering the same problem with a numerical model. The Saturated - Unsaturated Transport Model (SUTRA) is a groundwater flow and solute transport is used to evaluate the potential for migration of saline groundwater. The model was developed by the USGS and uses both the finite element and integrated finite difference techniques. The model is highly versatile and is described in full in USGS Water Resources Investigation Report 84-4369.

The SUTRA model was configured as a rectangular grid in the vertical plane with 18 columns, extending radially to 174 metres and 21 rows down to 83 metres. The production well discharges at 1200 m³/d and has a well screen from 12 to 24 metres below ground. The initial interface was placed at 59 metres, with a static water level at 2.5 metres. There is no precedent for defining longitudinal and transverse dispersion coefficients for such aquifers in Bangladesh, but by comparison with international data, values of 5 and 0.1 metres were considered reasonable. The model was run for a period of 200 days, double the length of the irrigation season, details of the model output are given in Appendix C.V. The SUTRA simulation indicates that after 100 days water with a salinity of 2000 mg/l would rise to 55 m (below ground) and water with a salinity of 440 mg/l would rise to 47 m. Even after 200 days of continuous pumping, the water at 55 m would attain a salinity of 2,500 mg/l, and water at 47 metres would rise to a salinity of 760 mg/l. In other words, after twice the probable maximum pumping period there would more than 20 metres of uncontaminated water beneath the bottom of the well.

C.7.3.3 Implications of Modelling for Resource Potentials

The SCTM Model has demonstrated the probability of a head differential developing between the upper and lower aquifers in Muradnagar and Debidwar. In Muradnagar, drawdown in both aquifers may be moderate, but in Debidwar it has been shown that under the present state of knowledge, it is possible that it may not be practical to fully develop groundwater for irrigation. Careful monitoring of water levels and abstraction in both aquifers through one complete irrigation season and the following recovery period is recommended to resolve this issue.

The analytical and numerical models of salt water upconing indicate that, provided well depths are kept as shallow as possible, short term (100 days) annual pumping of groundwater from the shallow aquifer poses very little risk of saline contamination. Hence, provided that shallow force mode tubewells (SFMTWs) can successfully the problems of gas discharges, groundwater may be developed for irrigation even in the saline zones. However, some caution is still recommended, and the wells should be promoted on a pilot basis at first, and then monitored annually for any sign of progressively deteriorating water quality.

C.7.4 Impact of Possible FCD and FCD/I Interventions

Other things being equal, any reduction in the depth and duration of flooding must reduce the maximum quantity of infiltration that might occur (as in the MPO Recharge Model) into an infinite reservoir beneath the soil zone. However, as was shown in sections C.7.1 and C.7.2, the available groundwater resource exceeds the probable demand for irrigation and potable supply, and hence a reduction of potential groundwater recharge is not necessarily a negative impact on groundwater irrigation. The highest anticipated use of available groundwater to achieve irrigation on 90% of cultivable land is 58% in Bancharampur. Also, as may be seen from the hydrographs in Appendix C.III, the additional recharge that occurs during events such the flood of 1988 is no practical value into groundwater users in the following dry season. Groundwater levels at the start of the irrigation season (the end of January) are evidently controlled by the bed levels of the (natural and man-made) surface water drainage network, and the meteorological and hydrological conditions during the preceding few weeks (rather than months). Years with moderate flood depths have similarly little effect on the following dry season. It is probable that reducing the duration of flooding has a greater effect than reducing its depth.

However, it appears from the hydrographs in Appendix C.III suggest that the aquifer is 'rejecting useful recharge' for at least two months.

82

The impact of full flood protection on potential recharge and hence usable recharge was investigated under SERS by re-running the MPO Potential Recharge Model with a synthetic flood hydrograph in which flooding is completely removed from all flood phases. In reality, such complete protection could not be achieved, however, the analysis is satisfactory for evaluating the worst possible impact on the groundwater resource. Indeed, it is unlikely that any such intervention would be proposed, except in urban areas, it serves as a convenient worst case analysis for the impact of the FCD option under the BWDB Study. It is seen that in Nabinagar, Homna, Daudkandi and Muradnagar flood prevention would not reduce the groundwater potential at all. Flood prevention in Bancharampur can reasonably be assumed to have a similar effect to these thanas. The greatest reduction of potential recharge would be in Akhaura, however, this thana already has about 80% of its cultivable area under irrigation, and dominantly from surface water. Therefore no adverse effect is anticipated in Akhaura unless the same flood control and drainage measures also seriously reduce the availability of surface water and hence increase the demand for groundwater. For the thanas where a reduction in usable recharge is predicted, Table C.7.9 also shows the abstraction that would be required if current irrigation were developed to its practical limit using groundwater. With the same proviso, that existing surface irrigation is not reduced, it appears that flood control and drainage schemes do not pose a serious threat to groundwater development for irrigation.

TABLE C.7.9

Thana	MPO Gro	undwater Potential	Reduction	Abstraction Required
	NFP	FFP	due to Flood	for Full Development
	mm	mm	Protection	(mm)
Akhaura	738	327	56%	120
Kasba	506	405	20%	295
Nabinagar	288	288	0%	
Bancharampur	N	ot assessed under MP	O Phase II	
Homna	507	507	0%	
Daudkandi	364	364	0%	
Muradnagar	425	425	0%	
Debidwar	566	457	19%	328
Brahmanpara	599	506	16%	293
Burichang	482	458	5%	293
Comilla	669	599	10%	261

Effect of Full Flood Protection on Usable Recharge

Source : National Water Plan Phase II, and Southeast Regional Study (1991) Note : NFP - no flood protection, FFP - full flood protection

As noted in section C.6.5, any project interventions that include a surface water irrigation component will both reduce the demand for groundwater, increase its availability, and reduce the water table lowering due to groundwater pumping in the dry season.

C.7.5 Impact of Reduced Surface Water Irrigation on Groundwater Resources

It has been shown earlier that the surface water irrigation is complimentary to groundwater development in an area since it provides a source of recharge during the dry season, both increasing the total availability of groundwater and reducing the lowering of the water table (and reducing pumping costs). In the preceding analysis it has been assumed the surface water irrigation would at least be maintained at its present level. However, it is understood that a new irrigation will shortly be commissioned in India that will drastically reduce the dry season flows in the Gumti River. This will mainly affect Comilla, Burichang, Brahmanpara, Debidwar and Muradnagar. The magnitude of this reduction is not known, and will presumably be progressive, but there can be little doubt that this will result in reduced LLP irrigation in Zone A and parts of Zone C.

To give an indication of the possible impact of this on the availability and demand for groundwater irrigation the analysis presented in sections C.7.1 and C.7.2 was repeated for reduced existing surface water irrigation. The reduction was simulated by setting to zero all surface water irrigation in all DAE Blocks (Appendix C.II) that border the Gumti River. This is probably somewhat worse than might actually be experienced, but not a totally unreasonable approximation of the effect. The results are shown in Tables C.7.10 and C.7.11. In those parts of Comilla, Burichang and Debidwar that lie in the Gumti Pase II area the effect on existing surface water irrigation would be dramatic, for detailed inspection of the AST/CIDA data (Appendix C.II) that almost all of the LLP and traditional irrigation lies within a band perhaps 1.0 to 1.5 km wide along the banks of the Gumti River, and in which there is negligible groundwater irrigation. The reverse applies further away from the river.

TABLE C.7.10

Thana	Irrigated	Reduction
	Area Lost	in Surface
	ha	Irrigation
Muradnagar	1519	40%
Debidwar	583	63 %
Brahmanpara	200	21%
Burichang	727	85%
Comilla	643	75%

Impact of Non-Availability of Gumti River Water on the Surface Water Irrigation

If this source of irrigation water is lost, then it seems inevitable that farmers will switch to groundwater. As shown in Table C.7.11 there is sufficient groundwater to support the increased demand, however, there will be negative impacts on the existing users. Without the beneficial effects of dry season recharge from LLP irrigation, the groundwater potentials for all technologies would be reduced. The estimated static water levels at full development would increased by about two metres in the southeast of Zone A. In Burichang and Comilla, current abstraction would exceed both the STW and DSSTW potentials, requiring widespread conversion of STWs to DSSTWs, and DSSTWs to force mode wells. New wells will be mainly use force mode technology. Section C.7.3 earlier noted the possibility of excessively deep water levels developing in Debidwar, this effect would be intensified by loss of LLP irrigation from the Gumti.

TABLE C.7.11

River
Gumti
the
.=
Flows
Reduced 1
without
and
with
Estimates
Resource
Jo
parison
Com

							With Existing Gumu Flow	NOLT NUM	MM	nout Existin	Without Existing Gumti Flow	MO	
Thaua	Net Groundwater Abstraction mm/yr	MPO Phase STW Potential mm/yr	MPO Phase II Estimates STW DSSTW Potential Potential mm/yr mm/yr	DTW(1) Potential mm/yr	SERS Potentials DSSTW Potential mm/yr	als DTW(1) Potential mm/yr	Constrained Potentials (inc. SW irrigation) STW DSS Potential Poten mun/yr mm	otentials tion) DSSTW Potential mm/yr	Const (inc. S S Pol m	Constrained Potentials (inc. SW irrigation) STW DSST Potential Poten mm/yr mm/y	> II +	Reduction STW D9 %	teduction STW DSSTW % %
Muradnagar	44	65	109	425	142	708	• 43	69	٠	40	65	7%L	6%
Debidwar	62	84		566		566	Ш	146		88	123	21%	16%
Brahmanpara	166	• 132	248	597	• 116	496	* 165	258	•	161	254	2%	2%
Burichang	• 061	• 73 •	• 134	482	• 134	495	• 122	204	•	. 101	183	17%	10%
Comilla	• 621	• 86 •	• 164	486	• 157	493	• 170	210		130 *	170	24%	%61

Notes:

1. * indicates current abstraction greater than estimated potential

2. The constrained potentials for the present study include the additional (dry season) recharge derived from surface water irrigation

3. 'nd' indicates 'not determined'

Quantities of water are expressed as a depth of water averaged over the gross area of the thana (inside the the project)
 SERS - South East Regional Study (FAP:5)

C.7.6 Impact of Groundwater Irrigation on Drinking Water Supplies

It follows from the water level maps in Chapter C.3 that hand tubewells in Burichang and Comilla already experience problems during the late dry season because of the depth to water, and force mode hand tubewells are required to provide a reliable supply. In other thanas, such problems are likely to be restricted to pockets of very high land. As implied in the previous section (Table C.7.11) these problems would be exacerbated by any reduction reduced flows in the Gumti river.

The impact of further groundwater development on drinking water supplies may be considered in terms of the three phases set out earlier in Table C.7.3. Full development of the STW potential being itself limited by suction cannot cause a major deterioration of dry season water supplies, such effects will be restricted to pockets of higher land. With full development of the DSSTW potential, Brahmanpara and Kasba would also require the installation of force mode hand tubewells. If the groundwater resource is developed to its maximum potential using force mode tubewells (only after the suction mode potential is exhausted) there would actually relatively little impact on drinking water supplies. The greatest impact on irrigated area (Table C.7.3) would be in Burichang, Debidwar and Muradnagar. Water levels in Burichang already exceed suction limits in the dry season, although more wells will be affected, while in Debidwar and Muradnagar ti is likely that the hand tubewells will continue to operate effectively from the shallow aquifer, despite deeper water levels in the main aquifer.

An indirect consequence of increased groundwater irrigation would probably be the increased use of fertilisers and pesticides which could affect the quality of drinking water. The same concerns would apply to increased surface water irrigation, although with groundwater pumping the possibility of contaminants infiltrating further or faster are greater. As a general precaution, installation of wells with deeper screens and improved sanitary seals is recommended.

C.8 Economics of Groundwater Development

C.8.1 Costs of Groundwater Development

This study has been prepared during a period of profound change in the tubewell irrigation sub-sector. During the late 1980's shallow tubewell construction was successfully transferred to the private sector; a situation that is not expected to change. Deep tubewell irrigation is about to undergo profound change, as the forthcoming NMIDP project intends to assist privatisation of the DTW sub-sector. Traditionally DTW designs in Bangladesh have been dictated by the objectives of high capacity designs aimed at achieving an optimum based on a (subsidised) high capital cost, low operating cost. Given the nature of investment opportunities and credit availability in rural areas, designs will switch to sub-optimum, minimum capital cost - high operating cost - short life type. During the 1980's, all BADC's DTWs were sold to co-operatives, and only one discharge capacity was available. In practice, co-operative organisation of the large number (often more than a hundred) of farmers needed to take advantage of the theoretical economies of scale were rarely achieved. In future, groups are likely to be smaller and pump capacities selected to suit the specific requirements of the scheme.

The preceding chapters have drawn attention to the need for a variety of force mode tubewells. There is little basis experience for predicting the capital and operating costs, and command areas for such wells. However, a major preparatory study (the Minor Irrigation Technologies Study) for NMIDP was carried out under the DTW II Project (MMI, 1992, vols. 2.2/4.1-4.3). Until NMIDP gains practical experience, that study probably provides the best estimates of the likely costs of force mode irrigation under private sector operation, and this chapter draws extensively on its conclusions. Those findings are supported by a theoretical analysis of deep and shallow tubewell irrigation¹ in Appendix C.VII.

Table C.8.1 gives a summary of the expected capital and operating costs of suction and force mode tubewells. The designs quoted are arbitrary selections from what should be seen as a continuum of design options, selected to show some typical examples of the possible range. The force mode designs are basically similar to those shown earlier in Figure C.6.2. Many of these designs may be economically sub-optimum, being biased towards low capital cost, however, as most economic studies of tubewell design have shown parameters such as screen length may varied greatly with little shift in the net present value of total costs (and yet a large shift in the relative proportion of capital and operating costs. The final option in Table C.8.1 (SFMTW 3) will probably not be required, unless it is found that the salinity and shallow gas problems cannot be overcome and it is necessary explore and develop aquifers below the saline zone, as is already being done in Noakhali and Lakshmipur districts.

A theoretical comparison of suction and force mode tubewell irrigation was prepared by the Consultant independently of the Gunti Study, but using the Comilla region as a type area, for publication later in 1993; a draft of that paper is reproduced here in Appendix VII.

In Table C.8.1 only diesel power has been considered. Under current energy policies, electrically operated tubewells are cheaper to operate than diesel powered ones, the price of diesel not having fallen since the Gulf War. However, for most farmers electricity is not available, but they tend to convert when it becomes available. In the longer run it may be anticipated that energy will be available at a more equitable cost.

C.8.2 Comparative Analysis of Suction and Force Mode Development

Suction and force mode tubewells each have their optimum roles in irrigation (see Appendix C.VII). The primary determinant of this is the depth to water. Under more difficult aquifer conditions, where gas constraints apply, or at more advanced stages of irrigation development there will be a natural transition from suction mode to force mode pumping. Figure C.8.1 shows the cost of pumping water as a function of water level for typical conditions in the Gumti area. The data on this graph may be transposed directly to the information given in Table C.8.1 to analyse irrigation costs under various development scenarios. Figure C.8.2 shows an economic comparison of STW and (private sector) DTW irrigation. Except with very shallow water tables, DTWs are economically preferred when irrigation is examined as an isolated activity. Most of the advantages of STWs lie in their easier financing, smaller group sizes and the possibility of alternative uses for the prime mover. Full details of this analysis are given in Appendix C.VII.

TABLE C.8.1

Indicative Capital and Operating Costs of Possible Tubewell Technologies

Mode	STW	DSSTW	SFMTW(1)	SFMTW(2)	SFMTW(3)	DFMTW(1)	DFMTW(2)	DFMTW(3)
				1-1		1.1	1.1	
Discharge (I/s)	2	10	15	15	23	30	60	30
Expected Command Area (ha)	3.8	5.4	7.4	7.4	11.1	13.4	23.8	13.4
Pump chamber length (m)	0	0	18	12	18	21	24	27
Screen length (m)	12	12	12	12	18	18	24	18
Expected well depth (m)	30	30	30	24	36	60	20	150
Blank casing (m)	18	18	0	0	0	21	22	105
Cost of pump chamber (Tk/m)	0	0	330	330	340	1250	1608	1250
Well screen diameter (mm)	100	100	100	200	150	150	150	150
Cost of well screen (Tk/m)	240	240	240	1280	656	656	656	656
Cost of blank casing (Tk/m)	230	230	330	330	340	623	623	623
Unit cost of installation (Tk/m)	100	100	300	300	400	500	780	006
Other costs	1,700	1,700	10,000	10,000	12,000	15,000	25,000	15,000
Total cost of installation	3,600	5,600	10,800	9,000	16,800	33,000	59,280	140,400
Cost of well components	8,720	8,720	18,820	29,320	29,928	66,141	93,042	125,973
Cost of engine and pump	26,500	26,500	51,500	51,500	63,000	74,500	200,000	74,500
Total Capital Cost (Tk)	38,820	40,820	81,120	89,820	109,728	173,641	352,322	340,873
Capital Cost per hectare (Tk)	10,216	7,559	10,925	12,097	9,852	12,992	14,803	25,505
Fuel and Lubricants (Tk/ha/yr)	2,550	2,402	2,300	2,300	2,300	2,300	2,300	2,300
Operator & managers salaries etc.	3,011	4,279	5,884	5,884	8,826	10,591	18,860	10,591
Operating Cost per hectare (Tk)	3,342	3,194	3,092	3,092	3,092	3,092	3,092	3,092
General Conditions:	Ň	Notes:			V	Applications		
 Aquifer permeability 20 m/d 	1.1	or derivation of co	osts see Appendix V	1. For derivation of costs see Appendix VII, and MMI (1992, v2.2/4)		STW - conventional shallow tubewell	shallow tubewell	
2. Average static water level 4 metres	2.5	2. See Figure 6.2 for typical designs	ypical designs		T	DSSTW - conventional deep set shallow tubewell	al deep set shallow 1	ubewell
3 Irrigation requirement 800 mm	3.5	SFMTW - shallow	3. SFMTW - shallow force mode tubewell	-	S	SMFTW(1) - For shallow aquifers constrained by gas,	llow aquifers constra	tined by gas,
4. Assumes diesel power, at Tk 14/1	4.1	4. DFMTW - deep force mode tubewell	ce mode tubewell			OF A C	or a competitor to the STW	W.
5. All costs assume private sector construction					S	SMFTW(2) - as above, but with shallow salinity	e, but with shallow s	alinity.
and opertion.					S	SMFTW(3) - Higher capacity version of SFMTW(1)	capacity version of S	SFMTW(1)
					-	DI-MTW(1) - For deeper aquifer conditions	per aquifer condition	us

DFMTW(2) - Private sector version of traditional

BADC 2 cusec design

DFMTW(3) -For very deep aquifers

Figure C.8.2 well Irrigation

Figure C.8.1 Pipe Cost as a Eurotion of Water Table Depth

C.9 Conclusions and Recommendations

C.9.1 Conclusions

The whole of the project area is underlain by productive alluvial aquifers of Quaternary age that are extensively exploited for irrigation and water supply. The aquifers are fully recharged every monsoon through a combination of rainfall and riverine flooding. Minor irrigation devices cover about 65,000 hectares (about 45% of the cultivable area), of which nearly half is provided by groundwater; this is more than double the irrigation coverage estimated by the BWDB study for their baseline year of 1987. Surface water irrigation has a beneficial effect on groundwater recharge, and significantly increases its availability in the dry season.

There is considerable potential for increased pumping of groundwater on an annually renewable basis in all areas. It is probable that all cultivable land not currently under irrigation could be irrigated from groundwater on an annually renewable basis. In many areas of the study area, specific tubewell technologies are subject to specific constraints. However, groundwater may be developed for drinking water or irrigation by some method in all areas. The principal constraint is discharges of natural gas breaking the suction of STWs and DSSTWs (mainly in Zone C). Gas problems may be overcome by the use of force mode wells. In the western part of Muradnagar the coincidence of gas and salinity will necessitate the development of groundwater by low capacity force mode wells in the shallow, fine grained aquifer. The requirements for full irrigation development are set out in Table C.9.1 and Figure C.9.1.

TABLE C.9.1

Required Tubewell	Technology:	
STWs Only	DSSTWs	FMTWs
Akhaura	Kasba	Nabinagar
Bancharampur	Brahmanpara	Muradnagar
Homna		Debidwar
Daudkandi		Burichang
		Comilla

Technology Requirements for Full Groundwater Irrigation Development

Groundwater modelling has demonstrated that there is little risk of migration of saline water upwards from the main aquifer in Muradnagar if the shallow aquifer is developed by shallow force mode wells.

Figure C.9.1 Groundwater Development Zones

Analysis with the single cell model for Debidwar has shown that, owing to uncertainty about the vertical permeability of the lower aquitard, there is some about whether it would be possible to fully exploit the groundwater resources of the main aquifer without dry season water levels falling below the economic limit.

If constructed, flood control and drainage would reduce the theoretical quantity of recharge to the aquifer every year, however, the residual potential should still be enough to meet all foreseeable demand. If the flow of the Gumti River crossing the Indian Border is reduced it will result in slightly deeper dry season groundwater levels in Zone A, with increased deep setting of shallow tubewells, and increased demand for force mode wells.

Salinity constrains development of the deeper (main) aquifer in some areas, it being unsuitable for either irrigation or drinking. High concentrations of iron and manganese are a pervasive nuisance. Nitrate concentrations sometimes marginally exceed the drinking water standards, and there is concern that this may part of a deteriorating trend.

C.9.2 Recommendations

A pilot project to demonstrate the viability of using shallow force mode tubewells in the shallow aquifer to overcome gas (and salinity) problems should be undertaken as a matter of some urgency. This problem has never been officially recognised (e.g the National Water Plan) as a constraint on groundwater development, and the area is excluded from the forthcoming National Minor Irrigation Development Project (NMIDP). The definition of the NMIDP project area considered only coastal salinity and potential recharge, and was done without any knowledge of these gas problems.

Groundwater level monitoring network needs to be improved with additional automatic recorders installed in Brahmanpara, and also in Muradnagar and Debidwar where multi-layered aquifer conditions exist and both aquifers should be monitored.

Monitoring and applied research are required into water quality issues, especially the possible migration of saline groundwater, and the possible progressive contamination the shallow aquifer (the regions primary source of safe drinking water) by nitrate. The research should give special importance to quantifying the importance of different sources of nitrate.

Appendix C.I

Survey of Natural Gas Discharge Occurrences

Survey of Natural Gas Discharge Occurrence

Development of both deep and shallow tubewells in the Gumti Phase II area, as recognized but not documented during the BADC DTW II completion phase, is constrained by the occurrence of natural gas discharge. The areas of this problem are not well defined. A ten-day field study was conducted in the project area during the month of October, 1992 to collect information on the nature and extent of natural gas discharges as a constraint on development of tubewells - DTW, STW and HTW. As there has been no written records or formal reports on the problem, the project personnels have held discussions with the BADC officials, BRDB staff, as well as DTW, STW and HTW contractors, in most of the thanas to identify nature and location of problem wells and areas.

Gas discharges have been noted from DTWs, STWs and hand tubewells for drinking water. Gas is observed coming out of solution during the operation of wells. Many times the gas may be ignited, indicating the present of methane. Chemical analyses indicate that significant concentrations of dissolved carbon dioxide are present in the water, and traces of hydrogen sulphide are also noted from their smell. The redox conditions and the abundance of organic matter probably account for the production of gases in the shallow groundwater environment, although leakage from deep strata in the neighbouring Bakhrabad gas field is an alternative source for the gas. Drilling contractors report striking larger pockets of gas during drilling, which sometimes lead to abandonment of the hole, and are potential danger to workers. Drillers and concerned BADC officials report that gas problems occur predominantly in the shallow aquifer.

The locations of deep tubeweels with reported gas problems and the documentary evidences are shown in Figure C.I.1 and Table C.I.1. Problem wells are largely restricted to Muradnagar and Daudkandi Thanas. In the majority of cases gas is a nuisunce for DTWs, and may reduce the working life of pumpsets by promoting corrosion but only a very small proportion of problem wells cannot be operated usefully.

It is more difficult to quantify the constraint on STWs. However, there is no doubt that high speed, surface mounted suction pumps are inherently more susceptible to interference from gas discharges, which cause loss of suction. Interviews with BADC, BRDB and DAE officials, STW drillers, pump mechanics and farmers indicate serious problems in some areas. Indirect evidence is provided by the intensity of STW irrigation (see Figure C.I.2). It is seen that these areas closely coincide. Also the BADC STW inventory in 1987 showed that the areas of lowest STW intensity also had the highest rates of abandonment, indicating that STW irrigation was desired but found not feasible. The areas where STW development is constrained are shown in Figure C.I.2 based on discussion and on the spot visits to selected places as appended in Table C.1.2.

Gas in HTWs is extremely common, supporting the shallow origin of the gas, and as with DTWs is a nuisance but does not prevent the operation of wells. This is presumably due to the very slow operating speed of pump. Local people are generally aware where gas from hand tubewells can be ignited, these areas, if mapped, should be the same as those where STWs do not operate effectively, and offer a rapid reconnaissance method for examining other areas.

The distribution of gas occurrences in groundwater closely resembles that of salinity distribution in the main aquifer. This is probably explained by the high organic matter content of the upper part of the Chandina. Formation and perhaps especially so in the estuarine silts. This unfortunate combinantion locally results in areas where gas makes STWs impractical in the upper aquifer and salinity makes DTWs impractical in the lower aquifer.

230

X Figure C.I.2

230

Gas Problems in Shallow Tubewells

TABLE C.I.1

Deep Tubewells with Reported Gas Problems in the Gumti Phase II and Adjoining Area

Thana	Union	DTW Nr	Nature of Problem	Remarks
Muradnaga r	Andikot	7	Gas discharge in operation but technically operable.	
Muradnaga r	Akubpur	22	No gas at commissioning, gas and low discharge since 1991.	Not operating since 1992.
Muradnaga r	Bangara West	29	Gas emission, no discharge problem.	
Muradnaga r	Chapitala	50	Normal discharge with gas emission and saline water.	Awaits decision on abandonment.
Muradnaga r	Chapitala	15	Gas emission, not operable.	Abandoned.
Muradnaga r	Bangara East	53	Gas discharge, technically operable.	
Muradnaga r	Dhamghar	49	Gas emission, low discharge.	Abandoned for salinity (1992).
Daudkhandi	Daudkand i	57	Gas emission during discharge.	Peripheral to the project area.
Daudkhandi	Jagathpur South	31	Gas emission, but full discharge.	Not operating since 1991.
Daudkhandi	Daudkand i	43	Gas emission with yellowish, turbid water at commissioning; no gas or salinity problem now.	Peripheral to the project area.
Daudkhandi	Gouripur	61	Gas emission at commissioning; normal discharge and no gas now.	Peripheral to the project area.
Daudkhandi	Gouripur East	20	Gas emission and saline groundwater.	
Daudkhandi	Jagathpur North	29	Gas emission, low discharge	
Debidwar	Debidwar	<u>56</u>	Gas emission, regular discharge.	The DTW was resunk at a new site, discharge satisfactory but gas emission continues.
Dehidwar	Rajmehar North	47	Gas emission (gas hubbles with water); less discharge (High iron content).	Iron problem (?)
Debidwar	Gunaighar	30	Gas emission, low discharge initially, noe OK (high iron).	Not operable.
Dehidwar	Rajmehar (South)	38	Gas emission, low discharge.	

TABLE C.I.2

40

Gas Discharge Survey

Π

11

(October, 1992)

Thana		Persons Interviewed		Description/Observations
Muradnagar	1	Mr. Sabbir Ahmad Asstt. Engineer Muradnagar	(a)	Provided particulars of DTWs showing reported gas problems.
			(b)	Reports that the BADC office has not much information about STW problems except that the STWs in Thana during sinking phase faced problem of gas pressure in the depth range of 150-200 ft.
			(c)	HTWs in Muradnagar, Chapitala. Bangora, Akubpur and Andicot unions emit gas.
	2	Mr. Abdul Jabbar Sowdagar, BRDB, Chairman, T.C.C.A Muradnagar (Yusufnagar)	(a)	No gas emission in Mur-4 (DTW); abandoned because of high salinity; appeals to go beyond 2nd clay aquitard for fresh water.
			(b)	STWs in operation at Yusufnagar; gas pressure reported at the time of drilling; emits gas during discharge.
			(c)	HTWs emit gas
	3	Abdul Latif Dhamghas(s) K.S.S. Vill. & Union-Dhamghas	(a)	Reports that DTW No. Mur-7, Com. in 1990, had gas problem when started sinking in 1979; drilling could not be continued initially because of gas pressure. Drilling in 1989 under the IDA programme was successful; No gas discharge now.
			(b)	HTWs show gas bubbles; encountered gas pressure during sinking.

Abu Talib Bhuiyan
 Vill. Hyderabad
 Union:

5 Abdul Khaleq Nohal K.S.S. Dhamghas - Vill. Union:

Mr. Kabir Hossain
 Sub. Asstt. Engineer
 DPHE, Muradnagar

7 Abdul Hannan Sarkar
 Vill. Phulghar, Union Andikot

(a) Has 16 STWs with no gas emission.

- (b) Reports about gas problem in one STW, Com. in 1990. Continuous gas emission and then abandoned. The STW sunk about 100m away from the one mentioned shows no gas problem, suspects pocket gas.
- (c) No report of gas emission in the two DTWs located in the village.
- (a) Report the case history of DTW Mur-7.
 Commissioned in 1991. No gas problem at the time of sinking in 1990. Discharge very well 2.5 cusec; discharge at the time of commission interrupted because of gas emission. The DTW is abandoned and lifted in 1992.
- (b) HTWs show gas emission and gas pressureencountered at depth ranging from 90 -150 feet .
- Gas emission in HTWs in Muradnagar, Kamela, Ramchandrapur (S. Union) - Harpakna and Pasketta villages.
- (b) Also reports a non-operating HTW in Nabinagar Thana (Vill. Dubachar, Khurshid Mia's residence) - gas bubbles.
- (a) Reports that 15 STWs running well in Hyderabad village.
- (b) A STW in Vill. Phulghar faced difficulty during boring because of gas pressure.
- (c) A STW commissioned in 1990 was abandoned because of gas problem.

8 Abdul Quddus Sarker, Mechanic, DPHE Muradnagar

 (a) All HTWs sunk in the depth range of 90 -100 feet emit gas.

(b) Reports about gas emission in HTW -Muradnagar Kazi Bari, West side of Muradnagar Thana - HTW emits gas continuously-fire burns instanceously as soon as match stick is egnited accompanied with sound.

- (c) Reports another case of gas emission at the house of Ershad Master, Vill. West Jangail. Akubpur Union: He was sinking a tube well (HTW) in 1974. People at one night heard a roaring sound (?) and found water with gas emission upto height of 15 feet. He withdrew one pipe (20 feet) and was gas emission was stopped. Presumed that aquifer materials at 90-100 feet depth was gas bearing and was under high pressure.
- Reports that the DTW at Raghunathpur, Homna (Hom-4) emits gas and a HTW at Raghunathpur Khandker Bari discharges saline ground water.

Nabinagar

	Persons Interview		Observations
1	Mr. Shah Alam Executive Engineer B. Baria	(a)	DTW No. Nab-21 at Bidyakut has salinity problem; no gas emission reported.
	D. Dana	(b)	DTW No. Nab-5 at Bariakandi is non operating due to both gas and salinity problem.
2	Mr. Nasiruddin Project Director.	(a)	In Rasullabad (N and S) Union - STWs encounter gas pressure
	BRDB, Kasba	(b)	No STW development in Maniknagar and Baraikandi because of gas pressure.
3	Babul Sudangshu Shekhar Sr. Sub. Asstt. Engineer Nabinagar	(a)	DTW No. Nab-5 has salinity problem; did not run during the last irrigation season.
	, ao ing ai	(b)	DTW No. Na-30 has gas problems; at the time of test less discharge with gas emission (gas burns in the delivery pipe) - gas pressure and gas emission at 185 and 315 feet depth. The site was changed and no gas problem. DTW commissioned in 1991.
		(c)	DTW No. Nab-38 (Com. 1991-92) at Bitghar Union, Vill. Shibpur discharged yellowish turbid water (suspected gas) at the time of test; discharged well during 1992 irrigation season with good crop.
4	Mr. Tofazzal Hossain BRDB, Nabinagar	(a)	Reports about IDA/DTW No. Nab-42 at Naroi Brahmanhata K.S.S. Kaitola (Com. 22.2.92): After commissioning, discharged yellowish turbid water, probably associated with gas. Normal colour after 10 days. Discharging well, good crop.
		(h)	DTW No. Nab-5 at Baraikandi, Shyamgram, Vill. Kul Ashin (Com. 22/2/90): Saline ground water-crop damage; gear head broken Abandoned.
5	Mr. Nurul Islam Chairman, T.C.C.A	(a)	Serious Fe-problem in whole Thana. particularly in HTWs.

Daudkhandi

	Persons Interviewed		Observation
1	Mr. Ershad.	Ι.	Reports problems with the following DTWs:
	Suh. Asstt. Engineer Daudkandi	(a)	Daud - 61, Diapara K.S.S. JL 190, Plot - 1043 (Com. 25/6/91) : Discharge normal with emission of gas at the start, no gas after 1 hour. No problem detected in 1992 irrigation season.
		(h)	Daud - 43, Motopi K.S.S. Majidpur, J.L. 222, Plot - 534, (Com. 15/01/1991): At start yellowish turbid water associated with gas; (fresh water after 1 hour). During 1992 irrigation season, gas emission but discharging well.
		(c)	Daud - 31, Jagatpur - 5, Dashanip Para K.S.S. J.L - 209, Plot - 25-36 (26/01/1990-com.): Gas with water - functioned well in 1990 irrigation season. Non operating since 1991 primarily because of managerial problem but partly gas problem.
2	Mr. M. Matiar Rahman Sub. Asstt. Engineer, BADC, Daudkandi Unit-1	(a)	Gas pressure at depth ranging from 110-120 feet makes sinking of STW difficult in the following unions:
			Sundulpur (E&W) Gouripur (E&W) Mohammadpur Eliotganj Pachgachia
		(b)	Describes the difficulties faced during sinking of STWs. Gas started encountering first at a depth of 30-40 feet: and then at 80 feet. Discharge of water interrupted because of gas bubbles and ultimately disrupted. Boring for STW in the west, East and North side of Vill. Mohammadpur (Sundulpur E Union), continued but could not be done because of gas pressure. Difficulty in sinking STWs faced on north side of Dhaka - Chittagong road.
		(c)	DTW No. Daud-20: both saline and gas problem, but discharging well.
		(d)	No STW in the neighbourshood of Daud-20 and Daud - 60 DTWs.

1

1

1

11

[]

[]

[]

[]

1

U

Debidwar

		Persons, Contacted		Observation
l.		Md. Fashiur Reza Foreman, BRDB	1	No failure of STW reported because of gas problem
2		BRDB Weekly Meeting (Wednesdays) Central K.S.S, Debidwar		
	(a)	Mr. Moslehuddin Manager, Purba Sangchail	(a)	DTW No. Deb-56 (IDA code No. 118/00705): Gas emission during testing stage.
	(b)	Mr. Kafiluddin Manager West Ballapur	(b)	No gas problem; crop damage due to Fe-content in the ground water. (DTW No. Deb-27, IDa Code No. 218/0076
	(c)	Mr. Abdus Sattar, Manager, South Madhumura K.S.S.	(c)	DTW No. Deb-30 (IDA) Code No. 219/00321) Gas problem not noticeable, Fe-problem.
	(d)	Mr. Nityananda Das South Saidpur K.S.S Rajmehar	(d)	 DTW No. Deb-38 (IDA Code 247/00061) * Less discharge in 1990, no discharge in 1991- 92, decision to be taken for abandonment. * Gas emission with Fe-problem.
	(e)	Members, Mollapara K.S.S Rajmehar	(e)	DTW Deb-47, At the time of sinking gas emission, after resinking no problem.
	(f)	Member, Anantapur K.S.S.	(t)	For Deb-27, gas emission, discharge not affected, no damage to crops
	(g)	Member, Sultanpur K.S.S.	(g)	DTW No. Deb-39 (IDA Code No. 266/01027) Salinity problem.
3		M. M. A. Awal S/O, BADC Dehidwar	3	The following Union/Villages face difficulty in sinking STW because of gas pressure: Bara Shalghar Gunaighar - N and S Rajmehar - N and S Shalghar Jaffarganj * Fe-problem in Elahabad Union.

Kasba

0

	Persons Interviewed			Observations
1	Md. Shafiqul Islam Sr. Asstt. Sub Engineer, Kasba	(a)		as problem in Kasba Thana except at the Bayek union to the Tripura foot hills).
	Kasba			(*)
		(h)	water	yek union attempts were made for drilling (hand boring- jetting); could not penetrate because of gas pressure ind 150°.
		(c)	A DT politic	W - Ka - 13 is non operating because of Village
		(d)	Gas p	roblem east of Kasha Rly line.
		(e)	The fo	ollowing DTWs face problems (not related to gas)
			(1)	Kaimpur - Ka-10 & Ka-69 Village Politics; 8-10 STWs Sunk around the DTWs.
			(11)	Kasba Union: Ka-20, Ka-127, Ka-131, Ka-16, and Ka-18: Engine problem; no gas problem
		(f)	Condi	tions of DTWs in the following unions:
			(I) (II) (III) (IV)	Gopinthpur - Aquifer problem Binauti - DTWs and STWs running well Kuti - Aquifer problem, less discharge Badiar (N&S) - No problem.
2	Mr. Nasiruddin Project Director, BRDB, Kasha	(a)	No of 33.	DTWs - 55 (25 under IDA programme), No. of STW-
		(b)		nion: DTWs and STWs discharge less because of poor r materials.
Burc	hang and Brahmanpara Thanas			
	Persons Interviewed			Observation
1	Babu Amal Chandra Paul Asstt. Engineer Burichang-Brahmanpara			No Gas problem reported.
2	Mr. Abdus Rashid Sarker Asstt. Accountant			No gas problem reported
Con	nilla Kotwali Thana			
	Persons Interviewed			Observation
Asst	Mahboob Monir t. Engineer vali		No gas er	nission problem reported either in DTWs or STWs.

[]

[]

[]

[]

[]

[]

U

Homna:

Persons Interviewed

(a)

Mr. Ershad Sub. Asstt. Engineer incharge Homna

Provides particulars of the DTW operating in Homna.

DTW No.	Particulars	Yr. Com.
Homna-1	Vill. Raghunathpur	21/11/1990
	JL 102, PI.430	
Homna-2	Homna N, Near	
	Homna Thana	01/02/1992
	JL 56, Plot 707	
Homna-3	Chandirchar K.S.S.,	
	Vill. Asadpur	24/12/1991
	JL-85, Plot-46	
Homna-4	Gopalnagar K.S.S.	25/12/1991
	JL-80, Plot 178	
Homna-5	Chandirchar K.S.S.	
	Chandirchar Vill.	27/02/1992
	PI-922, JL-97	

Observation

(b) DTW Homna-5 at Chandirchar (N) sunk in 1991 and commissioned in 1992; 2 cusec discharge at start, 1.5 cusec after 6 hours; Gas emission, less discharge believed to be due to gas discharge.

(c) No report of gas emission in the STWs.

Bancharampur

Brahmanbaria

1

Person interview

Mr. Shah Alam Executive Engineer

Observations

(a) No gas problem reported

(b) DTW Nas-Banch-5 and banch-II at Rupashdi have acute salinity problem resulting in crop damage; Banch - 7 at Belanagas has salinity problem with crop damage. Appendix C.II

MINOR IRRIGATION STATISTICS

=
0
×
Ð
5
a
9
A

b

100

戸刻

1

1

Total Irrigation (ha)

Groundwater Irrigation (ha)

Surface Irrigation (ha)

(ha)

(ha)

3

9 0

0000

000000000

121 113 162

			WLD		MLS		MLSSO		WTW		Traditional	LLP		LI P		dII
Zone		Block									Irrigation	< 1.0cusec	usec	1.0 cusec	Sec	2 65
-	Name	Nr & Name	N	(ha)	ž	(ha)	ĸ	(ha)	ž	(ha)	(ha)	ž	(ha)	ž	(ha)	ž
A	Burichang	1 Burichang	8	263	0	0	0	0	0	0	2	0	0	0	0	o
A		2 Januin	00	208	Э	14	0	0	0	0	4	0	0	0	0	0
A		3 Jagatpur	9	196	17	63	0	0	0	0	9	0	0	0	0	0
A		4 Parnamati	6	214	N	16	0	0	0	0	0	0	0	0	0	0
¢		5 Shampur	3	73	0	0	0	0	0	0	8	0	0	0	0	9
A		6 Jatrapur	0	0	0	0	0	0	0	0	4	0	0	0	0	n no
A		7 Gobindapur	٢	40	0	16	0	0	0	0	4	0	0	0	0	9
A		8 Bathangar	5	137	-	S	0	0	0	0	16	0	0	0	0	0
A		9 Rajpur	2	263	20	101	0	0	0	0	0	0	0	0	0	0
A		10 Shankuchail	e	16	30	182	0	0	0	0	4	0	0	0	0	0
A		11 Pachra	4	162	43	225	-	10	0	0	8	0	0	0	0	0
A	Burichang	12 Bakshimul	12	425	٢	10	0	0	0	0	C	0	0	0	0	0
A	Burichang	13 Kalikapur	3	57	4	32	0	0	0	0	53	0	0	0	0	0
A	Burichang	14 Ghota Horipur	4	117	4	36	0	0	0	0	8		0	0	0	0
A	Burichang	15 Jamtala	-	20	8	93	0	0	0	0	20	0	0	0	0	0
A	Burichang	16 Sholanal	0	0	0	0	0	0	0	0	0		0	0	0	10
٨	Burichang	17 Varashar	2	172	0	0	2	12	0	0	0	0	0	0	0	0
A	Burichang	18 Purbahara	5	53	0	0	0	0	0	0	0	0	0	0	0	9
A	Burichang	19 Kharataia	ß	178	0	0		2	0	0	0	0	0	0	0	0
A	Burichang	20 Shabrampur	9	164	5	6	0	0	З	0	2	0	0	0	0	٣
Totals	0		91	2,840	137	803	4	24	3	0	141	0	0	0	0	34
			MLU	U U	MLS		MTSSU		MTW.		Tenditional	-		4		4
Zone	Thana	Block		,								1 Acused	20	LLP 1.0 cileon		12
	Name	Nr & Name	Ņ	(ha)	ž	(ha)	N	(ha)	ž	(ha)		Nr		Nr	a)	Sž
A	Comilia	15 Manipur	5	16	9	34	0	10	0	0	10	0	0	0	0	0
A	Comilia	16 Amratali	-	24	19	177	4	35	0	0	12	0	0	0	0	0
A ·	Comilla	17 Ratnabati	Q	144	4	28	0	0	0	0	2	0	0	0	0	0

117 117 166 166 4 4 8 8 53 8 8 53 8 8 8 20 1182 1182 113

00000000000

otals	s		91	2,840	137	803	4	24	e	0	141	0	0	0	0	34	602	0	0	851	3,668	4,518
			MLD		STW		DSSTW		WLW		Traditional	LLP		LLP	, -	TP	-	Ч		Surface	Groundwater	Total
oue	Name	Block Nr & Name	N	(ha)	ž	(ha)	N	(ha)	'n	(ha)	Irrigation (ha)	< 1.0cusec Nr (ha)		Nr (h	(e	2 cs Nr	3 (ha)	3-5 cs	(ha)	Irrigation (ha)	Irrigation (ha)	Irrigation
V	Comillo	15 Maniana	ų	10																1	//	faul
(-	CUIIIIIa	10 Midilipur	0	10	D	\$5	N	01	0	0	10	0	0	0	0	0	0	0	0	10	142	152
1	Comilia	16 Amratali	-	24	19	177	4	35	0	0	12	0	0	0	0	0	0	0	0	12	237	249
A	Comilia	17 Ratnabati	2	144	4	28	0	0	0	0	2	0	0	0	0	2	45	0	0	47	172	919
A	Comilla	18 Rasulpur (Uttar)	9	130	12	79	7	59	0	0	0	0	0	0	0	0	0	0	0	C	267	267
d l	Comilla	19 Rasulpur (Dakhl)	F	28	5	8	0	0	0	0	0	0	0	0	0	8	212	0	0	212	36	940
d	Comilla	20 Kalikapur	3	134	2	28	0	0	-	0	4	0	0	2	12	4	28	0	C	45	162	200
A	Comilla	21 Sharippur	4	164	-	10	С	40	0	0	8	0	0	0	0	0	0	0	C	a	214	100
đ	Comilla	22 Chaoulpur	-	80	20	81	0	0	0	0	4	0	0	0	0	6	146	0	0 0	150	689	020
đ	Comilla	23 Khirpur	5	139	4	7	0	0	0	0	0	0	0	01	8	5	130	0	0	138	146	283
d.	Comilla	24 Chanpur	<u></u>	30	5	18	0	0	0	0	4	0	0	-	8	4	113	0	0	125	49	17.0
đ	Comilla	28 Bibirbazar	0	0	10	81	4	32	0	0	0	0	0	2	24	4	85	0	0	109	113	223
als			32	868	85	552	20	177	-	0	45	0	0	7	53	30	759	0	0	856	1691	0 402
														-		100	1000					2025

62

Data source : AST/CIDA (1991), DAE

Totals

4 4 4 4 4 4 4

Data source : AST/CIDA (1991), DAE

Pl

Name Nr. Nr. (ha) Nr. Nr. Nr. Nr. Nr.	Zone	Thana	Block	DTW		STW		DSSTW		MTW		Traditional	Ę			Ę	Ę		Ę		5 00	Surface	Groundwater
Name Nr (Name Nr (Na) Nr (Na) <th< th=""><th>Lone</th><th>Inana</th><th>Block</th><th></th><th></th><th></th><th>•</th><th>8</th><th></th><th>2</th><th>F K</th><th>Irrigation</th><th>< 1.0</th><th>cusec</th><th></th><th>usec</th><th></th><th></th><th></th><th></th><th>3-5 cs</th><th>3-5 cs</th><th>3-5 cs Irrigation Irrigation</th></th<>	Lone	Inana	Block				•	8		2	F K	Irrigation	< 1.0	cusec		usec					3-5 cs	3-5 cs	3-5 cs Irrigation Irrigation
A Brahmanpara 1 Madabpur 2 53 1 4 0 <th0< th=""> 0 0 0<th></th><th>Name</th><th>Nr & Name</th><th>N</th><th>(ha)</th><th>Nr</th><th>(ha)</th><th>Nr</th><th>(ha)</th><th>ų</th><th>(ha)</th><th>(ha)</th><th>ž</th><th>(ha)</th><th></th><th>(ha)</th><th></th><th></th><th>(ha</th><th>(ha) Nr</th><th>N</th><th>Nr (ha)</th><th>Nr (ha)</th></th0<>		Name	Nr & Name	N	(ha)	Nr	(ha)	Nr	(ha)	ų	(ha)	(ha)	ž	(ha)		(ha)			(ha	(ha) Nr	N	Nr (ha)	Nr (ha)
A Behmanpara 2 Makimpur 0 <td>Þ</td> <td>rahmanpara</td> <td>1 Madabpur</td> <td>N</td> <td>53</td> <td>-</td> <td>4</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>177016</td> <td></td> <td>-</td> <td></td> <td>(J)</td> <td>55</td> <td>0</td> <td>0</td> <td>0 0 55 57</td>	Þ	rahmanpara	1 Madabpur	N	53	-	4		0	0	0	0			177016		-		(J)	55	0	0	0 0 55 57
A Brahmanpara 4 Kandughar 2 69 4 32 0 </td <td>20</td> <td>rahmanpara</td> <td>2 Makimpur</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>80</td> <td>81</td> <td>81 2 57</td> <td>N I</td> <td>2 57</td>	20	rahmanpara	2 Makimpur	0	0		0		0	0		0							80	81	81 2 57	N I	2 57
A Brahmanpara 4 Kandughar 0 <td></td> <td>rahmanpara</td> <td>3 Shaitshala</td> <td>20</td> <td>69</td> <td></td> <td>32</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0 0 63</td>		rahmanpara	3 Shaitshala	20	69		32		0	0		5								0	0	0	0 0 63
A Brahmanpara 5 Jamital 0 0 10 61 0 0 0 10 61 0 0 0 10 4 8 8 7 Shediai 1 32 12 12 12 1 0		rahmanpara	4 Kandughar	0	0		0		0	0		0								0	0	0 0	0 0
A Brahmanpara 6 Uttar Chandia 1 32 12 121 0 <		rahmanpara	5 Jamtali	0	0		61	0	0	0		10							16	162 (0	0	0 0 180
A Brahmanpara 7 Shediai 4 73 14 46 0		rahmanpara	6 Uttar Chandla	-	32		121	0	0	0		0								0	0	0 0	0
A Bera Khala 1 19 32 215 0 0 1 0		rahmanpara	7 Shediai	4	73		46	0	0	0		0						0 0			0 0	00000	0 0 0 0 0 0 0 0
A Brahmanpara 9 Chandla 5 132 6 49 0		rahmanpara	8 Bera Khala	-	19		215	0	0	-		0	8 8					0		0 0	0 0	000	
A Brahmanpara 10 Bara Dushia 2 65 12 97 0<		rahmanpara	9 Chandla	Ch	132		49	0	0	0		0					0	0	0	0	0	0	0 0 0
4 Brahmanpara 11 Dhalgram 4 62 22 135 0<		rahmanpara	10 Bara Dushia	N	66		97	0	0	0		ü						0		0	0	0 0	0 0 0 3
Image: Section of the section of th		rahmanpara	11 Dhalgram	4	62		135	0	0	0		0	0					ω		42	42 0	42 0 0	42 0 0 42
Brahmanpara 13 Dulalpur 0 0 11 101 0<	1.00	rahmanpara	12 Nalla	4	32		182	0	0	0	0	0	0	-	0			0		0	0	0 0 0	0 0 0
Brahmanpara 14 Gopashan nagar 6 162 10 89 0 0 0 2 0 0 0 Brahmanpara 15 Naighar 10 259 9 59 0 <td></td> <td>rahmanpara</td> <td>13 Dulalpur</td> <td>0</td> <td>0</td> <td></td> <td>101</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>_</td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0 0</td> <td>0 0 0</td>		rahmanpara	13 Dulalpur	0	0		101	0	0	0	0	0	0	_	0			0		0	0	0 0	0 0 0
Brahmanpara 15 Naighar 10 259 9 59 0 0 0 6 0 0 0 Brahmanpara 16 Branmanpara 16 Branmanpara 14 113 5 32 0	i ter Encor	rahmanpara	14 Gopashan nagar	0	162		68	0	0	0	0	N	0	-	0			0		0	0	000	0 0 0 2
Brahmanpara 16 Brananpara 4 113 5 32 0 0 0 28 0<	1000 1000		15 Naighar	10	259		59	0	0	0	0	0	0	~	0			0		0	0	0 0	0 0 0 6
Brahmanpara 17 Moha Lakshmipar 5 115 3 21 0 0 0 6 0 0 0 Brahmanpara 18 Shehababad 9 283 6 45 0 </td <td></td> <td></td> <td>16 Bramanpara</td> <td>4</td> <td>113</td> <td>ch</td> <td>32</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>28</td> <td>0</td> <td>~</td> <td>20</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0 0 0</td> <td>0 0 0 28</td>			16 Bramanpara	4	113	ch	32	0	0	0	0	28	0	~	20		0	0		0	0	0 0 0	0 0 0 28
Brahmanpara 18 Shehababad 9 283 6 45 0 0 0 40 0 0 Brahmanpara 19 Zeruin 3 99 0	: 95 :730	ahmanpara	1 / Moha Lakshmipar	ι O	115	ω	21	0	0	0	0	6	0	~				0		0	0 0	0 0 0	0 0 0
Brahmanpara 19 Zeruin 4 99 0		ahmanpara	18 Shehababad	9	283	0	45	0	0	0	0	40	0	~			U	0		0	0 0	0 0 0	0 0 0 40
Brahmanpara 20 Cnancipur 3 85 6 36 0 </td <td></td> <td></td> <td>19 Zeruin</td> <td>4</td> <td>99</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>N</td> <td>•</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td>0 0</td> <td>0 0</td> <td>0 0 0 10</td>			19 Zeruin	4	99	0	0	0	0	0	0	4	N	•				0		0	0 0	0 0	0 0 0 10
branmanpara 21 Hamannagar 0 0 3 16 0 0 0 0 2 Brahmanpara 22 Monoharpur 0			20 Chandipur	ω ω	85	Ø	36	0	0	0	0	0	0	~				0		121	121 0	121 0 0	121 0 0 121
branmanpara 22 Mononarpur 0 <td></td> <td></td> <td>21 Hamannagar</td> <td>0</td> <td>0</td> <td>ω</td> <td>16</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>8</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>0.1</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0 0 0</td> <td>0 0 0 14</td>			21 Hamannagar	0	0	ω	16	0	0	0	0	8	0	0			0.1	0		0	0	0 0 0	0 0 0 14
branmanpara 23 tetatumi 0 0 24 223 0 <td></td> <td></td> <td>22 Monoharpur</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>8</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td>40</td> <td>40 0</td> <td>40 0 0</td> <td>40 0 0 65</td>			22 Monoharpur	0 0	0	0	0	0	0	0	0	8	0	0				4		40	40 0	40 0 0	40 0 0 65
branmanpara 24 Sashidal 3 91 14 101 0 0 0 10 0 0 0 Brahmanpara 25 Bagra 0 0 18 146 0			23 letaibumi) C	0	24	223	0	0	0	0	0	0	0				0		0	0 0	0 0	0 0 0
branmanpara 25 Bagra 0 0 18 146 0			24 Sashidal	6	91	14	101	0	0	0	0	10	0	0				0		0	0	0 0	0 0 0 10
Brahmanpara 26 Deush 0 0 37 235 0 0 0 2 0 1 Brahmanpara 27 Nagaish 2 63 36 344 0 <td></td> <td></td> <td>25 Bagra</td> <td>0</td> <td>0</td> <td>18</td> <td>146</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td>S</td> <td></td> <td>51</td> <td>51 0</td> <td>51 0 0</td> <td>51 0 0 57</td>			25 Bagra	0	0	18	146	0	0	0	0	0	0	0				S		51	51 0	51 0 0	51 0 0 57
Branmanpara 27 Nagaish 2 63 36 344 0 0 0 0 0 0 0 0 0			26 Deush	0	0	37	235	0	0	0	0	2		0				10		32		32 0 0	32 0 0 42
			27 Nagaish	N	63	38	344	0	0	0	0	0		0				0		0	0 0	0 0	0 0 0

Appendix C.II

The second
Appendix C.II

Zone	Thana	Block			MIC		DSSIW		MLW		Traditional	e S		E		LLP		LLP	0	Surface	Groundwater	Total
	Name	Nr & Name	Nr	(ha)	ž	(ha)	ž	(ha)	ž	(ha)	(ha)	< 1.0cusec Nr (ha	(ha)	1.0 cusec Nr (h	(e	2 cs Nr	(ha)		ln (ha)	Irrigation (ha)	Irrigation (ha)	Irrigation
	Debidwar	1 Barashalaohar	-	66		r	•			8								1	T			(IIa)
			•	20	-	1	0	0	0	0	40		C	-	α	1	140		0	10.00		
	Lebidwar	2 Prajapati	e	36	5	24	0	C	C	C					0	•	140		Э	188	39	
	Debidwar	3 Sangpail	0	0	C	i	0 0	0 0	0	0			0		0	0	0		0	0	61	
A Debi	Debidwar	4 Echabour		0 0	0 0		c	c	0	0	8		0		14	-	21		C	50	5	
			c	C	N	16	0	0	0	0	0		C		V				0 0	7	C	
	Uebidwar	o Maheshpur	0	0	e	9	0	0	C	C						-	2		Э	14	16	
	Debidwar	6 Mugshair	-	28	-	y y	0			0 0	00				0	0	0		0	e	9	
	Debidwar	7 Gopalnagar	0	0	-	9 (2		0 0		0 0			0		0	0	0		0	0	34	
A Debi	Debidwar	8 Gopalpur	0	0	С	0 00	0 0	0 0		0	0 0	o ,	0	0	0	4	38	0	0	45	9	51
	Debidwar	9 Rasulpur	2	45		66	0 0		0 0	0 0	0 0		4		0	S	83		0	87	00	
	Debidwar	10 Wahedpur	0	0	2	1 2	0 0	0 0	0 0	0 0	N		0		0	0	45		81	127	74	
	Debidwar	11 Burirpar	0	0	ŝ	64	0 0		0 0	0 0	02		0		40	-	80		0	69	53	
Debidwar	dwar	12 Subil	0	0	19	2 4	0 0	0 0	0 0	5 0	8		4		9	0	0		0	47	40	
Debidwar	dwar	19 Fathabad	0	0	18	3 2	0 0	0 0	0 0	5 0	20		0		0	0	0		0	20	55	
Debidwar		20 Sultanpur	0	0	25	130	0 0	0 0	0 0	2 0	2		0		10	0	0		0	12	62	
Debidwar		21 Maichapara	0	0	37	164	0 0		0 0	5 0	0		0		0	-	32		0	32	132	
Debidwar		22 Chanpur	0	0	e e	i i	0 0		0	0 0	0		0		0	0	0		0	0	164	
Debidwar		23 Khalidour		0 0	,	5 1	2	5	C	Э	2		0		0	С	81		0	83	5	
		24 Kotnanizour	0 0	0	2 .	8	0	0	0	0	0		0		0	LC.	142			3 .	0	
		indinument	C	C	54	12	0	0	0	0	9		P		0	0 0			5	4	55	
													t		D	C	0		0	10	12	
lotals			7	141	174	811	0	0	0	0	147	9	12	16	83	30	600	0	51	*00		

R. P C LIBRARY. * DHAK

Data source : AST/CIDA (1991), DAE

Zone	Thana	Block	DTW		WIS		DSSIW		MIW		Traditional Irrigation	< 1.0cusec	usec	LLP 1.0 cusec		2 cs		3-5 cs		Irrigation
	Name	Nr & Name	N	(ha)	ų	(ha)	¥	(ha)	N	(ha)	(ha)	N	(ha)	ų	(ha)	ų	(ha)	ş	(ha)	
B Kasba		1 Shahpur	7	174	24	196		0	0	0	0	0	0	0	0	0	0	0	0	
190100	5 X	2 Taltala	ω	11	5	150	0	0	0	0	0 0	، د	20	0 0	0 0	0 0	0 0	0 0	0 0	
B Kasba	<i>8</i> 7400	3 Charnal	ы	51	7	40		0	CT	N	77	0	0	N	8	0	0	0	0	23
B Kasba	10000	4 Kashba block	-	12	10	93	0	0	сл	N	14	0	0	0	0	0	0	0	0	
B Kasba	5 520		о 01	134	32	210		0	0	0	4	0	0	0	0	0	0	0	0	
~ ~	1 172	o Zazishar 7 Mainar	o c	0 0	یر 19	130		0	0 0	0	5 83	, 0	0	0	0	0	0	0	0	
B Kasba	201000	7 Mampur 8 Kamalpur	NC	49	30	271	0 0	0 0	0 0	0 0	4	0 0	0 0	o -	0 0	ы 10	172	o c	0 0	
_		9 Baik	0	0	თ	30		0	0	0	18	- 1	4 1	ω	36	20	356	0 (0 0	0
B Kasba		10 Kullapathar	0	0	4	40		0	0	0	174	0	0	0	0	5	162	0	0	
B Kasba		11 Madla	0	0	7	53	0	0	0	0	304	0	0	0	0	τω	190	0	0	
B Kasba		12 Kuti	-	36	0	0	0	0	0	0	0	0	0	ω	28	ۍ ا	158	0	0	
B Kasba		13 Jagiara	0	0	Ξ	68	0	0	0	0	0	0	0	N	16	cn	130	0	0	
B Kasba		14 Lemiara	J	243	25	148	0	0	0	0	0	0	0	0	0	0	0	0	0	
		15 Maijkhar	မ	125	0	81	0	0	0	0	4	0	0	7	97	0	0	0	0	
B Kasha		10 Jamsnerpur 17 Mandamur	0 N	32	0 C	100	0 0		0 0	0 0	0 0	00	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
		18 Badhair	7 1	160	7 1	40	0 0		0 0	0 0	<i>د</i> د	o c	5 0	0 0	o c	0 0	o c	0 0	0 0	
		19 Kherara	<i>с</i> п	101	ΰ.	123	0 0	0 0	0 0	0 0	N N	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
B Kasba		20 Sonagaon	4	57	4	22	0	0	0	0	0	0	0	0	0	0	0	0	0	
B Kasba		21 Dheli	N	28	G	22	0	0	0	0	0	0	0	0	0	0	0	0	0	
B Kasba		22 Simrail	N	47	12	87	0	0	0	0	0	0	0	4	40	24	415	0	0	
		23 Mehari	0	0	0	0	0	0	0	0	0	0	0	ω	20	0	0	0	0	
		24 Kheora		28	7	65	0	0	0	0	0	0	0	0	0	0	0	0	0	
B Kasba	25 0	26 Binauti	1 4	40 2	10 0	47	0 0	0 0		2 0	168		5 0	νc	o c	0 0	100		o c	
_		27 Saiadabad	9	212	5	79	0	0	0	0	4	0	0	4	24	6	69	0	0	
B Kasba	1217/	28 Tigharia	-	8	13	45	0	0	10	6	20	4	œ	7	32	4	45	0	0	
B Kasba		29 Gopinathpur	0	0	22	63	0	0	25	30	152	0	0	4	32	ω	36	0	0	
s 10459 2 - 0259		30 Chandidar	-	20	16	71	0	0	10	12	75	0	0	0	0	-	14	0	0	
08038 2003		31 Hajnagar	0 0	0	29	146	0	0	0	0	69	0	0	0	0		8	0	0	
B Kasha		32 Bishunagar 33 Mularam	no	138	ດ ເພ	81	0 0	0 0	0 0	0 0	198	0 0	0 0	0 0	50	12	101	+ 0	0	
		34 Shambari	лс	201	5	200			5 0		42			nn		0 0	ò		202	
2012		34 Shambari 35 Charach	лс	170	4 C	32		o c	b c	0 0	81	b c) c	0 0	a a	0	0 0	0 0	0	
		35 Unargach	0 0	1/0	c	200) C	0 0	0 0	0 0	0	0 0	0	0	0	0	0	0	0	
b Kasba	25	36 Niamatpur	N	57	ŝ	20	0	0	0	0	109	0	0	N	32	N	61	0	0	
Totals			92	2.240	401	2,614	0	0	អ	53	1.633	8	30		488	133	2.094	-	283	

Data source : AST/CIDA (1991), DAE

[]

[]

1

1

l

1

Appendix C.II

Zone	8	Block	MIG		STW		DSSTW		WTW		Traditional	LLP .				Ъ,		LLP		Surface	G	Total
	Name	Nr & Name	Nr	(ha)	ž	(ha)	ž	(ha)	ž	(ha)	(ha)	Nr (ha)	(ha)	ž	cusec (ha)	Z CS	(ha)	3-5 CS) Nr (ha)	(ha)	(ha)	Irrigation (ha)	Irrigation (ha)
В	Akhaura	1 Kharkut	0	0	2	4	0	0	0	0	204	0	0	0	0	0	0	0	0	204	4	20
B	Akhaura	5 Mariand	0	0	24	113	0	0	2	-	139	2	2	8	36	4	53	0	0	230	114	34
	Akhaura	10 Chatuya	2	227		61	0	0	0	0	4	0	0	0	0	15	146	0	0	150	306	45
В	Akhaura	11 Bara Louhaghar	0	0	4	19	0	0	0	0	234	0	0	-	4	-	18	0	0	257	19	27
	Akhaura	12 Kholkhar	9	59	22	198	0	0	0	0	28	0	0	-	12	10	109	0	0	150	257	40
	Akhaura	13 Ruti	0	69	25	144	0	0	0	0	13	0	0	-	16	10	119	0	0	148	212	36
В	Akhaura	18 Dharmagar	0	0	9	68	0	0	2	٣	45	4	4	4	38	0	0	0	0	86	06	176
Totals			15	355	100	645	0	0	10	2	667	9	9	15	106	40	445	0	0	1.225	1.002	700 0

Data source : AST/CIDA (1991), DAE

Zone Thana Name	a Block e Nr & Name		(ha)	Nr STW	(ha)	Nr (t	a		(ha)	Traditional Irrigation (ha)	A 1.0	LP 1.0cusec Nr (ha)	LLP 1.0 cusec	Isec	2 cs	(ha)	3-5 cs	Surface Irrigation
			V		1		Vina/		(ind)			(114)	N	(114)	N	(na)	N	(na)
		-	38	7	40	0	0	0	0	2	0	0	0	0	0	0	0	0
	0 10	N	59	0	0	0	0	10	2	_	0	0	0	0	N	20	0	0
C Muradnagar	- ω	00	0	0	10	0 0	0	0 0	0		0	0	0	0	5	117	0	0
	л 4	0 0	i c	1 (5/	0 0	C	0	0	4	0	0	0	0	0	0	0	0
C Muradnagar	ის	- N	3 4	5 0	03	0 0	00	00	0 0	-	0 0	0	0	0	0	0	0	0
C Muradnagar		- در	21	5 0		2 0		0 0	0 0		0		0	0	0	0	0	0
C Muradnagar	æ ·	4	83	N	16	0 0	0 0	0 0	0 0	5 0					0 0	00	0 0	0
C Muradnagar	9	0	0	4	40	0	0	0 0	0 0	4 0	5 0		0 0	ภิจ	۵ د	40 0	5 0	> c
C Muradnagar	10	N	49	20	162	0	0	0 0	0 0	00	0 0				4 4	73		
C Muradnagar	291	0	0	0	0	0	0 0	0 0	0 0	12	2 0	5 0			ب در	7 2	5 0	
C Muradnagar	5444	0	0	-	10	0 1	0	0 0	0 0	20	- 0	- 0	5 0		ກ່	140		
C Muradnagar	13	0	0	ch	85	0	0	0 0	0 (12	0 -	0 -	0 0	0 0	7 0	117	0 0	0 0
	14	-	24	9	105	0	0	0	0	0	0	0	4	57	7.	219	0 0	0 0
	5 5)	30	ω	30	0	0	0	0	0	-	-	-	12	0	0	0	0
2 - 23 	16	ω	75	4	37	0	0	0	0	12	0	0	0	0	-	28	0	0
	17	N	6	0	0	0	0	0	0	0	0	0	0	0	S)	45	0	0
	10 - 32	4	107	0	2 0	0	0	0	0	1	0	0	0	0	0	0	0	0
C Muradnagar	5 1	ы сы	93	ω	24	0	0	0	0	თ	0	0	0	0	0	0	0	0
C Muradnagar	2 10	ິດ	n c		10	0	0	0 0	0	ω	0	0	0	0	0	0	0	0
C Muradnagar	200	- 1	4 4 0 7	νc	ა ა c		00	00	0 0	. 0	0	0 0	0	0	σı	101	-	40
C Muradnagar		Un -	200	5 6	0 22		> c		o c	14	0 0	0 0	0	0 0	0	0 0	0	0
C Muradnagar	24	N (85		თ . თ	0 0	0 0	0 0	5 0		5 0				ى د	200	0 0	0 0
C Muradnagar		ω	69	U	40	0	0	0	0	22	0	0 0	თ.	192		0 6	0 0	0 0
C Muradnagar		-	27	0	0	0	0	0	0	-	0	0	N	10	0	0 1	0 1	0 0
Muradnagar		0	0	c	0	0	0	0	0	0	0	0	N	10	9	173	0	0
0 980 1 62		0	0	0	0	0	0	ω	ω		0	0	10	87	0	0	0	0
C Muradnagar	r 29 Kalipur 30 Dhananati Khola	- 0	0	0 7	42	0 0	00	00	00	۰ J	0	0	0	0	0	0	0	0
		о.		5 (5 1			0 0	o c	o -	0 0) c) c	C	6	220	c	0
	32 Bra Chapitala	- 0	10	0 0	0 0	0 0	0 0	D C	o c		0 0	0 0	0	0 0	9	142	0	0
		0	0	0	0	0	0 0	0 0	0 0	ന (0 0	0 0	5 0	DC	ů c	102		
C Muradnagar	34	0	0	0	0	0	0	0	0	10	0 1	0 0	- 0	5) (5)	1 7	138	0 0	2 0
C Muradnagar		0	0	0	0	0	0	0	0	0	0	0	<u>.</u>	œ	8	174		61
	36 Madayanagar	0	0	0	0	0	0	0	0	18	0	0	-	8	9	121	0	 0
C Muradnagar	37 Dhaniranapur	0	0	0	0	0	0	0	0	N	0	0	Ø	45	12	181	-	 59
	38 Alirchar	0	0	0	0	0	0	0	0	-	0	0	N	16	9	160	0.	0
C Muradnagar	39 Gungar	-	49	-	8	0	0	0	0	8	0	0	0	0	16	259	0	0 0
C Muradnagar	40 Bakharnagar	4	103	5	19	0	0	0	0	4	0	0	0 0	0 0	0 0	0	0 0	0 0
	41 Companiganj	-	19	0	0	0	0	-	0	-	-		- (ω α	o (131	0 0	
C Muradnagar	42 Rahimpur	0	0	0	0	0	0	0	0	10	-	N	0	0	10	344	0	0 0
		5		105	850	0	2	\$	n	300		> 1	3		2			0

1

1

[]

[]

]]

Ĩ

IJ

1

IJ

[]

U

l

1

Data source : AST/CIDA (1991), DAE

Appendix C.II

	(ha) Nr (ha) (ha)<	(ha) Nr (ha) (ha)<	on <
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(ha) Nr
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 3 30 4 95 0 132 0 132 0 132 0 132 0 132 0 132 0 132 0 132 0 132 0 132 0 132 0 132 0 0 132 0 0 133 0 132 0 0 133 0 132 0 0 132 0 0 133 0 132 0 133 0 133 0 132 0 133 0 132 0	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24 1 3 1	69
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	109
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61 2 20 0 0 0 85 0 0 85 0 0 85 0 0 67 14 14 14 14 14 14 14 14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 <	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 65 0 65 0 65 0 65 0 65 0 0 65 0 0 65 0 0 65 0 0 65 0 0 65 0 0 65 0 0 65 0 0 65 0 0 65 0 0 65 0 0 522 4 4 0 0 0 245 0 0 223 1 4 0 0 0 0 0 245 0 0 245 0 0 235 0	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0
0 0 0 10 224 0 0 235 0 0 0 0 0 11 219 0 0 247 0 0 0 0 0 0 0 0 247 0 2247 0 0 0 0 0 0 0 247 0 222 2 9 81 18 256 0 0 347 4 5 3 36 11 186 0 0 347 4 61 16 4 93 0 0 130 61 4 0 1 16 4 93 0 0 36 36 1 3 7 0 0 1255 16 36 1 3 7 0 0 263 0 2 1 3 7 0 0 10 2 2 2 1 3 7 0	0 0 0 10 224 0 0 235 0 0 0 0 0 11 219 0 0 247 0 0 0 0 0 0 0 0 0 0 247 0 2 0 0 0 0 0 0 0 2 4 4 2 9 81 18 256 0 0 347 4 5 3 36 11 186 0 0 347 4 6 4 49 4 73 0 0 130 61 6 1 16 4 93 0 0 125 16 0 0 1 16 14 263 0 263 0 0 1 3 7 0 0 125 16 16 26 1 3 7 0 0 263 20 0 20	0 0 0 10 224 0 0 235 0 247 0 0 247 0 0 22 0 0 22 0 0 14 18 256 0 0 0 130 61 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 130 0 130 61 14 4 4 4 4 4 4 4 4 4 4 4 16 16 16 16 16 16 16 16 16 16 16	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 11 219 0 0 247 0 0 0 0 0 0 0 0 22 2 2 9 81 18 256 0 0 347 4 5 3 36 11 18 256 0 0 36 6 4 49 4 73 0 0 130 61 6 1 16 4 93 0 0 125 16 0 1 16 4 93 0 0 1255 16 1 3 7 0 0 1255 16 26 2 1 3 7 0 0 1255 16 2 2 2 2 1 3 7 0 0 10 2 2 2 2 2 2 0 0 0 0 0 2 2 2 2 2	0 0 0 11 219 0 0 247 0 2 9 81 18 256 0 0 347 4 8 4 49 4 73 0 0 130 61 5 3 36 11 186 0 0 130 61 0 1 16 4 93 0 0 125 16 0 1 16 4 93 0 0 1255 16 0 0 0 14 263 0 263 0 263 1 3 7 0 0 1255 16 26 1 3 7 0 0 263 0 263 1 3 7 0 0 10 26 20 1 3 7 0 0 263 20 2 20 2 0 16 16 10 2 4	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 22 2 9 81 18 256 0 0 347 4 5 3 36 11 186 0 0 130 61 6 4 49 4 73 0 0 130 61 6 1 16 4 93 0 0 125 16 0 1 16 4 93 0 0 1255 16 1 3 7 0 0 14 263 0 263 0 1 3 7 0 0 1255 16 26 20 1 3 7 0 0 10 26 20 20 1 3 7 0 0 10 20 20 2 0 0 0 0 22 20 20 20 3 16 115 9 223 0 <t< td=""><td>28</td></t<>	28
2 9 81 18 256 0 0 347 4 8 4 49 4 73 0 0 130 61 5 3 36 11 186 0 0 130 61 0 1 16 4 93 0 0 125 16 0 0 14 263 0 0 125 16 0 0 14 263 0 0 263 0 1 3 7 0 0 14 26 0 2 1 3 7 0 0 0 2 4 0 2 2 2 1 3 7 0 0 4 2 2 2 0 0 2 1 13 7 0 0 0 4 2 2 2 0 0 2 2 2 0 0 2 2 2 0 0 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>2 9 81 18 256 0 0 347 4 8 4 49 4 73 0 0 130 61 5 3 36 11 186 0 0 130 61 0 1 16 4 93 0 0 125 16 0 0 14 263 0 0 125 16 0 0 14 263 0 0 263 0 263 1 3 7 0 0 14 26 0 26 1 3 7 0 0 10 263 0 263 1 3 7 0 0 10 20 20 20 1 3 7 0 0 0 4 20 20 1 3 7 0 0 0 20 20 20 1 15 9 223 0 <td< td=""><td>0</td></td<></td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 9 81 18 256 0 0 347 4 8 4 49 4 73 0 0 130 61 5 3 36 11 186 0 0 130 61 0 1 16 4 93 0 0 125 16 0 0 14 263 0 0 125 16 0 0 14 263 0 0 263 0 263 1 3 7 0 0 14 26 0 26 1 3 7 0 0 10 263 0 263 1 3 7 0 0 10 20 20 20 1 3 7 0 0 0 4 20 20 1 3 7 0 0 0 20 20 20 1 15 9 223 0 <td< td=""><td>0</td></td<>	0
8 4 49 4 73 0 0 130 61 5 3 36 11 186 0 0 240 36 0 1 16 4 93 0 0 125 36 0 0 14 263 0 0 240 36 0 0 14 263 0 0 263 0 263 1 3 7 0 0 14 263 0 263 1 3 7 0 0 10 263 0 2 2 0 0 10 2 40 20 2 2 2 1 3 7 0 0 4 20 2 2 2 2 0 15 9 223 0 0 3 3 3 3 0 0 0 0 0 2 2 3 3 13 3	8 4 49 4 73 0 0 130 61 5 3 36 11 186 0 0 240 36 0 1 16 4 93 0 0 125 36 0 0 14 263 0 0 263 0 0 1 3 7 0 0 263 0 263 0 1 3 7 0 0 14 263 0 263 0 0 1 3 7 0 0 10 263 0 2 <	8 4 49 4 73 0 0 130 61 5 3 36 11 186 0 0 240 36 0 1 16 4 93 0 0 125 16 0 0 14 263 0 0 240 36 0 0 14 263 0 0 263 0 263 1 3 7 0 0 14 263 0 263 0 1 3 7 0 0 14 26 20 2 2 0 0 10 2 40 0 2 40 2 1 3 7 0 0 0 2 2 2 2 1 3 7 0 0 3 3 2 2 1 15 9 223 0 0 2 4 13 3 6 0	8
5 3 36 11 186 0 0 240 36 0 1 16 4 93 0 0 125 16 0 0 0 14 263 0 0 263 0 0 0 14 263 0 0 263 0 1 3 7 0 0 0 10 2 0 0 0 0 263 0 1 3 7 0 0 2 40 2 0 0 0 10 2 0 15 9 223 0 0 352 0 0 0 0 352 0 113	5 3 36 11 186 0 0 240 36 0 1 16 4 93 0 0 125 16 0 0 0 14 263 0 0 263 0 0 0 0 14 263 0 263 0 1 3 7 0 0 263 0 1 3 7 0 0 40 0 2 0 0 0 10 2 2 0 0 0 0 20 0 15 9 223 0 0 352 0 0 0 0 0 8 113 0 0 198 0 0 204	5 3 36 11 186 0 0 240 36 0 1 16 4 93 0 0 125 16 0 0 0 14 263 0 0 263 0 0 0 0 14 263 0 263 0 1 3 7 0 0 263 0 2 0 0 2 40 0 26 1 3 7 0 0 40 20 2 0 0 0 0 4 20 0 16 115 9 223 0 0 352 0 0 0 0 0 0 204 113 38 6 105 25 302 0 0 457	T
0 1 16 4 93 0 0 125 0 0 0 14 263 0 0 263 0 0 0 14 263 0 0 263 1 3 7 0 0 263 0 1 3 7 0 0 263 2 0 0 0 2 2 2 0 0 0 2 2 0 15 9 223 0 0 0 16 115 9 223 0 0 0 0 0 352 0	0 1 16 4 93 0 0 125 16 0 0 0 14 263 0 263 0 0 0 0 14 263 0 263 0 1 3 7 0 0 10 2 2 0 0 0 10 2 2 0 0 0 10 2 2 0 0 0 4 20 0 15 9 223 0 0 0 0 0 0 352 0 0 0 0 0 0 313 0 0 0 0 0 204	0 1 16 4 93 0 0 125 16 0 0 0 14 263 0 263 0 0 0 0 14 263 0 263 0 1 3 7 0 0 0 40 0 2 0 0 0 0 10 2 2 0 0 0 0 2 2 0 15 9 223 0 0 352 0 0 0 0 0 0 20 352 0 38 6 105 25 302 0 0 457	12
0 0 14 263 0 263 0 0 0 14 263 0 263 1 3 7 0 0 40 0 2 0 0 0 0 263 1 3 7 0 0 2 2 0 0 0 0 2 0 16 115 9 223 0 0 0 0 0 0 352 0 20 0 0 0 0 0 8 113	0 0 14 263 0 263 0 0 0 2 40 0 2 1 3 7 0 0 40 0 2 0 0 0 0 2 2 2 0 0 0 0 2 2 2 0 0 0 0 2 2 0 15 9 223 0 0 352 0 0 0 0 0 0 8 113 0 0 0 0 204 132	0 0 14 263 0 263 0 0 0 0 2 40 0 40 0 1 3 7 0 0 0 40 0 2 0 0 0 0 10 2 2 0 0 0 0 2 2 0 15 9 223 0 0 352 0 0 0 0 0 0 8 113 38 6 105 25 302 0 0	16
0 0 0 2 40 0 0 40 7 1 3 7 0 0 0 40 2 2 0 0 0 0 40 2 0 16 115 9 223 0 0 352 4 20 0 0 0 0 352 113 113	0 0 2 40 0 40 0 1 3 7 0 0 10 2 2 0 0 0 0 10 2 2 0 0 0 0 2 2 0 15 9 223 0 0 352 0 0 0 0 0 0 352 0 0 0 132 0 0 204 113	0 0 2 40 0 40 0 1 3 7 0 0 0 10 2 2 0 0 0 0 0 2 2 0 16 115 9 223 0 0 352 0 0 0 0 0 0 0 352 0 38 6 105 25 302 0 0 457	0
3 7 0 0 0 10 2 0 0 0 0 0 4 20 16 115 9 223 0 0 352 0 352 0 0 0 0 0 352 0 353	3 7 0 0 0 10 2 0 0 0 0 0 4 20 16 115 9 223 0 0 352 0 352 0 0 0 0 0 352 0 352 0 352 0 0 0 0 0 0 352 0 353 0 353 0 353 0 353 0 353 0 353 0 353 0 0 353 0 353 0 0 354 113 1 353 1 353 1 1 355 3 3 1 132 3 1 1 323 3	3 7 0 0 0 10 2 0 0 0 0 0 4 20 16 115 9 223 0 0 352 0 3 0 0 0 0 0 352 0 3 3 1 3 1 3 1 3 1 3 <t< td=""><td>0</td></t<>	0
0 0 0 0 0 0 0 4 20 16 115 9 223 0 0 352 0 3 0 0 0 0 0 8 113 1	0 0 0 0 0 0 0 16 115 9 223 0 0 352 0 3 0 0 0 0 0 8 113 1 0 0 9 198 0 0 204 113 1	0 0 0 0 0 4 20 16 115 9 223 0 0 352 0 3 0 0 0 0 0 3 2 0 3 0 0 0 0 0 3	T
16 115 9 223 0 0 352 0 0 0 0 0 0 0 8 113	16 115 9 223 0 0 352 0 0 0 0 0 0 8 113 0 0 9 198 0 0 204 132	16 115 9 223 0 0 352 0 132 0 0 0 457 0 <t< td=""><td>0</td></t<>	0
0 0 0 0 0 8 113	0 0 0 0 0 0 8 113 0 0 9 198 0 0 204 132	0 0 0 0 0 0 8 113 0 0 9 198 0 0 204 132 6 105 25 302 0 0 457 0	14
	0 0 9 198 0 0 204 132	0 0 9 198 0 0 204 132 6 105 25 302 0 0 457 0	8

Data source : ASTATIA (1991), DAE

Zone	Thana	Block			SIW		2		MIW		Irrigation	^1.0	usec	LLP 1.0 cusec	Isec	2 cs		φE	5 0	5		
	Name	Nr & Name	N	(ha)	ž	(ha)	Nr ((ha)	Ň	(ha)	(ha)	Ŋ	Nr (ha)	¥	(ha)	z			(ha)		(ha) Nr	(ha) Nr (ha) (ha)
	Nabinagar	54 Salimganj	0	0	N	з	0	0	m	-	_	4	13		•	0,	Ξ		188	188 0	188 0 0	188 0 0 209
0	Nabinagar	55 Char Badda	0	0	0	0	0	0	0	0	10	0	0	0	0	-	4		40		40 0	40 0 0
	Nabinagar	59 Nabipur	-	22	0	0	0	0	0	0	51	0	0		40	~	6		81	81 0	81 0 0	81 0 0 172
	Nabinagar	60 Charlapang	0	0	0	0	0	0	0	0	20	4	49		0			4	4 81	4 81 0	4 81 0 0	4 81 0 0 150
01	Nabinagar	61 Satepur	0	0	0	0	0	0	0	0	32	0	0	_	222			=	11 151	11 151 0	11 151 0 0	11 151 0 0 191
	Nabinagar	62 Satmora	0	0	0	0	0	0	ω	σı	თ	0	0			0	0 2	2	2 10	2 10 0	2 10 0 0	2 10 0 0 15
0	Nabinagar	63 Chudria	N	34	ω	24	0	0	0	0	22	0	0			0		0	0	0 0	0 0 0	0 0 0 0 2
Totals			27	535	81	645	•	0	8	24	677	5	311	122		1,354	1,354 360	360		360	360 6,769 1	360 6,769 1 40

1

1

Î

[]

IJ

[]

[]

IJ

U

1

U

Data source : AST/CIDA (1991), DAE

5	t	•	
	1		
	2		
		i	
		i	ļ
		1	
		1	

Appendix C.II

Irrigation < 1.0cusec				WLD	5	NLLS	-	DSSTW	X	2	Traditional	hal LLP	۵,	E		E		E		Surface	Groundwater	Total
Name Nr. Khame Nr		hana	Block								Irrigatio	0.51	Ocused.		cusec	2 CS		3-5	5	Irrigation	Irrigation	Irrigation
	Z	ame	Nr & Name		(ha)	ż	(ha)												(ha)	(ha)	(ha)	(ha)
		andi	1 Bara Laksmipur	0	0	Q	34	0	0	20	9	4	0	0	7 12	e	0	0	0	127	40	168
		andi	2 Bara Kanda	0	0	1	53	0	0	20	10	4	0	0	0 10	-	0	0	0	105	63	168
Dauckandi 4 Char Pakhala 0 0 15 4 8 0 5 97 2 34 0 140 Dauckandi 5 Stanchar 0 0 1 <td>0.000</td> <td>andi</td> <td>3 Mohammedpur</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>2 9</td> <td>3</td> <td>8 10</td> <td></td> <td>0</td> <td>181</td> <td>0</td> <td>181</td>	0.000	andi	3 Mohammedpur	0	0	0	0	0	0	0	0	2	0	0	2 9	3	8 10		0	181	0	181
Dauckandi 5 Sonarchar 0 0 0 0 0 0 0 0 1 1 Dauckandi 5 Sonarchar 0 0 12 101 0 2 10 0 2 10 0 2 10 0 2 10 0 1 1 0 0 1 1 0 0 1 1 0 <td></td> <td>andi</td> <td>4 Char Pakhalia</td> <td>0</td> <td>0</td> <td>ო</td> <td>19</td> <td>0</td> <td>0</td> <td>15</td> <td>4</td> <td>8</td> <td>0</td> <td>0</td> <td>9</td> <td>7</td> <td>2</td> <td></td> <td>0</td> <td>140</td> <td>23</td> <td>163</td>		andi	4 Char Pakhalia	0	0	ო	19	0	0	15	4	8	0	0	9	7	2		0	140	23	163
		andi	5 Sonarchar	0	0	0	0	0	0	30	8	20	0	0	0	0		4	0	174	8	182
Dauckandi 7 Batakandi 2 42 4 43 0 4 1 8 0 0 4 73 0 0 81 Dauckandi 8 Gagapur 2 43 3 36 0 0 2 6 0 0 4 73 0 0 81 Dauckandi 10 Christhmant 1 16 6 40 0 5 1 1 0 0 6 6 0 0 6 0 0 10 11 11 11 1 1 1 1 1 0 <	1725	andi	6 Kalai Gobindapu	0	0	12	101	0	0	25	10	20	0	0	4	9	0	0	0	36	111	148
Dauckandi 8 Gagapur 2 45 3 36 0 2 0 0 6 0 0 6 0 0 6 0 0 6 0 0 8 Dauckandi 10 Kishnawpur 2 34 7 48 0 0 15 6 0 0 10 <t< td=""><td>112</td><td>andi</td><td>7 Batakandi</td><td>0</td><td>42</td><td>4</td><td>49</td><td>0</td><td>0</td><td>4</td><td>-</td><td>8</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td>33</td><td>0</td><td>81</td><td>92</td><td>173</td></t<>	112	andi	7 Batakandi	0	42	4	49	0	0	4	-	8	0	0	0			33	0	81	92	173
Dauckandi 9 Krishnawpur 2 34 7 48 0 15 5 1 1 0 0 5 1 1 1 0 0 5 1 1 1 0 0 6 0 101 Dauckandi 10 Char Kumatia 1 1 6 40 0 0 1 1 0 0 0 5 1 1 1 0 <td< td=""><td>10.000</td><td>andi</td><td>8 Gagatpur</td><td>2</td><td>45</td><td>e</td><td>36</td><td>0</td><td>0</td><td>2</td><td>0</td><td>9</td><td>0</td><td>0</td><td></td><td></td><td></td><td>-</td><td>0</td><td>87</td><td>81</td><td>168</td></td<>	10.000	andi	8 Gagatpur	2	45	e	36	0	0	2	0	9	0	0				-	0	87	81	168
Dauckandi 10 Char Kumatia 1 16 6 40 0 5 1 1 0 0 5 65 0 0 66 Dauckandi 11 Baharampur 3 40 14 105 0 0 1 1 0 0 5 5 0 0 0 0 1 1 Dauckandi 13 Kari Kand 1 8 14 64 0 0 1 1 1 1 1 2 1 1 2 3 2 0 3 3 0 1 2 3 1 2 2 1 1 0 0 1 1 0 3		andi	9 Krishnawpur	0	34	7	48	0	0	15	9	24	0	0				8	0	101	88	190
Dauckandi 11 Balarampur 3 40 14 105 0 0 0 2 16 0 0 0 18 Dauckandi 12 Bandarampur 0 13 81 0 0 10 12 3 23 0 0 243 Dauckandi 12 Bandarampur 0 0 13 11 2 0 0 3 243 Dauckandi 17 Dari Kandi 0 0 0 1 1 1 1 1 2 0 1 2 3 2 3 2 3 3 2 3 3 2 3 3 3 2 3 1 2 3 0 1 3 3 4 1<4	0.772		10 Char Kumaria	-	16	9	40	0	0	5	-	-	0				12	5	0	99	57	123
Dauckandi 12 Bandarampur 0 0 13 81 0 100 12 8 14 0 0 18 233 0 0 243 Dauckandi 13 Kair Kandi 1 8 14 64 0 0 1 1 2 0 0 3 28 0 0 152 Dauckandi 17 Kair Kandi 0 0 0 1 1 1 1 2 0 0 3 28 0 0 152 Dauckandi 18 Kadamatal 0 0 1 1 1 1 2 2 14 40 0 0 176 0 0 175 Dauckandi 19 Gopalpur 0 0 1 1 1 1 1 1<0	1000		11 Balarampur	3	40	14	105	0	0	0	0	2	0					0	0	18	146	164
Dauckandi 13 Kari Kandi 1 8 14 64 0 1 1 121 1 2 0 3 28 0 0 152 Daudkandi 16 Kalachand Kandi 0 0 6 45 0 0 1	-	andi	12 Bandarampur	0	0	13	81	0	0	100	12	4	0				8			243	93	336
Daudkandi 16 Kalachand Kandi 0 6 45 0 5 2 63 1 2 2 14 11 109 0 189 Daudkandi 17 Dari Kandi 0 0 0 0 0 140 385 Daudkandi 17 Dari Kandi 0 0 0 0 1 17 20 0 0 140 385 Daudkandi 17 Dari Kandi 0 0 1 8 0 0 1 140 385 Daudkandi 20 Ashmpur 0 0 1 81 0 0 1 <t< td=""><td>00.256</td><td>andi</td><td>13 Kari Kandi</td><td>-</td><td>8</td><td>14</td><td>64</td><td>0</td><td>0</td><td>-</td><td>-</td><td>121</td><td>-</td><td></td><td></td><td>~</td><td>125</td><td>8</td><td>0</td><td>152</td><td>72</td><td>224</td></t<>	00.256	andi	13 Kari Kandi	-	8	14	64	0	0	-	-	121	-			~	125	8	0	152	72	224
Daudkandi 17 Dari Kandi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 40 385 1 40 385 1 40 385 1 40 385 1 40 385 1 40 385 1 40 385 1 40 385 1 40 385 1 40 385 1 40 385 1 40 344 344 344 344 344 344 344 344 344 344 344 344 344 346 344 346 344 344 344 344 344 344 344 344 346 344 346 344 346 344 346 344 346 344 346 344 346 346 346 346 346 346 346 346 346 346	100	andi	16 Kalachand Kandi	0	0	9	45	0	0	S	2	63	-					6	0	189	46	235
Daudkandi 18 Kadamtali 0 7 7 0 0 1 172 0 0 176 Daudkandi 19 Gopalpur 0 0 1 1 1 2 0 0 1 12 0 0 344 Daudkandi 19 Gopalpur 0 0 1 81 0 0 2 4 4 0 0 1 12 0 344 Daudkandi 21 North Narandia 0 0 1 81 0 0 1 12 1 2 344 Daudkandi 21 North Narandia 0 0 1 2 4 2 1 0 0 1 12 2 344 Daudkandi 22 Notapi 0 0 0 0 0 1 12 2 3 0 0 1 12 2 344 Daudkandi 23 Motupi 5 0 <td></td> <td></td> <td>17 Dari Kandi</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>8</td> <td>0</td> <td>-</td> <td></td> <td></td> <td></td> <td>5</td> <td>40</td> <td>385</td> <td>0</td> <td>36</td>			17 Dari Kandi	0	0	0	0	0	0	0	0	8	0	-				5	40	385	0	36
Daudkandi 19 Gopalpur 0 0 0 24 6 4 0 0 4 7 14 293 0 0 344 Daudkandi 20 Asmania 0 0 11 81 0 0 14 77 0 0 11 125 0 0 130 Daudkandi 21 North Narandia 0 0 15 115 0 0 1 1 25 0 0 1 121 213 Daudkandi 22 Mohanpur 0 0 1 2 4 2 1 0 0 1 121 213 Daudkandi 22 Mohanpur 0 0 0 0 0 1 1 0 0 1 121 213 Daudkandi 23 Motupi Shibpur 2 4 4 0 0 1 1 1 1 1 1 1 1 1	11.000		18 Kadamtali	0	0	7	11	0	0	0	0	4	0				125	0	0	176	12	247
Dauckandi 20 Asmania 0 01 81 0 10 3 5 0 0 11 125 0 0 130 Dauckandi 21 North Narandia 0 0 15 115 0 0 7 77 0 0 1 121 213 Dauckandi 22 Nohanpur 0 0 0 0 1 21 21 213 Dauckandi 22 Mohanpur 0 0 0 0 1 121 213 Dauckandi 22 Mohanpur 0 0 0 0 0 1 121 213 Dauckandi 22 Mohanpur 0 0 0 0 1 1 2 240 Dauckandi 23 Motupi Shibpur 2 49 0 0 0 1 1 1 1 2 2 2 0 0 162 240 Dauckandi 23 Motupi Shibpur 2 4 0 0 1 1 1 1 1 2 </td <td></td> <td></td> <td>19 Gopalpur</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>24</td> <td>6</td> <td>4</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td>3</td> <td>0</td> <td>344</td> <td>9</td> <td>350</td>			19 Gopalpur	0	0	0	0	0	0	24	6	4	0	0				3	0	344	9	350
Daudkandi 21 North Narandia 0 0 15 0 7 7 0 0 1 121 213 Daudkandi 22 Mohanpur 0 0 0 0 0 1 121 213 Daudkandi 22 Mohanpur 0 0 0 0 0 1 0 0 14 182 0 0 240 Daudkandi 23 Motupi Shibpur 2 49 4 0 0 0 14 182 0 0 162 Daudkandi 23 Motupi Shibpur 2 49 6 0 0 0 14 182 0 0 162 Daudkandi 25 Lalpur 0 0 0 0 0 0 0 0 0 0 162 Daudkandi 25 Chenga Kandi 0 0 0 14 0 0 14 10 0 263 Daudkandi 25 Chenga Kandi 0 0 0 0 0 0 0 263			20 Asmania	0	0	:	81	0	0	10	3	2	0	0		0	1 12	2	0	130	84	215
Daudkandi 22 Mohanpur 0 0 0 0 0 1 0 0 15 170 0 0 240 Daudkandi 23 Motupi Shibpur 2 49 4 40 0 0 0 14 182 0 0 162 Daudkandi 23 Motupi Shibpur 2 49 4 40 0 0 0 14 182 0 0 162 Daudkandi 25 Lalpur 0 0 0 14 15 3 42 0 0 162 Daudkandi 25 Lalpur 0 0 0 0 0 0 0 263 Daudkandi 25 Lalpur 0 0 0 0 0 0 0 263 Daudkandi 27 Hasnabad 0 0 0 0 0 0 263 Daudkandi 27 Hasnabad 0 0 0 0 0 0 263 263 Daudkandi 28 Baharchar 0 0			21 North Narandia	0	0	15	115	0	0	4	2	15	0	0			0	0	121	213	117	330
Daudkandi 23 Motupi Shibpur 2 49 4 40 0 0 0 0 14 182 0 0 160 Daudkandi 24 Majidpur 0 0 8 67 0 0 0 14 115 3 42 0 0 162 Daudkandi 25 Lalpur 0 0 0 0 0 0 0 263 Daudkandi 25 Lalpur 0 0 0 0 0 0 263 Daudkandi 25 Lalpur 0 0 0 0 0 0 0 263 Daudkandi 25 Chenga Kandi 0 0 0 0 0 263 Daudkandi 26 Chenga Kandi 0 0 0 0 0 0 263 Daudkandi 27 Hasnabad 0 0 0 0 0 0 257 Daudkandi 28 Baharchar 0 0 0 0 0 0 0 263 0 0 <t< td=""><td>11.000</td><td></td><td>22 Mohanpur</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>0</td><td>0 10</td><td></td><td></td><td></td><td>0</td><td>0</td><td>240</td><td>0</td><td>240</td></t<>	11.000		22 Mohanpur	0	0	0	0	0	0	0	0	-	0	0 10				0	0	240	0	240
Daudkandi 24 Majidpur 0 0 8 67 0 0 0 14 15 3 42 0 0 162 Daudkandi 25 Lalpur 0 0 0 0 0 0 263 Daudkandi 25 Chenga Kandi 0 0 0 0 0 0 263 Daudkandi 26 Chenga Kandi 0 0 0 0 0 0 263 Daudkandi 26 Chenga Kandi 0 0 0 0 0 0 263 Daudkandi 27 Hasnabad 0 0 0 0 0 0 257 Daudkandi 27 Hasnabad 0 0 12 0 0 257 Daudkandi 28 Baharchar 0 0 1 4 0 0 0 243 Daudkandi 28 Baharchar 0 0 0 0 0 0 243 0 0 243 Daudkandi 28 Baharchar 0 0 0	255		23 Motupi Shibpur	2	49	4	40	0	0	0	0	8	0	0	0	0		0	0	190	89	279
Daudkandi 25 Lalpur 0 0 0 0 0 263 Daudkandi 26 Chenga Kandi 0 0 0 0 0 263 Daudkandi 26 Chenga Kandi 0 0 0 0 0 263 Daudkandi 27 Hasnabad 0 0 0 0 0 0 257 Daudkandi 27 Hasnabad 0 0 0 0 0 257 Daudkandi 27 Hasnabad 0 0 12 0 0 263 0 257 Daudkandi 28 Baharchar 0 0 1 4 0 0 0 243 Daudkandi 28 Baharchar 0 0 0 0 0 243 Anud Mandi 28 Baharchar 0 0 0 0 0 243 Anud Mandi 28 Baharchar 0 0 0 0 0 243 Anud Mandi 28 Baharchar 0 0 0 0 0 243 400 <td></td> <td></td> <td>24 Majidpur</td> <td>0</td> <td>0</td> <td>8</td> <td>67</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>0</td> <td>0</td> <td>-</td> <td>ŝ</td> <td>6</td> <td>0</td> <td>0</td> <td>162</td> <td>67</td> <td>229</td>			24 Majidpur	0	0	8	67	0	0	0	0	4	0	0	-	ŝ	6	0	0	162	67	229
Daudkandi 26 Chenga Kandi 0 0 0 0 0 0 257 Daudkandi 27 Hasnabad 0 0 6 36 0 0 0 25 Daudkandi 27 Hasnabad 0 0 6 36 0 0 0 306 Daudkandi 27 Hasnabad 0 0 1 4 0 0 0 0 306 Daudkandi 28 Baharchar 0 0 1 4 0 0 0 243 Daudkandi 28 Baharchar 0 0 1 4 0 0 243			25 Lalpur	0	0	0	0	0	0	0	0	14	0	0	4	7	5	0	0	263	0	263
Daudkandi 27 Hasnabad 0 0 6 36 0 0 0 306 Daudkandi 28 Baharchar 0 0 1 4 0 0 0 36 Daudkandi 28 Baharchar 0 0 1 4 0 0 0 243			26 Chenga Kandi	0	0	0	0	0	0	0	0	4	0	0	4	12-1		9	0	257	0	257
Daudkandi 28 Baharchar 0 0 1 4 0 0 0 0 0 8 0 0 8 40 11 194 0 0 243			27 Hasnabad	0	0	9	36	0	0	0	0	12	0	0	e B	0	9 26	3	0	306	36	342
10 00E 1E0 1000 0 0 000 70 07E 0 4 11E 1 014 011 0.0E0 0 1E0 4 E0B	227		28 Baharchar	0	0	-	4	0	0	0	0	8	0	0	4	-	1 19	4	0	243	4	247
				61	325	150	1001	c	-	Uac	13	376	c	A 11					163	A 608	1 307	5 MG

Data source : AST/CIDA (1991), DAE

Data source : AST/CIDA (1991), DAE

No

Zone Thana Block Name Nr & Name D Homna 1 Chandanpur D Homna 2 Challvadda		(ha)	Ŋ	(ha)	Ŗ	(ha)	ş	(ha)	Irrigation (ha)	A 1.0	< 1.0cusec Nr (ha)		1.0 cusec Nr (ha)	2 cs	(ha)	3-5 cs Nr	(ha)	Irrigation (ha)	Irrigation (ha)	Irrigation (ha)
2 -		2							-			- 1					-	-	ł	
2 -	0	D																		
		c	N	121	0	0	100	12	8	ŝ	w				61	0	0	77	134	
	0	0	-	б	0	0	40	4	49						142	0	0	255	10	
	0	0	GI	20	0	0	5	o,	8						160	0	0	233	26	
	0	0	23	140	0	0	95	12	~						30	0	0	85	152	
D Homna 5 Kashipur	0	0	01	36	0	0	375	61	5						34	0	0	97	97	
D Homna 6 Manikarchar	0	0	18	131	0	0	165	24	25						0	0	0	27	155	
D Homna 7 Homna Sadar	0	0	42	227	0	0	200	20	•						93	0	0	97	247	
D Homna 8 Goari Vanga	0	0	10	69	0	0	250	26	21						42	0	0	94	26	
D Homna 9 Joydebpur	0	0	15	130	0	0	300	81	0						0	0	0	73	210	
D Homna 10 Bhangarchar	0	0	7	101	0	0	20	4	10						0	0	0	79	105	
D Homna 11 Darichar	0	0	34	113	0	0	575	63	9						130	0	0	151	176	
D Homna 12 Gangutia	0	0	25	190	0	0	125	16	51	0	0	0	=	_	15	0	0	76	206	
D Homna 13 Dularpur	0	0	45	275	0	0	155	21	ь						57	0	0	131	296	
D Homna 14 Daulatpur	0	0	4	24	0	0	400	81	61						81	0	0	190	105	
D Homna 15 Ram Krishnapur	0	0	8	61	0	0	сл	-	112						0	0	0	225	62	
D Homna 16 Chandarchar	0	0	8	39	0	0	16	ω	67						0	0	0	261	42	
D Homna 17 Pathalia Kandi	0	0	8	58	0	0	120	22	53						162	0	0	225	80	
D Homna 18 Dhaniarchar	0	0	25	73	0	0	137	20	N						182	0	0	194	56	
D Homna 19 Oparchar	0	0	32	113	0	0	300	40	N						39	0	0	51	154	
D Homna 20 Mirash	0	0	24	49	0	0	115	28	0						93	0	0	93	77	
D Homna 21 Nildi	0	0	20	97	0	0	140	24	4						0	0	0	24	121	
D Homna 22 Monipur	0		-	10	0	0	160	20	8						30	0	0	119	30	
D Homna 23 Anantapur	0	0	4	40	0	0	400	109	20						57	0	0	148	150	20
D Homna 24 Kashipur	-	20	-	6	0	0	40	4	N				-	17	186	0	0	188	30	
D Homna 25 Damania	0		21	149	0	0	40	4	N	0			0	5	114	0	0	116	153	269
Totals		20 4	407	2,279	•	>	-			li li						0	•			

1

1

[]

U

Appendix C.II

Appendix C.III

117

Groundwater Hydrographs

Figure AllI.2 Groundwater Hydrograph : Zone B, Akhaura

Ug

Figure AllI.3

Figure AllI.5

(22

APPENDIX C.IV

123

Average Lithological Profiles by Thana

.

•

Dist	rict : 5	4 - BR	АНМА	NBAF	AIA				Thana	: 379	- N	ABINAGAR	
Dept	h Screen		L F	'S M	IS C		Lithology	Nr of Records		yer ecific		Integrated Specific	
(m)	Probab- -ility	8	8	8	8	Log		m/d	Yie	eld		Yield	
2		24 1 24 1					Brown Clay	38		.020		0.020 0.020	
		24	97	3			Grey Clay	38 38		.022		0.021 0.027	
4			63 53	37 47			Grey Clay	38	0	.053		0.032	
6			53 32	47 68			Grey Fine SAN	38 ID 38		.053		0.036 0.040	
8		24	34	66			orej trate bin	38	0	.066		0.043	
10			37 32	63 68				38		.064		0.046 0.048	
12		18	29 26	71 74				38 38		.070		0.050 0.052	
		24	24	76				38	0	.073		0.053	
14			26 24	74 76				38 38		.072		0.055 0.056	
16			18 18	79 79	3 3	Land.		38 38		.079		0.057 0.059	
18		26	18	79	3			38 38	0	.079		0.060 0.061	
20		26	11 11	87 87	3 3			38	0	.084		0.062	
22		26 24	11 8	87 89	3 3			38 38		.084		0.063 0.064	
		24	8	89	3			38 38	0	.086		0.065	
24		26	8 13	89 84	3 3			38	0	.082		0.067	
26		21 21	13 13	84 84	3			38 38		.082		0.067 0.068	
28		24	13	82 82	5			38 38	0	.084		0.068	
30		24	13 16	79	5			38	0	.082		0.069	
32		24 24	8 11	79 76	13 13			38 38		.092		0.070 0.071	
34		24 16	11 16	76 71	13 13			38 38		.091		0.071 0.072 R. P	
		13	16	71	13			38	0	.087		0.072	3
36	800	13 21	18 18	68 66	13 16			38 38	0	0.085 0.087		0.073	
38		24 29	21	63 63	16 21	-		38 38		0.085		0.073 (LIBRARY.)
40		24	8	58 61	34			38 38	0	.105		0.075).
42		18 18	11	55	34 34			38	0	.103		0.076	
44		16 16	13 13	61 61	26			38 38		0.097		0.077	/
46		16 21	16 21	55 45	29 34			38 38		0.096		0.077	1
		24	21	39	39			38	0	.099		0.078	
48		21 18	21 18	37 34	42 47		Grey Medium	38		0.101		0.079 0.079	
50		18 18	18 18	34 32	47 50			38 38		0.106		0.080 0.080	
52		21 21	13	34 34	53 53			38 38	0	0.112		0.081 0.082	
54		24	13 18	24	58			38	0	0.112		0.082	
56		29 29	18 18	21 18	61 63			38 38).113).115		0.083	
58		29 34	13 11	21 18	66 71			38 38		0.120		0.084 0.085	
		32	8	26	66			38	C	0.124		0.085	
60		32 29	8 5	24 24	68 71			38 38		0.126		0.086 0.087	
62		29 26	5	24 16	71 79			38 38		0.129 0.134		0.087 0.088	
64		26	5 11	16 13	79 76			38	C	0.134		0.089	
66		21	13	16	71			38	(0.123		0.090	
68		18 16	11 8		74 74			38 38		0.127 0.129		0.090 0.091	
70		16 16	5 5	16 16	79 79			38 38	C	0.134		0.092	
	1.	18	5	11	84			38	(0.137		0.093	
72		16 16	5 5	16	82 79			38 38	(0.135		0.093 0.094	
74		13 18	3	18	76 76	3 3		38 38		0.138		0.095 0.095	
76	1	18 16		24 21	74 79	3		38	(0.138		0.096	
78		16		19	81			37	(0.137		0.096 0.097	
80		16 14		19 17	81 83			37 36		0.139		0.097 0.098	
82		14 17		17 17	83			36 35	(0.140		0.098	
	-	9	6	9	85			34	(0.140		0.099 0.099	
84		9 9	3	6 9	91 88			32 32		0.142		0.100 0.100	
	DTW Reco	ords :	38				Screen Lengt			Depth	9.4		
	Specific	Capac			5.4 1	/s/m	Permeability			Depen	24		

Data Source : BADC / Deep Tubewell II Project

										111411A : 500	- BANCHARAMPUR
Depth	Screen	Br.	CL	FS	MS	CS	Graphic	Lithology	Nr of	Layer	Integrated
	Probab-						Log	1	Records	Specific	
(m)	-ility	8	8	8	*	8			m/d	Yield	Yield
		32	79	21				Brown Clay	19	0.035	0.035
2		32	58	42					19	0.049	0.042
		32	58	42					19	0.049	0.045
4		42	42	58				Brown Fine SAM		0.061	0.049
5.2 M		47	32	63	5				19	0.071	0.053
6		47	32	63	5				19	0.071	0.056
		47	21	74	5		122222		19	0.078	0.059
8		47	21	74	5 5 5 5				19	0.078	0.062
100		47	21	74	5				19	0.078	0.064
10		47	5	89	5				19	0.089	0.066
		47	5	89	5		1. States		19	0.089	0.068
12		47	5	89	5				19	0.089	0.070
		47	5	89	5				19	0.089	0.071
14		47	5	95					19	0.086	0.073
		47	5	95					19	0.086	0.073
16		42	11	89				Mixed Fine SAN	ND 19	0.083	0.074
10		42	11	89					19	0.083	0.075
18		42	11	89					19	0.083	0.075
20		37		100				Grey Fine SAND	D 19	0.090	0.076
20		37		100					19	0.090	0.076
		37	1722	100					19	0.090	0.077
22		42	5	95				Mixed Fine SAN	ND 19	0.086	0.078
241122		37	5	95				Grey Fine SAND	D 19	0.086	0.078
24		37	5	95					19	0.086	0.078
		37	5	79	16				19	0.096	0.079
26		42	5	74	21				19	0.099	0.080
		42	5	74	21				19	0.099	0.080
28 🗙		37	11	63	26				19	0.098	0.081
		42	11	58	32				19	0.102	0.081
30		37	11	47	42				19	0.102	0.082
		32	11	42	47			Grey Medium SA		0.108	
32		26	11	37	53				19	0.111	0.084
		26	11	26	63				19	0.121	0.085
34		21	11	26	63				19	0.121	0.087
		21	11	26	63				19	0.121	0.088
36		21	11	26	63				19	0.121	
		16	5	26	68				19	0.127	0.089
38		16	5	32	63				19	0.124	0.090
		16		37	63				19	0.124	0.091
40		16		37	63				19		0.091
		16	5	32	63				19	0.128	0.092
42		16	5	32	63				19	0.124	0.093
		21	5	32	63				19	0.124	0.094
44		21	5	32	63					0.124	0.095
		21	5	32	63				19 19	0.124	0.095
46		26	5	26	68					0.124	0.096
		26	5	26	68				19	0.127	0.097
48		26	5	16	79				19	0.127	0.097
		32	11	16	74				19	0.134	0.098
50		32	11	16	74				19	0.127	0.099
		37	11	21	68				19	0.127	0.099
52		32	5	26	68				19	0.124	0.100
		26	5	21	74				19	0.127	0.100
54		21	5	16	79				19 19	0.131	0.101
		32	5	21	74					0.134	0.101
56		32	5	21	74				19	0.131	0.102
		47	5	47	47			Mixed Fine SAN	19	0.131	0.102
58		47	1.54	47	53			Mixed Medium S		0.115	0.103
		42		47	53			Grey Medium SA		0.122	0.103
60		42		47	53			stoj neurum SA	19	0.122	0.103
		47		42	58				19	0.122	0.104
62		47		42	58				19	0.125	0.104
		47		37	63				19	0.125	0.104
64		47		32	63	5			19	0.128	0.105
		42		21	74	5			19	0.136	0.105
66		42		21	68	11			19	0.143	0.106
		32	5	16	68	11			19	0.148	0.106
68		32	5	16	68	11			19	0.144	0.107
		32	5	11	74	11			19	0.144	0.107
70		32	5	11	74	11			19	0.147	0.108
	C.	26	5	5	79	11			19	0.147	0.109
72		26	5	5	79	11				0.151	0.109
		26	5	5	79	11			19 19	0.151	0.110
74		26	5	5	79	11				0.151	0.110
		37	5	16	68	11			19	0.151	0.111
76		37	5	16	68	11			19	0.144	0.111
		37	5	16	74	5			19	0.144	0.112
78		42	5	26	63	5			19	0.139	0.112
	.	42	1	32	63	5			19	0.133	0.112
80		42		32	63	5			19	0.136	0.113
		42		37	58	5			19	0.136	0.113
82		42		37	58	5			19	0.133	0.113
		47		47	47	6		OTICES WYDE CERE	19	0.133	0.113
84		47		47	47	7		Mixed Fine SAN		0.128	0.114
		47		47	47	7			15	0.129	0.114
1 10000					- 1	6			15	0.129	0.114
DT	W Record	s :	19					Screen Lanath			
Sp	ecific C	apac	ity	: 5	.6 1	/s/m		Screen Length	: 37 m	Depth	86 m
			- 19 M		215 18			Permeability :	21.2 m/d		
and the second second											

Thana : 380 - BANCHARAMPUR

n

Data Source : BADC / Deep Tubewell II Project

District : 54 - BRAHMANBARIA

126

th Screen Probab-	Br. (CL	FS	MS	CS	Graphic Log	Lithology	Nr of Records	Layer Specific	Integrat Specific
) -ility	8	8	96	8	8	209		m/d	Yield	Yield
		100				-	Brown Clay	25	0.020	0.020
	36	96	4				aroun eral	25	0.023	0.021
	36	96	4					25	0.023	0.022
	20	76	24				Grey Clay	25	0.037	0.026
	20	76	24				97777977 8 0 (77977787 8 0	25	0.037	0.028
	16	72	28					25	0.040	0.030
	12	68	32					25	0.042	0.032
	12	68	32					25	0.042	0.033
	12	64	36					25	0.045	0.034
	12	64	36					25	0.045	0.035
	16	64	36					25	0.045	0.036
	16	52	48					25	0.054	0.038
	16	52	48				2 627 9229	25	0.054	0.039
	20	48	52				Grey Fine SA		0.056	0.040
	20	44	56					25	0.059	0.041
	20	40	60					25 25	0.062	0.043
	16 16	32 36	64 56		4			25	0.074	0.045
	20	36	52	4	4			25	0.074	0.046
	20	28	60	12	4			25	0.078	
	20	20	68	12				25	0.083	0.049
1	24	24	60	16				25	0.083	0.052
	28	36	44	20				25	0.077	0.053
	32	40	44	16				25	0.072	0.054
	36	48	36	12	4		Grey Clay	25	0.070	0.055
	32	44	36	12	8		and anal	25	0.079	0.056
	32	52	32	8	8			25	0.071	0.056
	36	52	28	16	4			25	0.070	0.057
	36	52	12	32	4			25	0.079	0.058
85	36	52	12	36	N 1 1			25	0.075	0.058
	36	52	16	32				25	0.073	0.059
	32	44	20	36				25	0.081	0.059
	32	40	24	36				25	0.084	0.060
	28	36	20	44			Grey Medium	SAND 25	0.091	0.061
	32	32	28	40				25	0.092	0.062
	32	20	36	44				25	0.102	0.063
	32	16	44	40			Grey Fine SA	ND 25	0.103	0.064
1	40	20	44	36				25	0.098	0.065
l Bar	40	24	36	40			Grey Medium		0.097	0.066
	36	20	40	40			Grey Fine SA		0.100	0.067
	32	24	36	40			Grey Medium		0.097	0.067
	36	24	36	40				25	0.097	0.068
	36	16	36	48				25	0.108	0.069
	24	12	24	64				25	0.120	0.070
	28	20	24	56				25	0.110	0.071
	28	24	24	52				25	0.104	0.072
	32 32	12 12	36 36	52				25	0.113	0.073
	40	12	40	52 48				25	0.113	0.073
	40	12	32	56				25 25	0.110	0.074
	40	12	32	56					0.115	0.075
	36	12	20	68				25 25	0.115	
	36	12	16	72				25	0.122	0.077
	32	12	16	72				25	0.125	0.078
	28	12	12	76				25	0.125	0.079
	28	12	8	76	4			25	0.134	0.080
	28	12	8	76	4			25	0.134	0.081
	24	8	8	76	8			25	0.143	0.081
	20	4	12	76	8			25	0.145	0.083
	20	4	16	72	8			25	0.143	0.084
	12	4	12	76	8			25	0.146	0.085
	12	8	20	68				25	0.134	0.086
	12	8	24	64				25	0.131	0.087
	12	8	20	68				25	0.134	0.088
	12	8	24	64	4			25	0.129	0.088
	12	8	20	68	4			25	0.132	0.089
	16	4	20	64	12			25	0.145	0.090
	16	4	24	60	12			25	0.142	0.091
	12	4	24	60	12			25	0.142	0.091
	12	VOID	28	64	8			25	0.141	0.092
	16	4	24	64	8			25	0.138	0.093
	16	4	28	60	8			25	0.136	0.093
	16	4	28	56	12			25	0.140	0.094
	16	8	28	52	12			25	0.135	0.094
	12	8	12	68	12			25	0.144	0.095
	12	8	12	68	12			25	0.144	0.096
	12	4	12	72	12			25	0.150	0.096
	12	4	8	68	16			25	0.162	0.097
	8	4	4	68	20			25	0.168	0.098
	4		4	76	12			25	0.172	0.099
		100-10		68	16			25	0.173	0.100
	22410	4	4	64	20			25	0.174	0.101
	4	4	4	64	20			25	0.174	0.102
	4	4	12	68	16			25	0.154	0.102
20000000000000000		4	13	71	13	**********************		24	0.150	
	4	02140	10	11	10			24	0.100	0.103

Data Source : BADC . Deep Tubewell II Project

District : 54 - BRAHMANBARIA

Thana : 379 - NABINAGAR

П

11

[]

1

E1

[]

epth Screen						
Probab-	Br. CL FS MS CS	Graphic Log		Nr of Records	Layer Specific	Integrated Specific
(m) -ility		41120031 4		m/d	Yield	Yield
	24 100		Brown Clay	38	0.020	0.020
2	24 100			38	0.020	0.020
	24 97 3			38	0.022	0.021
1	18 63 37		Grey Clay	38	0.046	0.027
	18 53 47		Stol oral	38	0.053	0.032
	18 53 47	and a second second		38	0.053	0.036
	24 32 68		Grey Fine SAND	38	0.068	0.040
	24 34 66			38	0.066	0.043
	24 37 63			38	0.064	0.046
	21 32 68			38	0.068	0.048
	18 29 71			38	0.070	0.050
	18 26 74			38	0.072	0.052
	24 24 76			38	0.073	0.053
	24 26 74			38	0.072	0.055
	24 24 76			38	0.073	0.056
	26 18 79 3			38	0.079	0.057
	26 18 79 3			38	0.079	0.059
	26 18 79 3			38	0.079	0.060
	26 11 87 3			38	0.084	0.061
	26 11 87 3			38	0.084	0.062
	26 11 87 3 26 11 87 3			38	0.084	0.063
	24 8 89 3			38	0.086	0.064
	24 8 89 3			38	0.086	0.065
	26 8 89 3			38	0.086	0.066
	21 13 84 3			38	0.082	0.067
	21 13 84 3			38	0.082	0.067
	21 13 84 3			38	0.082	0.068
	24 13 82 5			38	0.084	0.068
	24 13 82 5 24 16 79 5			38	0.084	0.069
E	24 16 79 5			38	0.082	0.069
	24 8 79 13			38	0.092	0.070
	24 11 76 13			38	0.091	0.071
	24 11 76 13			38	0.091	0.071
	16 16 71 13			38	0.087	0.072
	13 16 71 13			38	0.087	0.072
	13 18 68 13			38	0.085	0.073
-	21 18 66 16			38	0.087	0.073
	24 21 63 16			38	0.085	0.073
1000	29 16 63 21			38	0.092	0.074
	24 8 58 34			38	0.105	0.075
100	18 5 61 34			38	0.107	0.075
	18 11 55 34			38	0.103	0.076
	16 13 61 26			38	0.097	0.077
	16 13 61 26			38	0.097	0.077
	16 16 55 29			38	0.096	0.077
	21 21 45 34			38	0.096	0.078
	24 21 39 39		Internet and the second	38	0.099	0.078
3	21 21 37 42		Grey Medium SAN		0.101	0.079
	18 18 34 47			38	0.106	0.079
	18 18 34 47			38	0.106	0.080
	18 18 32 50			38	0.107	0.080
	21 13 34 53			38	0.112	0.081
	21 13 34 53			38	0.112	0.082
	24 18 24 58			38	0.112	0.082
	29 18 21 61			38	0.113	0.083
	29 18 18 63			38	0.115	0.083
	29 13 21 66			38	0.120	0.084
	34 11 18 71			38	0.125	0.085
	32 8 26 66			38	0.124	0.085
	32 8 24 68			38	0.126	0.086
	29 5 24 71			38	0.129	0.087
	29 5 24 71			38	0.129	0.087
	26 5 16 79			38	0.134	0.088
	26 5 16 79			38	0.134	0.089
	26 11 13 76			38	0.128	0.089
	21 13 16 71 18 11 16 74			38	0.123	0.090
				38	0.127	0.090
	16 8 18 74			38	0.129	0.091
	16 5 16 79			38	0.134	0.092
	16 5 16 79			38	0.134	0.092
	18 5 11 84			38	0.137	0.093
	16 5 13 82			38	0,135	0.093
	16 5 16 79			38	0.134	0.094
	13 3 18 76 3			38	0.138	0.095
	13 3 18 76 3 18 21 76 3 18 24 74 3			38	0.140	0.095
5				38	0.138	0.096
	16 21 79			38	0.137	0.096
	15 19 81			37	0.139	0.097
	16 19 81			37	0.139	0.097
100000000000000000000000000000000000000	14 17 83			36	0.140	0.098
	14 17 83			36	0.140	0.098
	17 17 83			35	0.140	0.099
2	9 6 9 85			34	0.137	0.099
				32	0.142	0.100
	9 3 6 91			26	V . 1 4 Z	
				32	0.140	0.100
	9 3 6 91 9 3 9 88			32	0.140	0.100
DTW Recor	9 3 6 91 9 3 9 88		Screen Length : Permeability :	32 : 33 m		0.100

Data Source : BADC / Deep Tubewell II Project

District : 55 - COMILLA		Thana : 385 - BRAHMANPARA
Depth Screen Br. CL FS MS CS Graph		Layer Integrated
Probab- Log (m) -ility % % % % %	Records m/d	Specific Specific Yield Yield
(m) -ility % % % % %	Grey Clay 52	0.021 0.021
2 12 98 2	52	0.021 0.021
13 96 4 4 25 77 21	52 Mixed Clay 52	0.023 0.022 0.035 0.025
25 77 21	52	0.035 0.027
6 27 75 23	Brown Clay 52 52	0.037 0.029 0.049 0.032
38 62 35 4 8 40 58 38 4	52	0.052 0.034
40 58 38 4	52	0.052 0.036
10 38 58 38 4 38 58 38 4	52	0.052 0.038 0.052 0.039
12 38 58 38 4	52	0.052 0.040
35 50 44 6	Grey Clay 52	0.058 0.042
14 37 48 44 8 38 46 46 8	52 52	0.061 0.043 0.062 0.044
16 37 38 54 8	Grey Fine SAND 52	0.068 0.046
38 37 56 8	52 52	0.069 0.047 0.067 0.048
18 38 38 56 6 37 31 62 8	52	0.073 0.049
20 38 25 67 8	52	0.077 0.051
38 25 67 8 22 38 17 75 8	52 52	0.077 0.052 0.083 0.053
37 17 75 8	52	0.083 0.055
24 37 17 73 10	52	0.084 0.056
37 12 71 15 26 38 10 69 17	52 52	0.090 0.057 0.092 0.059
40 4 71 21	52	0.098 0.060
28 40 4 71 21 42 4 67 25	52 52	0.098 0.062 0.101 0.063
30 42 2 65 29	52	0.104 0.064
42 2 63 31	52	0.106 0.066
32 42 4 62 31 44 4 58 33 2	52 52	0.104 0.067 0.108 0.068
34 44 4 58 33 2	52	0.108 0.069
44 4 56 35 2 36 44 4 50 40 2	52 52	0.110 0.070 0.113 0.072
44 4 50 42 2	52	0.115 0.073
38 42 4 50 42 2 46 4 48 44 2	52 52	0.115 0.074 0.116 0.075
40 4 40 44 2	Brown Fine SAND 52	0.117 0.076
50 4 44 48 2	Brown Medium SAND 52	0.118 0.077
42 50 4 44 48 2 50 4 42 50 2	Mixed Medium SAND 52 52	0.118 0.078 0.120 0.079
44 48 6 38 52 2	Grey Medium SAND 52	0.119 0.080
48 6 37 54 2 48 6 37 54 2	52 52	0.121 0.081 0.121 0.082
46 4 38 54 2	52	0.122 0.083
48 42 8 35 54 2 35 8 31 60	52	0.119 0.083 0.120 0.084
50 35 6 29 63	52 52	0.120 0.084 0.123 0.085
35 6 31 63	52	0.124 0.086
52 35 6 27 67 35 6 25 69	52 52	0.126 0.086 0.128 0.087
54 29 8 21 71	52	0.127 0.088
33 10 23 67 56 33 10 25 65	52	0.124 0.089
56 33 10 25 65 31 12 27 62	52 52	0.123 0.089 0.119 0.090
58 29 13 27 60	52	0.116 0.090
27 15 23 62 27 17 23 60	52 52	0.116 0.091 0.114 0.091
27 15 19 65	52	0.118 0.091
62 21 19 15 65 21 19 19 62	52	0.116 0.092
64 21 19 19 62 19 19 17 63	52 52	0.113 0.092 0.115 0.093
15 23 17 60	52	0.110 0.093
66	52 52	0.118 0.093 0.121 0.094
68 17 10 13 77	52	0.129 0.094
15 12 10 79 15 10 6 85	52	0.129 0.095
18 10 10 80	52 51	0.134 0.095 0.131 0.096
72 18 12 6 82	51	0.131 0.096
18 14 6 80 74 14 12 6 82	51 50	0.129 0.097 0.131 0.097
16 14 6 80	50	0.128 0.097
76 16 14 6 80 17 15 8 77	50 48	0.128 0.098 0.126 0.098
78 15 13 4 83	47	0.126 0.098 0.131 0.099
	47	0.131 0.099
80 9 11 5 82 9 18 5 75	44 44	0.130 0.099 0.121 0.100
82 9 20 5 73	44	0.118 0.100
9 28 5 65 84 9 30 7 60	43 43	0.109 0.100
9 30 7 60	43	0.104 0.100 0.104 0.100
DTW Records : 52	Screen Length : 34 m	Depth 86 m
Specific Capacity : 5.3 1/s/m	Permeability : 22.0 m/d	sepen oo m

Data Source : BADC / Deep Tubewell II Project

Data Source : BADC / Deep Tubewell II Project

District : 55 - COMILLA

Thana : 382 - DAUDKANDI

Dept	h Screen	Br.	CL	FS	MS	CS	Graphic	Lith	nology	Nr of		Layer		Integrated
(m)	Probab- -ility	8	8	8	8	8	Log			Recor m/		Specific Yield		Specific Yield
	8		70	30				Grey	Clay		10	0.041		0.041
2			70	30 40			-				10 10	0.041		0.041 0.043
4			40	60				Grey	Fine SAND		10	0.062		0.048
6			40	60							10 10	0.062		0.051
0.54		10	30	70							10	0.069		0.055
8		10	30	70							10 10	0.069		0.057
10		10	20	80							10	0.076		0.060
12		10	10	90 90							10 10	0.083		0.062
12		10	10	80	10						10	0.089		0.066
14		10 10	10 10	80	10 10						10 10	0.089		0.067
16		10	10	80	10						10	0.089		0.069
18		10	10 10	80	10 10						10 10	0.089		0.071
10		20	10	80	10						10	0.089		0.072
20		20	10	80	10						10	0.089		0.074
22		20	10 20	80 70	10 10						10 10	0.089		0.075
		20	20	70	10						10	0.082		0.075
24		10	30 20	50	20 30						10 10	0.081 0.094		0.075
26		10	20	50	30						10	0.094		0.077
28		10	10	50 50	40						10 10	0.107		0.078
		10		50	40	10					10	0.130		0.081
30		10 10	10	50	40 40	10 10					10 10	0.130		0.083
32		10	10	40	50	10		Grey	Medium SA		10	0.113		0.085
34	-	10	20 20	30	50 50						10 10	0.106		0.086
-	-	10	20	20	60						10	0.112		0.087
36		10	20	20	60 60						10	0.112		0.088
38		10	10	30	60						10 10	0.119 0.119		0.089
40		10	10 10	30	60						10	0.119		0.090
40		10	10	20 20	70 80						10 10	0.125		0.091 0.092
42		10	10	20	80						10	0.138		0.093
44		10	10	20	70 50						10 10	0.125 0.113		0.094
		10	10	40	50			120000000			10	0.113		0.095
46		10	20	40	40			Grey	Fine SAND		10 10	0.100		0.095
48		10	20	40	40				and the second states		10	0.100		0.095
50		10	30 30	30	40			Grey	Medium SP		10 10	0.093		0.095
		10	30	30	40			128	15/21		10	0.093		0.095
52		20	40	20	40			Grey	Clay		10 10	0.086		0.095
54	-	20	50	20	30	12121					10	0.073		0.094
56		20 20	50 50	10	30 30	10 10					10 10	0.089		0.094
		30	50		40	10					10	0.095		0.094
58		30 40	50 40		40	10 10		Grev	Medium SA		10 10	0.095		0.094
60		40	40		50	10		orel	neurum or		10	0.108		0.095
62		40	40 40		50 50	10 10					10 10	0.108		0.095
		30	30		60	10					10	0.108		0.095
64		30	30 20		60 70	10 10					10 10	0.121		0.096
66		30	10		80	10					10	0.134		0.096 0.097
68		30 20	10		80 90	10					10 10	0.147		0.098
		20	10		90						10	0.137		0.099
70		30 30			100				(A)		10	0.150		0.100
72		30			100						10 10	0.150		0.100 0.101
74		40			100						10	0.150		0.102
		30			100						10 10	0.150		0.103 0.103
76		30 30			100						10	0.150		0.104
78		^{\$\$} 30			100						10 10	0.150		0.104 0.105
80		30			100						10	0.150		0.106
		30	10		90						10	0.150		0.106
82		20	10 20		90						10	0.137		0.107
84		10	20		80						10 10	0.124		0.107 0.107
		10	20		80						10	0.124		0.107
	DTW Recor		1					Scree	en Length	: 31	m	Depth	87	m
	Specific	Capa	city	:	6.7	1/s/m	li.	Perme	eability :	: 30.4	m/d	328		

Data Source : BADC / Deep Tubewell II Project

Depth	Screen Probab-	Br.	CL	FS	MS	CS	Graphic Log	Lithology	Nr of Records	Layer Specific
(m)	-ility	8	8	8	8	8	and a second		m/d	Yield
			100					Grey Clay	8	0.020
2			100						8	0.020
4		13	100	13					8	0.020
		13	88	13					8	0.029
6		13	88	13					8	0.029
		13		13					8	0.029
B		13	88	13					8	0.029
0		25 25		25 25					8	0.038
		25		25					8	0.038
2		25	75	25					8	0.038
		25		25					8	0.038
.4		13		50					8	0.055
6		13 13		50 50					8	0.055
		13		50	13		1000	Grey Fine SAND		0.055
18		25		38	13			Grey Clay	8	0.063
		25		38	13			00008 00008	8	0.063
0		25		75	10			Grey Fine SAND	8	0.073
2		25 25		63 63					8	0.080
-		13		63					8 8	0.080
4		13		50	13				8	0.071
		13		50					8	0.071
6		25 25		38 38	13			Grey Clay	8	0.063
28		25		38	13 13				8	0.063
		25		38	13				8	0.063
30		25	50	38	13				8	0.063
		25		38	13				8	0.063
32		38		38					8	0.046
34		25 25		38 38	13 13				8	0.063
		38		50	13			Grey Fine SAND	8	0.063
36		38	38	50	13			or of the one	8	0.071
		38		50	13				8	0.071
8		38 38		50	13				8	0.071
0		13		50 25	13 13			Grey Clay	8	0.071
(E)		38		25	13			GIEY CIAY	8	0.054
2		38		25	13				8	0.054
		25		725125					8	0.020
4		63 50		38 38				Brown Clay	8	0.046
6		50		50	13			Mixed Clay Mixed Fine SAN	8 D 8	0.063
		38		63				Grey Fine SAND	8	0.071 0.080
8		38		63	13				8	0.080
0		25		63		13			8	0.093
882		13 13		50 50				Grey Clay	8	0.055
2		10	63	38					8 8	0.055
100			75	25					8	0.038
4			63	38	10000				8	0.046
6			38 25	38					8	0.079
°	8		25	50 50	25 25			Grey Fine SAND	8	0.088
8			13	50	25	13			8	0.088
			13	25	50	13		Grey Medium SA	ND 8	0.131
50			13	25	50	13		1999-1999 - 1999-1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 19 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	8	0.131
2				13	75	13			8	0.155
			13	25 25	63 63	13			8	0.148
4			13	25	63				8 8	0.119
				25	75				8	0.119 0.135
6			223	25	75				8	0.135
			25	25	50				8	0.103
8			13 13	13 13	75 75				8	0.126
0			13	13	88				8	0.126
			13		75	13			8	0.134 0.146
72			13		75	13			8	0.146
			13		75	13			8	0.146
4			13		75	13			8	0.146
6			13 13		75 75	13 13			8	0.146
			10		100	13			8	0.146
78					100				8	0.150
				13	88				8	0.143
80				13	88				8	0.143

Thana : 384 - DEBIDWAR Integrated

Specific

Yield 0.020 0.020 0.020 0.022 0.024 0.024 0.025 0.025 0.025 0.027 0.028 0.029 0.029 0.032 0.033 0.035 0.038

 $0.041 \\ 0.043 \\ 0.045$ 0.046 0.047 0.048 0.049 0.049 0.050 0.050 0.051 0.051 0.051 0.051 0.052 0.052 0.053 0.053 0.054 0.054 0.054 0.054 0.053 0.053 0.053 0.054 0.055 0.056 0.056 0.056 0.055 0.055 0.055 0.056 0.056 0.057 0.059 0.060 0.061 0.063 0.064 0.065 0.066 0.067 0.068 0.069 0.070 0.071 0.072 0.073 0.075 0.075 0.076 0.077 0.078 0.079

0.079

0.080

0.081

0.082

0.083

8

8

8

8

8

33 m

Screen Length :

Permeability : 22.1 m/d

0.143

0.143

0.143 0.126

0.126

Depth 104 m

Data Source : BADC / Deep Tubewell II Project

DTW Records :

88

88

88

13 13 13

13 13 75

13 13 75

Specific Capacity : 5.1 1/s/m

8

82

84

District : 55 - COMILLA

District	t : 55 - COMI	LLA					Thana : 381 -	- HOMNA	3
	creen Br. CL	FS MS		Graphic	Lithology	Nr of Records	Layer Specific	Integrated Specific	
	robab- ility % %	8 8	8	Log		m/d	Yield	Yield	
2	100				Clay	3	0.020	0.020	
4	100					3	0.020	0.020	
	100					3	0.020	0.020	
6	100					3	0.020	0.020	
8	100					3	0.020	0.020	
10	33 100	1			Brown Clay	3	0.020	0.020	
12	33 100 33 100					3333	0.020	0.020	
14	33 100 33 100					3	0.020 0.020	0.020	
16	33 100 33 100)				3	0.020	0.020	
	33 100)				3	0.020	0.020	
18	33 100 33 100			-		3	0.020	0.020	
20	33 100 33 100					3 3 3	0.020	0.020	
22	33 100)					0.020	0.020	
24	33 100 33 100)				3	0.020	0.020	
26	33 100 33 100					3	0.020	0.020	
28	33 100 33 100	0				3	0.020	0.020	
	33 100	0				3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.020	0.020	
30	33 100 33 100					3 3 3	0.020	0.020 0.020	
32	33 10 67 6					3 3	0.020	0.020 0.021	
34	67 3	3 67			Brown Fine SAN		0.067	0.022	
36	67 3 67 3					3	0.067	0.023 0.025	
38	67 3. 67 3.					3	0.067	0.026	
	67 3	3 67				3	0.067	0.028	
40	67 3 67 3	3 67				3 3 3 3	0.067	0.030	
42	67 3: 67	3 67 100				3	0.067	0.031 0.032	
44	67 67	100 100				3 3	0.090	0.033	
46	67	100				3	0.090	0.036	
48	67 67	100				3	0.090	0.037	
50	67 67	100				3	0.090	0.039 0.040	
	67 67	100				3	0.090	0.041 0.042	
52	67	100				3	0.090	0.043	
54	67	100 100			Grey Fine SAND	3 3 3	0.090	0.044 0.045	
56		100			Learning - Chronie Better and State	3	0.090	0.045	
58		100				3	0.090	0.047	
60		100				3	0.090	0.048 0.048	
62		100				3 3 3 3	0.090	0.049	
64		100				3	0.090	0.050	
		67	33			3	0.110	0.052	
66			33 33			3	0.110 0.110	0.053	
68			33 33			3 3	0.110	0.054	
70		67 3	33			33	0.110	0.056	
72		67 3	33			3	0.110 0.110	0.057 0.058	
74	8		33 33			3	0.110	0.058	
76		67	33			3	0.110	0.060	
		67	3.3			3	0.110	0.061	
78		67	33 33			3	0.110 0.110	0.062	
8.0			00		Grey Medium SA		0.150	0.063	
82		1	0.0			3	0.150	0.065	
84		1	00000			3	0.150 0.150	0.066	
		1	00			3	0.150	0.068	
	W Records : ecific Capacit	3	4 1/s/m		Screen Length Permeability		Depth 1	104 m	
ape	corre capacit	2	- 1/3/1II		. ermeability	• 22.4 m/d			

Data Source : BADC / Deep Tubewell II Project

Thana : 381 - HOMNA

District : 55 - COMILLA

Distr.	ict : 5	5 -	COMI	LLA						Thana : 383 -	MURADNAGAR
Depth	Screen Probab-		CL	FS	MS	CS	Graphic Log	Lithology	Nr of Records	Layer Specific	Integrated Specific
(m)	-ility	8	8	8	8	8	200-01-01		m/d	Yield	Yield
		14	94	6				Grey Clay	4 9	0.024	0.024
2		14	94	6					49	0.024	0.024
		14	94	6					49	0.024	0.024
4		6	65 63	35					49	0.044	0.029
6		6	59	37					49	0.046	0.033
		6	51	49			-		49 49	0.049 0.054	0.035 0.038
8		6	41	59				Grey Fine SAN		0.054	0.041
		6	35	65				orej tine ban	49	0.066	0.044
10		6	31	69					49	0.069	0.046
		6	27	73					49	0.071	0.048
12		4	24	76					49	0.073	0.050
		2	24	76					49	0.073	0.052
14		2	27	71	2				49	0.073	0.054
		2	31	67					49	0.070	0.055
16		2	24	73	2				49	0.074	0.056
10		2	29	69					49	0.071	0.057
18		2	31 22	67 69	2				49	0.070	0.058
20		2	22	69					49	0.077	0.059
2.0		2	24	67	6				49 49	0.077	0.060
22		6	22	67	8				49	0.078	0.060
		6	24	63					49	0.078	0.062
24		10	24	65	10				49	0.079	0.063
		14	18	69					49	0.084	0.063
26		16	16	65	18				49	0.090	0.064
200		14	14	55	29				49	0.096	0.066
28 😹		14	12	53					49	0.100	0.067
. 18		14	16						49	0.095	0.068
30		16	16		33				49	0.097	0.069
32		18 18	20	49 53	31				49	0.094	0.070
J 📓		18	24	51	27				49	0.092	0.070
34		18	27	41	33				49	0.088	0.071
	8	18	24	41	35				49 49	0.091 0.094	0.071
36		16	27	37					49	0.093	0.072
		18	24	39	35				49	0.097	0.073
38 🎆	80	18	33	33	33			Grey Clay	49	0.090	0.074
		18	33	35				Grey Fine SAN	D 49	0.089	0.074
40		22			100010	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Grey Clay	49	0.082	0.074
40		22	41	35					49	0.080	0.074
42		22	39	33		4			49	0.084	0.075
44		20		33 31					49	0.076	0.075
18		18	39	31	22	2			49	0.075	0.075
46		18	37	33					49 49	0.083	0.075
		20	35	39		4		Grey Fine SAN		0.085	0.075
48	8	20	33	41	22	4		orej tine bhit	49	0.087	0.075
	.	20	35	33				Grey Clay	49	0.089	0.076
50		20	31	35	31	4		Grey Fine SAN		0.093	0.076
		22		35	33	4			49	0.096	0.077
52		20		35	37	2		Grey Medium S.		0.097	0.077
54		24	24	37					49	0.096	0.077
24		27		33					49	0.101	0.078
56		29	18	35					49	0.105	0.078
		29 33							49	0.105	0.079
58		33		33	47	2			49	0.110	0.079
		33		37					49	0.117	0.080
60		33		39					49 49	0.114	0.081
		35	10	37	53				49	0.111 0.115	0.081 0.082
62		35	6	29	65				49	0.125	0.082
		35	4	24	71				49	0.130	0.083
64		33	2	24	71	2			49	0.135	0.084

24 24 20 18 71 71 71 71 73 73 67 31 31 49 37 22 24 29 38 29 27 65 67 24 26 17 20 24 24 70 80 78 76 76 73 73 28 28 27 30 45 27 25 23 74 DTW Records : Screen Length : 34 m Specific Capacity : 5.6 1/s/m Permeability : 23.2 m/d

0.133 0.088 0.136 0.136 0.089 0.133 0.090 0.134 0.135 0.136 0.090 0.091 0.091 0.137 0.092 0.134 0.093 0.137 0.093 0.135 0.094 0.135 0.135 0.134 0.094 0.095 0.095 0.134 0.096 0.132 0.096 0.133 0.097 Depth 95 m

0.084

0.085

0.085

0.086

0.087

0.135 0.137

0.135 0.136 0.136

Data Source : BADC / Deep Tubewell II Project

.

Appendix C.V

¥.

134

OUTPUT FROM THE GROUNDWATER MODELS

135 Sample Input and Output of the Single Cell Thana Model (SCTM)

File : SE GH130.DAT (Debidwar Aquifer Geometry)

4.8 -18.2 -29.2 -44.2 -104 20 22 0.1 0.1 0.0005 0.10 0.020 0.020 0.020 0.029 0.029 0.029 0.029 0.029 0.038 0.038 0.038 0.038 0.038 0.055 0.055 0.055 0.071 0.063 0.063 0.073 0.080 0.080 1 0.050 0.0100 0.0250 50.4 42.3 8.7 2 0.050 0.0060 0.0100 50.9 46.1 9.2 3 0.050 0.0100 0.0150 50.3 42.0 9.8 4 0.050 0.0060 0.0150 47.5 37.2 18.5 5 0.050 0.0040 0.0050 44.5 41.1 25.5 6 0.025 0.0020 0.0050 54.0 51.9 32.1 7 0.025 0.0020 0.0050 50.7 46.3 25.7 8 0.050 0.0060 0.0150 43.2 33.8 18.0 1 6 100.00 2 6 100.00 3 24 90.10 4 27 24.76 5 24 97.03 6 47 54.46 7 246 40.53 8 6 100.00 9 6 100.00 9999

File : SE_LT130.DAT (Debidwar land Type Distribution)

18 'Debidwar', 'Comilla',235 0.1397 1.02 0.82 2.75 40.08 18.07 11.50 10.02 1.77 6.83 7.14 0 0 0 0 0 0 0 0 0 0. 925. 0. 0. 0. 21375. 0. 0. 0. 1970. 42065. 1970. 0. 0. 0. 0. 9999 0.1397 1.02 0.82 2.75 40.08 18.07 11.50 10.02 1.77 6.83 7.14 0 0 0 0 0 0 0 0 0 0. 925. 0. 0. 0. 1970. 42065. 1970. 0. 21375. 0. 0. 0. 0. 0. 0. 9999 0.1397 1.02 0.82 2.75 40.08 18.07 11.50 10.02 1.77 6.83 7.14 0 0 0 0 0 0 0 0 0 0 0. 925. 0. 0. 21375. 0. 0. 0. 0. 0. 0. 0. 1970. 42065. 1970. 0. 9999

etc, etc for 17 years

File : SE_FL130.DAT (Debidwar Flooding Depths)

123456 0.00 9999 0.00 9999 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.40 0.70 1.00 9999 0.05 0.05 0.05 0.05 0.00 0.00 0.10 0.30 0.60 1.00 1.10 1.60 0000 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.30 1.60 2.00 2.10 2.60 9999

etc, etc for 17 years

File : SE_IP130.DAT (Debidwar Agricultural and Abstraction Parameters)

1 0.80 0.80 0.00 2 0.80 0.80 0.00 3 0.90 0.90 0.00 4 0.90 0.90 0.00 5 0.90 0.90 0.00 6 1.00 1.00 0.00 0.10 0.15 0.20 0.20 0.20 0.20 0.20 0.20 0.00 0.15 0.20 0.20 0.20 0.20 0.20 0.20 0.58 0.85 0.60 0.80 0.70 0.05 0.05 0.05 0.50 0.25 9999

etc, etc for 17 years

File : CHECK.OUT Debidwar

THANA AREA	SURFACE	BASE SC.	BASE U.AQTD.	BASE L.Aqtd	BASE L.AQTD
23500.00	4.80	-18.20	-29.20	-44.2	-104

LOCAL RELIEF CHARACTERISTICS

		LAN	D CATEG	ORY	
н	MH	ML	L	в	OW
1.04		-0.16			

LAND TYPE PROPORTIONS FOR SEASON : 1

Hp	Hi	MHp	MHi	MLp	MLi	10254	в	OW	HO
0.01	0.01	0.03	0.40	0.18	0.11			0.07	

PROPORTIONS OF LAND TYPES CULTIVABLE FOR SEASON : 1

				LAND	LIFE				
Нр	Hi	мнр	MHi	MLp	MLi	L	в	WO	HO
0.90	0.90	0.90		0.90		0.96		0.00	0.00

CROP DISTRIBUTION OVER LAND TYPE AREAS FOR SEASON : 1

			1				N	ON-IR	RIGAT	ED CRO	PS (h	a)				1	II	RRIGAT	ED CRO	PS (ha
AND	TYPE	AREA	1.1	B.AUS	T.AUS	T.AMAN	B. AMAN	BORO	JUTE	WHEAT	RABI	S.CANE	ORCHARD	FOREST	GRASS	14	HEAT	BORO	T.AUS	T. AMAN
1	Hp	240	1	0	0	0	0	0	0	0	0	0	0	0	24	1	216	0	216	0
2	Hi	193	10	0	0	173	0	0	0	0	0	0	0	0	19	1	0	173	0	0
3	MHp	646	1	0	0	0	0	0	0	0	0	0	0	0	65	i	582	0	582	0
4	MHi	9419	1	0	0	8477	0	0	0	0	0	0	0	0	942	1	0	8477	0	0
5	MLp	4246	1	0	0	0	0	0	0	0	0	0	0	0	425	Ť.	0	3822	0	0
6	MLi	2702	1	0	0	0	0	0	0	0	0	0	0	0	270	i.	0	2432	0	0
7	L	2355	1	0	0	0	0	135	0	0	0	0	0	0	100	i.	0	2119	0	0
8	в	416	I.	0	٥	0	0	239	0	0	0	0	0	0	177	i	0	0	0	0
TOT	AL	20217	1	0	0	8650	0	374	0	0	0	0	0	0	2022	1	797	17024	797	0

HYDROGEOLOGICAL CHARACTERISTICS - AQUIFER AND SEMI-CONFINING LAYER

ERMEABILITY		COEFFICIENTS UNCONFINED	VERTICAL PERMEABILITY	22 HE 10			IELD 1 3-4				₹10 п 7-8		 9-10
20.00	0.00050	0.100	0.0500	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.04	0.04

HYDROGEOLOGICAL CHARACTERISTICS - UNSATURATED ZONE AND SOIL SURFACE

	1	1	DEEP	PERC.	SOIL	SOIL TYPES AND PERCENTAGE					"BUND"	HEIGHT	EFF./GROSS RAIN			
AND	TYPE	INFILT.	WET	DRY	SAT.		W.P.	1		2		3	WET	DRY	WET	DRY
1	Hp	0.0250	0.0020	0.0050	INE STEP		0.32	C	100	Ν.	P.	N.P.	0.10	0.00		0.80
2	Hi	0.0250	0.0020	0.0050	0.54	0.52	0.32	C	100	Ν.	P.	N.P.	0.15	0.15	0.80	0.80
3	MHp	0.0500	0.0060	0.0105	0.51	0.45	0.10	SiL	90	SICL	10	N.P.	0.20	0.20	0.80	0.80
4	MHi	0.0310	0.0030	0.0062	0.51	0.46	0.22	SiL	24	Sic	76	N.P.	0.20	0.20	0.80	0.80
5	MLp	0.0500	0.0060	0.0101	0.51	0.46	0.09	SiL	97	SICL	3	N.P.	0.20	0.20	0.90	0.90
6	MLi	0.0385	0.0042	0.0104	0.49	0.41	0.22	SiCL	54	sic	46	N.P.	0.20	0.20	0.90	0.90
7	L	0.0482	0.0057	0.0123	0.49	0.42	0.16	SiL	40	SICL	53	C 7	0.20	0.20	0.90	
8	в	0.0250	C.0020	0.0050	0.54	0.52	0.32	c	100	Ν.	P.	N.P.	0.20	0.20	0.90	
9	OW	0.0250	0.0020	0.0050	0.54	0.52	0.32	c	100	N .	P.	N.P.		0.00	1.00	

F

Output of the Analytical Model of Upconing

The following two pages show the output from a spreadsheet formulation of the analytical model of Schmorak and Mercado (1969)¹. On each page the table applies only to one moment in time, but the graph refers to a range of times. The comment "discharge too high" applies to steady state pumping only.

¹ "Upconing of fresh water - salt water interface below pumping wells, field study". *Water Resources Research.* vol. 5, nr 6.

Saline Upconing Schmorak & Mercado (1969)

		booccorrection of the second	0.005
K(h)		25 m/d	0.005
K(v)		2.5 m/d	Calculate parameter
Porosity		0.25	0.061
		1.000	
rho(f)			
rho(s)		1.005	Zp = A1 * A2
Time		100 days	Parameter A1
		0.27 years	Parameter A2
Depth to	bottom of well	24 m	
			Comments:
	initial interface	65 m	The Property of the Property o
Initial Se	paration	41 m	case of upconing of 'heavy' saline water from the
Discharg	le	14 l/s	Higher Kv
	н	1209.6 m3/d	Deeper well
Check a	nainst:		
		4 l/s	% of max discharge
	n discharge <=		
for stead	ly state	DISCHARGE TOO HIGH	4 366%
	2212		
Critical r	ise of interface	10.3 m	
For the	the case where r =	0 (i.e. beneath the well)	
		0 (i.e. beneath the well)	Uncoping loss than aritical rise
	the case where r = ng of interface	0 (i.e. beneath the well) <u>2.159</u> <u>m</u>	Upconing less than critical rise
	ng of interface		Upconing less than critical rise
			Upconing less than critical rise
	40		Upconing less than critical rise
	40		Upconing less than critical rise
	ng of interface		Upconing less than critical rise
	40 35-		Upconing less than critical rise
	40		Upconing less than critical rise
	40 35-		Upconing less than critical rise
	<u>40</u> 35 - 30 -		Upconing less than critical rise
	40 35-		Upconing less than critical rise
	<u>40</u> 35 - 30 -		Upconing less than critical rise
<u>Upconir</u>	10 40 35 - 30 - 25 -		Upconing less than critical rise
<u>Upconir</u>	<u>40</u> 35 - 30 -		Upconing less than critical rise
<u>Upconir</u>	10 40 35 - 30 - 25 -		Upconing less than critical rise
<u>Upconir</u>	40 35 - 30 - 25 - 20 -		Upconing less than critical rise
<u>Upconir</u>	10 40 35 - 30 - 25 -		Upconing less than critical rise
<u>Upconir</u>	40 35 - 30 - 25 - 20 -		Upconing less than critical rise
<u>Upconir</u>	19 of Interface 40 35 - 30 - 25 - 20 - 15 -		Upconing less than critical rise
	40 35 - 30 - 25 - 20 -		Upconing less than critical rise

EDIT THE SHADED BOXES ONLY

Density factor	
0.005	
Calculate parame	ter GAMMA(u)
0.061	8
Zp = A1 * A2	
Parameter A1	37.5588
Parameter A2	0.0575

omments:

e of upconing of 'heavy' saline water from the lower aquifer

A B B B 10 5 0 1 3 2 4 5 6 LOG(Time in days) - Critical upconing

Output of the SUTRA Solute Transport Model

The following page shows the grid layout and relative concentrations at each node. The concentrations are expressed as a percentage of the initial maximum concentration of 4,000 mg/l. The nodes are printed in real format, and hence gives a pseudo-section through the aquifer. the input parameters for the model were:

	Semi-confining layer	Aquifer
Horizontal permeability	0.05	20 m/d
Vertical permeability	0.05	0.5 m/d
Longitudinal dispersion coefficient		5 m
Transverse dispersion coefficient		0.1 m
Porosity		0.25
Specific yield	0.03	
Initial water level		2.5 m
Initial interface depth		59 m
Salinity above interface		250 mg/l
Salinity below interface		4000 mg/l
Well screen position 1	2 - 24 m	

Well discharge	1200 m ³ /d

Initial column spacing : 1 m,	with a multiplier of 1.25
Row spacing	4 m
Number of time steps	100
Initial time step	2 days

Relative Concentrations After 100 days

S

]

Ш

Cole	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Laye	ers																	
1	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	
2	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	
3	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
4	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6)
5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	1
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
8	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
9	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
10	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
11	5	6	7	7	7	7	7	7	7	7	7	7	7	7	7	6	6	
12	11	9	8	8	8	8	8	8	8	8	8	8	8	8	8	8	7	
13	5	15	15	15	15	15	15	15	15	15	15	15	15	14	15	17	14	2
14	50	40	40	40	40	41	40	40	40	40	40	40	40	40	41	40	40	5
15	92	88	88	88	88	88	88	88	88	88	88	87	87	86	83	73	71	9
16	99	99	99	99	99	99	99	99	99	99	99	98	98	98	97	92	89	10
17	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99	98	10
18	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	10
19	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	10
20	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	10
21	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	10

Relative Concentrations After 200 days

Col	5 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Laye	ers																	
1	4	4	4	4	4	4	4	4	5	5	5	5	5	6	6	6	6	6
2	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6
3	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
4	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
8	7	7	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	ŧ
9	6	6	6	6	7	7	7	7	7	7	7	7	7	7	6	6	6	e
10	8	8	7	7	7	7	7	7	7	7	7	7	7	7	7	7	6	e
11	5	7	8	9	9	9	9	9	9	9	9	9	9	8	8	8	7	1
12	19	16	14	14	14	14	14	14	14	14	14	13	13	12	12	12	10	13
13	14	27	29	28	28	28	28	28	28	28	28	27	27	26	26	29	26	35
14	63	55	55	55	55	55	55	55	55	55	55	55	54	54	54	47	52	63
15	89	86	85	85	85	85	85	85	85	85	85	85	84	83	80	68	75	92
16	97	97	97	97	97	97	97	97	97	97	97	97	97	96	94	87	86	100
17	100	100	100	100	100	100	100	100	100	100	100	100	99	99	99	97	96	100
18	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99	99	100
19	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
20	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
21	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
lime	e Ste	ep =	100												100001000	10000000	-5.205	

Appendix C.VI

Documentation for the Single Cell Thana Model
A single cell four layer model was developed for the simulation of groundwater resource potential on an thana basis. The model is derived from the multi-cell model developed for the MPO in 1990.

The model simulates the response of the aquifer system to resource development for a 17 year simulation period, using third monthly time steps. The period of 17 years, which represents the rainfall conditions for the years from 1972/73 to 1988/89, was chosen to reflect the variability in rainfall and consequent potential recharge on the resource potential.

2 Modelling Approach

2.1 Model Geometry

The aquifer system can be simulated as either 2 or 4 layered, whereby the geometry of the aquifer system for an thana area is defined by the average ground surface elevation and the elevation on the base of the modelled layer. These layers include:

Layer 1 : Upper clays and silts, modelled as a semi-confining layer

- Layer 2 : For the two layered situation this represents the combined aquifer whereby it is assumed that the upper finer textured composite aquifer is in complete hydraulic continuity with the medium to coarse textured main aquifer. For the four layered system this layer represents the composite aquifer.
- Layer 3 : For the four layered system this represents the aquitard that separates the composite and main aquifers.

Layer 4 : For the four layered system this represents the main aquifer.

2.2 Hydrogeological Parameters

For layers 1 and 3 in which vertical flow is simulated the mean vertical hydraulic conductivity values are specified. Together with the saturated thickness they control the hydraulic resistance of these layers.

For the aquifer layers the mean section permeability is specified. Since the model is operated in a single

cell mode no lateral transfer of groundwater is simulated. Transmissivity values are however required for the computation of drawdown in wells due to pumping. For the two-layered system two permeability values are used to enable realistic drawdown simulation for different well technologies (STW and DTW).

Specific yield values which exercise the main control over release of water from aquifer storage are specified for the upper 22 m of the aquifer system with values defined for each 1 m interval. The specific yield values were based on the MPO analysis of thana wise depth storage relationships.

2.3 Rainfall

Third monthly rainfall totals have been used based on the available records for the period from 1972/73 to 1988/89. These data are available for each thana.

2.4 Recharge

The recharge routine is used to compute potential recharge to the aquifer system both from natural sources such as rainfall, flooding and open water bodies, and form irrigation return flow. Potential recharge is equivalent to the potential rate of deep percolation through the base of the active rootzone of dry land crops or through the plough pan for wet land crops. It represents the maximum possible recharge to the aquifer system. In the computation of potential recharge it is assumed that the aquifer system is an infinite storage reservoir without capacity to reject recharge.

Actual recharge is computed in the model by taking into account the constraints of the aquifer system. Actual recharge is always less or equal then potential recharge and can indeed be very small during periods of the monsoon season when groundwater tables are at ground surface. During such period potential recharge is rejected from the system.

The recharge routine simulates potential recharge for third monthly time steps from an analysis of the water balance of the rootzone of different crops.

The methodology of the recharge mechanism is detailed in Annex 1.

2.5 Crop Distribution over Land Type Areas

One of the uncertainties associated with the model simulation is the distribution of crops over different land types. During the MPO recharge studies the land type distrubution within an thana was derived from the SODAPS data base. Land type classification is according to the SODAPS definition based on the depth of normal flooding during the monsoon season. In addition the SODAPS data base specifies permeability ratings namely rapid, moderate and slow. In the recharge model permeability rating is either permeable or impermeable, a distinction mainly based on the capability of impermeable soils to be puddled. The guidelines for determining the permeability ratings used during the MPO recharge studies are as follows :

- Soils categorised in the SODAPS data base as slowly permeable were classified as impermeable, while those with rapid permeability were classified as permeable.
- For those soils described as moderately permeable, the crop suitability was used to classify them as either permeable or impermeable. Soils with a suitability rating of less than 3 for sugarcane were classified as permeable while those with a suitability rating of less than 3 for boro as impermeable.

The land types are classified for modelling purposes into 10 categories as follows:

Code	Land Type
Нр	High Land Permeable
Hi	High Land Impermeable
MHp	Medium High Land Permeable
MHi	Medium High Land Impermeable
MLp	Medium Low Land Permeable
MLi	Medium Low Land Impermeable
L	Low Land
в	Bottom Land
ow	Open Water
HO	Homesteads

The crop suitability of the diffecrent land types has been adopted from the MPO studies and is defined as follows for irrigated and non irrigated crops:

Crops

Non-irrigated crops

Land Type

High Land Permeable

Perennial crops or B.Aus/T.Aus/Jute followed by Wheat/Rabi B.Aus/T.Aman/Jute followed by Rabi B.Aus/T.Aus/Jute followed by Wheat/Rabi

High Land Impermeable Med. High Land Permeable

Med. High Land Impermeable Med. Low Land Permeable Med. Low Land Impermeable Low Land Bottom Land

B.Aus/T.Aman/Jute followed by Rabi Mixed B.Aus+B.Aman followed by Boro/Wheat/Rabi Mixed B.Aus+B.Aman followed by Boro/Rabi B.Aman followed by Boro/Rabi Boro

Irrigated Crops

Land Type

High Land Permeable High Land Impermeable Med. High Land Permeable Med. High Land Impermeable Med. Low Land Permeable Med. Low Land Impermeable Low Land Bottom Land Crops

T.Aus followed by Wheat/Rabi T.Aman followed by Boro T.Aus followed by Wheat/Rabi T.Aman followed by Boro Boro Boro Boro

2.6 Flooding

Flood depths are specified for each modelled time step for each land category (ie high land, medium high land etc). Time constraints have limited to specification of an idealised flooding sequence which has been kept constant for the 17 year simulation period.

If flood control is excercised within an thana area the impact on potential recharge and resource potential can simple be evaluated by specifying different flooding depths for the different land categories.

3 Assessment of Groundwater Resource Potential

The groundwater resource potential is expressed in terms of percentage of irrigable land that can be irrigated from groundwater during the dry season. The optimum rate of development is controlled by a number of constraints, which are:

Recharge

The groundwater resource is utilised as a replenishable resource and thus potential recharge (from both natural sources and from surface water irrigation returns) forms an upper limit on resource development potential.

149

Pumping modes

The suction limit (for STW and DSSTW) and the pump intake setting (for DTW) form constraints to development. In many cases this constraint is the dominant one if STW or DSSTW are selected as the pumping modes. For DTW there is in theory no limit on the pump intake setting although for most existing DTW a intake level of 20 m below ground surface is used.

The assessment of resource potential is one of repeated model simulation. The model would normally first be run under the worst conditions which implies the use of groundwater only for irrigation of high, medium high, medium low and low land without taking account of the beneficial effects of existing surface water irrigation. The cropping pattern would thereby be biased towards boro within the suitability constraints given in Table 2.5. If the resource is capable to sustain the full groundwater development one would have to consider the resulting mode of pumping to achieve the full development level. I full development can thus be achieved by DSSTW there will be no need for further simulation runs.

If the maximum development can only be sustained by DTW the beneficial effects of surface irrigation need to be taken into consideration. If this is done one assumes that bottom land is served by surface water, while the higher lands may be served by groundwater as well as surface water. In the model a ratio is specified of area irrigated from groundwater and total irrigated area. This ratio is specified on a time step basis. The impact of surface water irrigation on the groundwater resource potential can thus be analysed and it is conceivable that under these conditions a suction mode pumping technology is possible.

If potential recharge is shown to be a constraint to groundwater development than the area irrigated from groundwater will have to be reduced. The reduced area could then either not be irrigated or be irrigated from a surface water resource.

If the aquifer system consists of four layer it is assumed that STW and DSSTW abstract from the upper aquifer while DTW have their screen set in the lower aquifer. In this case the user would specify the proportion of total groundwater abstraction derived from the lower (main) aquifer. This set up of the model allows for a realistic simulation of conditions in areas where STW and DSSTW are still operation despite the fact that piezometric levels in the lower aquifer have drop below the suction limit of the STW/DSSTW.

An example of a simulation sequence is given in Annex 3 for Brahamnbaria thana.

Model Output

The output from the model is directed to a .PRN file which can be imported into a Lotus spreadsheet for additional manipulation and for preparation of graphical output. The output is described in detail in Appendix 1 and includes in suummary the following for each modelled time step:

- Pumping levels for force mode and suction mode wells (generally 2 cusec DTW and 0.5 cusec STW/DSSTW).
- Piezometric levels in the two aquifer layers.
- Water table levels for 6 relief phases (H, MH, ML, L, B and OW).
- Gross abstraction from groundwater.
- Actual recharge (sum of natural recharge and irrigation return flow).
- Storage changes in the aquifer and in the upper clay/silt layer.
- Total gross application of irrigation water (sum of groundwater and surface water supply).
- Return flow from irrigation.

Gross rainfall.

All flow components are presented in mm/d/unit gross area.

ANNEX 1

Methodology of Recharge Simulation

1 Methodology

In the model a distinction is made between infiltration and deep percolation rates. The infiltration rate is defined as the rate of flow through the soil surface. The deep percolation is the rate of downward flow through the base of the active rootzone or through the ploughpan.

The model assumes that all recharge is vertical. This includes the interaction between surface water (rivers, bheels, etc.) which given the basic assumption of a very deep groundwater table is valid. The model does thus not simulate the lateral transfer between rivers and the aquifer.

A large number of parameters affect the potential recharge. They may be categorised in major groups as summarised below :

- Physical parameters
 - land type distribution;
 - soil characteristics within land type areas;
 - local relief characteristics.

Hydrological parameters

- rainfall (totals, distribution, frequency);
- relationship between effective and gross rainfall;
- surface water retention capacity for different land types;
- surface runoff characteristics;
- extent, duration and depth of deep flooding;
- reference crop evapotranspiration.

Parameters related to agricultural practices

- crop coefficients;
- cropping calendar;
- cropping patterns related to soil and land types;
- rooting depth of crops, or depth to ploughpan;
- ratio of cultivable to gross area;
- crop statistics.

Deep percolation is calculated from the water balance of the rootzone and is assumed only to take place if the moisture content in the rootzone is above the value at field capacity. This simply assumes the build up of perched conditions at the base of the rootzone and in this case the deep percolation is equal to the gravity drainage capacity of the plough pan or the subsoil. If flood levels build up, then the rate of deep percolation increases in proportion to the height of the standing water at the soil surface. Summarised the deep percolation (or potential recharge) follows from :

If soil moisture below field capacity	: $DP = 0$
If soil moisture above field capacity	
but no deep flooding	: $DP = K_{v}$
If deep flooding	: $DP = (DF+1)^*K_v$

here	DP	=	deep percolation
	K.	=	vertical permeabilty of the subsoil or ploughpan
	DF		flood level relative to soil surface

2 Data Requirements

Introduction

W

The data requirements for the recharge model are summarised as follows :

(a)	Land type distribution
(b)	Soil distribution over land type areas
(c)	Crop statistics
(d)	Cropping calendar
(e)	Reference crop evapotranspiration
(f)	Crop coefficients
(g)	Effective rooting depths
(h)	Rainfall
(i)	Surface water retention and flooding
(j)	Infiltration and deep percolation rates
(k)	Soil moisture characteristics
(1)	Effective rainfall and surface runoff
(m)	Initial soil moisture conditions

Most data wer derived from the MPO data and only required some restructuring into appropriate data files. These structure of these data files is given in Appendix 1.

Land Type Distribution

Land type classification is according to the SODAPS definition, which takes as the main criterion for classification the depth of flooding during the monsoon season. The land types are classified for the recharge model into 10 major categories as shown in Table 2.1

The permeability rating, permeable or impermeable, is different from the one used in the SODAPS data base. SODAPS uses three permeability ratings namely rapid, moderate and slow. The guidelines for determining the permeability ratings used in the land type classification are as follows :

- Soils categorised in the SODAPS data base as slowly permeable were classified as impermeable, while those with rapid permeability were classified as permeable.
- For those soils described as moderately permeable, the crop suitability was used to classify them as either permeable or impermeable. Soils with a suitability rating of less than 3 for sugarcane were classified as permeable while those with a suitability rating of less than 3 for boro as impermeable.

It should be noted that permeability ratings relate to sub-soil characteristics.

The land type distribution for the thanas within the project area are given in Table 2.2.

Table 2.1

LAND TYPE CLASSIFICATION

Code	Land	Type

1	High Land Permeable	HP
2	High Land Impermeable	HI
3	Medium High Land Permeable	MHP
4	Medium High Land Impermeable	MHI
5	Medium Low Land Permeable	MLP
6	Medium Low Land Impermeable	MLI
7	Low Land	L
8	Bottom Land	В
9	Open Water	ow
10	Homesteads	HO

Soil Distribution over Land Type Areas

A variety of soil types may exist for each land type. In the model only the three most dominant soil types within the

land type area are taken into consideration. Soil types used in the model are shown in Table 2.3. Their physical characteristics were based on Rijtema (1969).

Table 2.3

SOIL TYPES USED IN THE RECHARGE MODEL

Code	Туре	Abreviation
1	Fine Sandy Loam	FSL
2	Silt Loam	SiL
3	Loam	L
4	Silty Clay Loam	SiCL
5	Clay Loam	CL
6	Basin Clay	BC
7	Silty Clay	SiC
8	Sandy Clay Loam	SCL

Table 2.2

Land Type Distribution in Project Area

Land Type Distribution in South East Region

Thana	Area			Land Types (%)							
Code Name	km ²	Hp	Hi	MHp	MHi	MLp	MLi	L	В	OW	HO
6 AKHAURA	93.0	14.74	3.55	9.72	2.41	8.03	14.70	21.01	12.65	5.88	7.31
14 ASHUGANJ	119.0										
42 BANCHARAMPU	JR207.0										
53 BARURA	240.0	11.10	0.00	24.36	9.10	30.05	16.94	0.13	0.00	8.32	0.00
58 BEGUMGANJ	409.0	21.51	0.00	9.72	0.24	32.46	29.97	1.10	0.00	. 5.00	0.00
87 BRAHMANBAR	IA 416.0	14.96	1.69	14.41	0.81	16.43	5.20	17.14	21.93	7.43	0.00
88 BRAHMANPAR	A 119.0	0.37	0.18	10.80	5.80	36.99	26.02	5.27	0.00	6.39	8.18
90 BURICHANG	181.0	2.84	2.00	14.50	34.43	4.76	21.45	1.36	0.00	9.98	8.68

Table 2.6 (Continued)

Thana	Area				Land	Гуреs (%)				
Code Name	km²	Нp	Hi	MHp	MHi	MLp	MLi	L	В	OW	HO
94 CHANDINA	202.0	0.12	0.00	19.43	12.74	•	6.73	40.69	0.00	8.37	9.11
96 CHANDPUR	287.0	6.63		15.38	0.11	22.86	2.78	0.54	0.00	28,47	23.23
102 CHATKHIL	134.0	24.70	0.00	22.50	9.11	12.07	18.84	7.78	0.00	5.00	0.00
104 CHAGALNAIYA	157.0										
111 CHOUDDAGRAM	271.0	12.86	2.06	41.89	19.16	4.33	9.06	0.65	0.00	9.99	0.00
116 COMPANIGANJ	189.0	0.00	0.00	15.95	24.62	0.93	1.50	0.00	0.00	46.75	10.25
120 DAGANBHUIYA	132.0	17.16	0.00	39.52	2.15	13.07	19.60	2.70	0.00	5.81	0.00
125 DOUDKANDI	375.0	0.00	0.00	0.00	0.00	4.75	0.00	56.96	22.20	10.13	5.96
130 DEBIDWAR	235.0	0.00	0.00	28.27	14.56	18.07	11.50	10.02	0.00	8.60	8.98
155 FARIDGANJ	235.0	20.83	0.00	37.48	5.74	3.96	7.16	2.07	0.00	5.39	17.37
161 FENI	221.0	21.95	0.00	41.46	19.51	4.30	2.99	2.86	0.00	6.93	0.00
166 FULGAZI	108.0	33.00	0.30	46.85	15.73	0.00	2.14	0.00	0.00	1.98	0.00
194 HAIMCHAR	186.0	4.99	0.00	10.02	3.53	19.70	4.32	0.01	0.00	43.85	13.58
195 HAJIGANJ	157.0	25.04	0.00	1.40	0.00	26.18	31.33	7.97	0.00	8.08	0.00
204 HOMNA	178.0	0.00	0.00	0.00	0.00	4.17	0.00	43.43	28.78	19.55	4.07
225 KACHUA	238.0	0.03	0.00	0.99	0.00	44.14	7.10	11.96	0.00	20.26	15.52
249 KASBA	207.0	16.93	0.87	24.86	2.07	24.95	4.21	8.54	3,60	7.42	6.55
271 KOTWALI	277.0	12.27	3.33	11.41	34.94	0.75	18.48	0.00	0.00	6.25	12.57
287 LAKSHAM	427.0	10.04	0.00	28.44	2.99	29.07	12.59	8.24	0.00	8.63	0.00
288 LAKSHMIPUR	515.0	20.97	0.94	21.86	24.45	14.43	5.73	0.00	0.00	11.62	0.00
312 MATLAB	409.0	0.03	0.00	0.99	0.00	44.14	7.10	11.96	0.00	20.26	15.52
343 MURADNAGAR	341.0	0.00	0.00	14.69	5.73	16.86	8.48	37.20	1.69	7.29	8.06
345 NABINAGAR	352.0	6.27	0.00	21.44	0.22	37.39	1.82	8.72	10.48	13.66	0.00
356 NANGALKOT	235.0										
362 NASIRNAGAR	313.0	0.00	0.00	0.54	0.00	33.09	13.66	15.71	18.65	7.46	10.89
388 PARSURAM	72.0	38.95	0.61	39.93	12.08	0.00	0.00	0.00	0.00	1.32	7.11
405 RAIPUR	202.0	11.15	0.00	31.79	16.05	3.99	1.12	0.00	0.00	17.87	18.03
411 RAMGANJ	170.0										
413 RAMGATI	650.0	0.00	0.00	29.50	23.81	2.50	1.01	0.00	0.00	32.13	11.05
437 SARAIL	212.0	0.00	0.00	16.25	0.00	17.82	6.69	27.85	14.94	7.60	8.85
445 SENBAG	160.0	20.03	0.00	34.45	1.64	15.53	23.64	0.46	0.00	4.25	0.00
447 SHAHARASTI	186.0	24.62	0.00	9.10	3.63	15.90	27.11	13.94	0.00	. 5.70	
459 SHUDHARAM	828.0	6.03					1	0.00		20.46	
465 SONAGAZI	259.0	1.10	0.00	38.14	13.10	5.93	1.46	0.00		28.53	

Crop Distribution over Land Type Areas

Crop statistics are available on an upazilla basis from the BBS data books. The Agronomy Section of MPO have computerised this data from 1974/75 for 16 major crops or crop groups. For the recharge model the number of crops was reduced to 10 major non-irrigated crops or crop groups plus forest and grass/wild vegetation plus four irrigated crops. The correlation between the crops is given in Table 2.4.

The statistics data do not indicate the distribution of crops over the various land type areas. For the recharge calculations the link between crop type and land type is, however, of major significance. The correlation between crops and land types is based on Table 2.5. In the model adjustments are made if necessary.

Table 2.4

CROP TYPES

Agronomy Section

1	B.Aus	1
2	T.Aus	2
3	B.Aman	4
4	Local T.Aman	3
5	HYV T.Aman	3
6	Local Boro	5
7	HYV Boro	5
8	Wheat	7
9	Potato	7
10	Jute	6
11	Sugarcane	9
12	Pulses	8
13	Oil Seeds	8
14	Spices	8
15	Other Crops	8
16	Orchards	10
		11
		12
		13

Recharge Model Non-Irrigated B.Aus T.aus B.Aman T.Aman T.Aman Boro Boro Wheat Wheat Jute Sugarcane Rabi Rabi Rabi Rabi Orchards Forest Grass/wild vegetation Irrigated

T.Aman

Wheat/Rabi

Boro T.Aus

12

14

15

Cropping Calendar

Date of first planting, harvesting dates and length of growing season vary slightly throughout the country and planting and harvesting may stretch out over quite significant periods. For ease of calculation in the model it is assumed that planting and harvesting periods for rice and jute are 40 days, and for wheat and rabi 30 days. It is further important that the growing seasons of successive crops do not overlap, since this may cause the occurrance of cropped areas in excess of available cultivable area.

Table 2.5

LAND TYPE VERSUS CROP TYPE

Crops (non-irrigated)

Land Type

High Land Permeable

High Land Impermeable Med. High Land Permeable Med. High Land Impermeable Med. Low Land Permeable Med. Low Land Impermeable Low Land Bottom Land

Land Type

High Land Permeable High Land Impermeable Med. High Land Permeable Med. High Land Impermeable Med. Low Land Permeable Low Land Bottom Land Orchards/Forest/Sugarcane B.Aus/T.Aus/Jute, Wheat/Rabi B.Aus/T.Aman/Jute, Rabi B.Aus/T.Aus/Jute, Wheat/Rabi B.Aus/T.Aman/Jute, Rabi/Boro Mixed B.Aus + B.Aman, Wheat/Rabi/Boro Mixed B.Aus + B.Aman, Rabi/Boro B.Aman, Rabi/Boro Boro

Crops (irrigated)

Wheat/Rabi, T.Aus Boro, T.Aman Wheat/Rabi, T.Aus Boro, T.Aman Boro Boro Boro Boro

T.Aman may shift to medium low and low land if this becomes flood protected.

Reference Crop Evapotranspiration

Reference crop evapotranspiration is available from a number of meteorological stations throughout the country. Monthly data can be reworked into shorter periods with reasonable confidence using curve fitting and interpolation routines.

Crop Coefficients

Crop coefficients were based on values derived during the first phase of MPO and are shown in Table 2.6. For broadcast rice the consideration is given to possible saturated soil conditions during the early stages of the crop. Under such conditions a coefficient of 1.1 is used in the recharge model.

Table 2.6

CROP COEFFICIENTS

Values given are for third monthly periods from 1st March Note : Values given should be in accordance with the cropping calendar

Non-Irrigated Crops

B.aus												
0.00	0.00	0.45	0.51	0.59	0.68	0.83	0.96	1.05	1.09	1.09	1.05	
0.99	0.95	0.90	0.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
T.aus												
0.00	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.09	1.05	
0.99	0.95	0.90	0.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
T.amar	r											
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	
1.09	1.05	0.99	0.95	0.90	0.85	0.00	0.00	0.00	0.00	0.00	0,00	
B.amar	n											
0.00	0.00	0.45	0.51	0.59	0.68	0.83	0.96	1.05	1.09	1.10	1.10	
1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.05	0.99	0.95	0.90	
0.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Boro							1.8			5		
1.19	1.24	1.26	1.22	1.11	1.06	0.98	0.85	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.11	1.14	

Table 2.6 (continued)

Jute												
0.00	0.00	0.00	0.00	0.00	0.40	0.42	0.45	0.49	0.57	0.70	0.85	
0.98	1.00	1.11	1.15	1.11	1.02	0.98	0.90	0.80	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Wheat												
0.80	0.69	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.45	0.51	0.59	0.75	0.92	1.05	1.12	1.13	1.10	1.01	
Rabi												
1.01	0.80	0.69	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.45	0.51	0.59	0.75	0.92	1.05	1.12	1.13	1.10	
Sugar ca	ane											
0.97	1.00	1.04	1.06	1.08	1.10	1.12	1.13	1.14	1.14	1.15	1.15	
1.15	1.15	1.14	1.13	1.12	1.09	1.06	1.02	0.98	0.93	0.88	0.84	
0.81	0.79	0.77	0.75	0.74	0.74	0.74	0.76	0.79	0.83	0.87	0.92	
	es and I	Forest										
0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	
0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	
0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	
	tivable											
0.20	0.20	0.20	0.20	0.20	0.30	0.40	0.40	0.40	0.50	0.60	0.60	
0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.50	0.50	0.40	0.30	
0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
Irrigate	d Crops											
111.5410	a crops											
Wheat	1000	174277122431	12.02.02	82502826	7722-1522-152	0.2200.5.20	(2023)	9072324	100000000	0.00027	(15/12/15 V	
0.80		0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.45	0.51	0.59	0.75	0.92	1.05	1.12	1.13	1.10	1.01	
Boro												
1.11	1.14	1.19	1.24	1.26	1.22	1.11	1.06	0.98	0.85	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	1.10	1.10	1.10	1.10	1.10	1.10	1.10	
T.aus												
0.00	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.09	1.05	
0.99	0.95	0.90	0.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
T.aman	L											
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	
1.09	1.05	0.99	0.95	0.90	0.85	0.00	0.00	0.00	0.00	0.00	0.00	

Effective Rooting Depth

The effective rooting depth is for most crops dependent on the subsoil conditions and may thus be greater or smaller than general values such as presented in FAO Publication 24. A tight clay at shallow depth would restrict root penetration to a major extent, while the existance of a plough pan will have a similar effect. The range of values that may be adopted in the model are shown in Table 2.7. Adjustments may be required depending on local conditions.

Table 2.7

ROOTING DEPTHS

Сгор	Rooting Depth (m)
Rice	0.3 - 0.6
Jute	0.4 - 0.8
Wheat	0.6 - 1.0
Rabi	0.4 - 1.0
Sugarcane	1.0 - 2.0
Trees	2.0 - 3.0
Wild vegetation	0.5 - 1.0

Surface Water Retention and Flooding

The land is classified into different land types according to the depth of normal flooding during the height of the monsoon season. The relationship between land type and flood depth is given in Table 2.8.

Table 2.8

LAND TYPE VERSUS FLOOD DEPTH

Land Type

Flood Depth

High Landnot flooded or less than 0.3 mMedium High Land0.3 to 0.9 mMedium Low Land0.9 to 1.8 mLow Land1.8 to 3.0 mBottom Landgreater than 3.0 m

The depth of flooding may vary throughout the monsoon season, while its duration will depend on the land type and other factors. In the model flood depths and start and end of the deep flooding period have to be specified.

161

For land not subject to flooding, water can be held in surface storage between field 'bunds'. This also applies for periods outside the flood season for land that is subject to flooding. In the model hypothetical 'bund' heights for the different land types are adopted for 'wet' (rice and jute) and 'dry' (wheat, rabi etc) crops which do not necessarily reflect actual bund height in the field. Water can thus be held in surface storage up to a maximum level determined by the specified 'bund' height.

Infiltration and Deep Percolation Rates

Data based on field experiments conducted by the Soils Survey Department give infiltration rates for dry and moist soil conditions. The range of values for seven soil types are given in Table 2.9.

Table 2.9

INFILTRATION RATES

Soil Texture	Infiltration R	Infiltration Rates (m/d)*		
		Dry	Moist	
Fine sandy loam	0.48 - 2.40	0.048 - 0.249		
Silt Loam	0.48 - 2.40	0.048 - 0.192		
Loam	0.48 - 2.40	0.396		
Silty Clay Loam	0.48 - 2.40+	0.048 - 0.120		
Clay Loam	0.48 - 2.40+	0.084		
Silty Clay	1.80+	0.048 - 0.072		
Basin Clay	0.84 - 1.92+	0.024 - 0.072		

* Increased rate due to soil cracks

+ Values obtained from MPO Soils Section

Values adopted in the recharge model are 0.025 m/d for silty clay and basin clay, and 0.05 m/d for the other soils.

Deep percolation rates are often an order of magnitude smaller than the infiltration rates. The likely range for eight soil types and for 'wet' and 'dry' conditions were based on simulation of potential recharge by the MPO and are given in Table 2.10.

Table 2.10

DEEP PERCOLATION RATES

Soil Texture	Minimum Deep Percolation Rates (mm/d)		
	'Wet'	'Dry'	
		20 ia	
Fine sandy loam	5-15	25	
Silt loam	3-9	10	
Loam	5-15	15	
Silty clay loam	3-9	15	
Clay loam	2-6	5	
Basin clay	1-3	5	
Silty clay	1-3	5	
Sandy clay loam	3-9	15	

Soil Moisture Characteristics

Soil moisture characteristics are based on Rijtema (1970). The soil moisture contents at full saturation, field capacity and wilting point for the eight soil types are given in Table 2.11. Field capacity is defined as the condition where moisture tension is 100 cm (pF=2.0) and approximates the moisture content that can be held in the soil against gravity forces. Wilting point is defined as the condition where moisture tension is 16,000 cm (pF=4.2) and represents the condition where plants loose their ability to extract moisture from the rootzone.

Table 2.11

SOIL MOISTURE CHARACTERISTICS

Soil Texture	Moisture Content (%)			
	Full Saturation I	Field Capacity	Wilting Point	
Fine sandy loam	50.4	42.3	8.7	
Silt loam	50.9	46.1	9.2	
Loam	50.3	42.0	9.8	
Silty clay loam	47.5	37.2	18.5	
Clay loam	44.5	41.1	25.5	
Basin clay	54.0	51.9	32.1	
Silty clay	50.7	46.3	25.7	
Sandy clay loam	43.2	33.8	18.0	

163

Effective Rainfall and Surface Runoff

Effective rainfall is calculated for 'wet' and 'dry' land areas for each land type according to the following equations :

If mean daily rainfall is less than 1 mm/d for the considered time period :

ER = 0

Otherwise :

$$ER = PR * (R - 1)$$

where

ere

ER - effective rainfall in mm/d
R - actual rainfall in mm/d
PR - factor depending on land type and land use ('wet' and 'dry') (PR <= 1)

Values for PR were based initially on findings from previous modelling studies and the likely range is shown in Table 2.12.

Table 2.12

EFFECTIVE RAINFALL FACTORS

* 1	
000	Type
Lanu	TYDC

PR

'Dry'

High Land P	0.7 - 0.9	0.7 - 0.9
High Land I	0.7 - 0.9	0.7 - 0.9
Med. High LandP	0.7 - 0.9	0.7 - 0.9
Med. High Land I	0.7 - 0.9	0.7 - 0.9
Med. Low Land P	0.8 - 1.0	0.8 - 1.0
Med. Low Land I	0.8 - 1.0	0.8 - 1.0
Low Land	0.8 - 1.0	0.8 - 1.0
Bottom Land	0.8 - 1.0	0.8 - 1.0

'Wet'

Surface runoff due to excess rainfall is calculated as the difference between actual and effective rainfall minus interception (1 mm/d).

ANNEX 2

1 Structure of the Model

The structure of the model and an associated data preparation data checking program is shown in Figure 1.1. The functions of the programs and associated subroutines are summarised as follows:

Program DATAPREP

This program reworks basic data into a binary master file, which is used as input file to the model. Two subroutines are associated with this program. Subroutine LTCMOD is used to distribute crops over land type areas. Subroutine INFMOD is used to convert infiltration, deep percolation and soil moisture characteristics from a soil type basis to a land type basis.

Program CHECK

This program is used to create a printer ready copy of the data generated by program DATAPREP.

Program SCMTM

This program performs the numerical calculations required for the simulation of the groundwater system. 21 subroutines are linked with the program which are briefly described in the following.

Subroutine RECHMOD

Recharge to groundwater and irrigation requirements are computed in this subroutine.

Subroutine STORAGE

In this subroutine the storage changes in the aquifer and the semi-confining layer are computed.

Subroutine HDCORRM

In this subroutine head corrections are computed for the aquifer and for the 6 land categories of the semi-confining layer.

Subroutine INPUT

Model input data are entered in this subroutine.

Subroutine PRIMOD

In this subroutine the actual crop coverage for the current time step is computed for each land type.

Subroutine FLOOD

Recharge due to deep flooding conditions is computed in this subroutine.

Subroutine RBALMOD

In this subroutine the moisture balance of the rootzone of non-irrigated crops computed for conditions where the water table is positioned below the base of the rootzone.

Subroutine CAPILM

Capillary flux from the water table to the rootzone is computed in this subroutine.

Subroutines WHEAT, BORO, AUS and AMAN

In these subroutines the moisture balance and the irrigation requirements are computed for the four irrigated crops.

Subroutines SUB1 to SUB6 and SUB8

These subroutines are linked to the subroutines that compute the moisture balance for irrigated crops.

Subroutine SUB7

In this subroutine soil moisture and surface storage are redistributed.

2 File Specification

The file structure of the model may be summarised as follows :

Files which need to be specified for each thana

These files include :

(a) File re_GHijk.DAT

This file contains the data defining the aquifer geometry, its hydrogeological parameters and the soil type distribution over land type areas. The file also contains infiltration, deep percolation and soil moisture characteristics for the 8 soil types incorporated in the model.

(b) File re_LTijk.DAT

This file contains the data defining the land type distribution within each thana, information regarding flood protection of certain land types, and the cropped areas for each cropping season of the simulation period.

(c) File re_RAijk.DAT

This file contains the third monthly rainfall totals for the simulation period.

(d) File re_FLijk.DAT

This file contains the depth of deep flooding for each third monthly period for each land type. The flooding characteristics represent the long term mean for the simulation period.

(e) File re_ICijk.DAT

This file contains intitial values of aquifer piezometry and water table levels and data defining non-agricultural groundwater abstraction.

(f) File re_IPijk.DAT

This file contains data defining effective rainfall factors, bund heights, rooting depths and irrigation management parameters.

The file name convention is such that the region code and the thana number can be recognised from the file name. 're' refers to the region code (NE, NW, SE or SW) while ijk refers to the thana number (eg 054).

Files which need to be specified for the region

These files include :

(g) File re_RCE.DAT

This file contains the mean reference crop evapo- transpiration values for third monthly periods and the crop coefficients for 12 non-irrigated crops and 4 irrigated crops.

(h) File re_PRI.DAT

This file contains the cropping calendar for the 12 non-irrigated and 4 irrigated crops in the form of proportion crop coverage relative to maximum crop coverage for each simulated time step.

The file names include the region code 're'.

Screen file

(i) File INPUT.SCR

This file contains the start-up template for a model simulation run.

Other files

(j) File PARAM.DAT

This file contains the model run control parameters.

(k) File FLUX.BIN

This binary file is generated by program FLUXDAT and contains the capillary flux characteristics for the 8 soil types given in Table 2.3.

Output file

(j) File re_MOijk.PRN

This file contains the simulated model output for each third monthly time step. The file can be imported into Lotus 123 for further processing.

Examples of input and output files are shown in Appendix A.

3 Program Operation and Directory Structure

Executable programs are stored in (sub)-directory EXE, while data files which are general or specific to the region are stored in (sub)-directory DATA. Files which are related to individual thanas are stored in separate sub-directories of directory DATA. The thana sub-directory names are identical to the MPO thana code (eg 087 for Brahmanbaria). The programs are operated from directory DATA by specifying the program name.

Appendix C.VII

120

Theoretical Analysis of Deep and Shallow Tubewell Operation under Comparable Conditions

Theoretical Analysis of Deep and Shallow Tubewell Operation under Comparable Conditions

1 Introduction

Despite a considerable literature on the economics of tubewell irrigation in Bangladesh, few studies have combined the technical and economic factors determining the choice between deep tubewells (DTW) and shallow tubewells (STWs). The purpose of the paper to clarify the fundamental linkage between the technical and economic factors, and is not concerned with the general incentive to irrigate, farmer organisation, credit and financing, or cropping patterns; such matters have been described elsewhere (e,g Sadeque and Hakim). The analysis assumes that for a given location the decision to irrigate a *boro* rice crop has been taken, and that groundwater is the only available source of water.

It is the premise of this paper that previous analyses have produced distorted interpretations of the optimum economic choice of technology through the use of average costs and benefits derived from dissimilar geographical areas, and because they have not given proper attention to the different operating characteristics of the pumping units used. Previous analyses have also been distorted by the different objectives of public sector and private sector irrigation wells. Many published STW costs were measured in very easily developed aquifers such as in North Bengal or the Jamuna Floodplain, whereas most deep tubewell costs are from relatively difficult areas such as the Madhupur and Barind Tracts. It is not the intention of this work to argue the case of whether STW or DTW is better, for both have their roles, rather the intention is to identify the proper (economic) point of transition.

The key environmental factors influencing the choice between DTW and STW are:

- depth of the aquifer
- permeability of the aquifer
- the depth of the water table
- occurrence of natural gas

of which only the first three are considered here. Natural gas discharges may render STWs inoperable in areas that would otherwise appear highly favourable (e.g. parts of Comilla District); it is a problem that simply rules out STW operation and is therefore not relevant to this analysis. The other factors, however, directly influence the cost of irrigation. Other environmental factors, such as soil type and flooding phase, tend to influence the decision of whether or not to irrigate rather than the choice of technology. Compared to deep tubewell irrigation, STW irrigation is a low capital cost - high operating cost - short working life option. Thus STW irrigation is to be preferred where the water table is near the ground surface and the aquifer is most permeable, which combine to give low pumping costs, and where the aquifer is shallow and hence the well is cheaper to construct. It is quite likely that in many cases farmers may prefer STWs because of the difficulty of raising investment capital in rural society, however, for water resources planning purposes it is desirable to determine the environmental parameters that mark the economic transition.

C.VII-2

Planning policies towards shallow tubewells have been subject to major changes during the 1980's. In the early eighties STWs were prohibited in many thanas because they were held to interfere with the efficient development of DTW irrigation, which was provided on a highly subsidised basis through BADC in all areas outside the coastal region. These restrictions were later withdrawn, and replaced with attempts to restrict the supply of subsidised DTWs to more difficult aquifer areas. At present there is tendency for policies to swing to the other extreme, with proposals for prohibiting DTWs from all areas where STWs can operate.

Both deep and shallow tubewells were introduced through BADC, however, since the mid 1980's STW construction and operation has been almost entirely transferred to the private sector. DTWs, on the other hand, have been supplied at heavily subsidised prices and with generous credit facilities. DTW designs have been of be a high investment - long life - low operating cost type, and have also tended to become somewhat elaborate with sophisticated discharge boxes calibrated for flow measurement and expensive pump houses. Government policy is now to privatise the DTW sub-sector, and this will undoubtedly lead to major changes in DTW designs, aimed at reducing capital costs, including:

- shorter screen lengths, and use of thermoplastics;
- simple pump houses and discharge boxes;
- substitution of Chinese and Indian pump sets for Japanese and European ones;
- manual drilling methods;
- reduced quality control.

The objective of this analysis is to evaluate both DTWs and STWs as they would they would be designed for full cost, private sector operation; and explain the fundamental differences between the theory and practice of STW and DTW operation, and hence guide the rational development of policy, especially with regards the wider range of tubewell equipment that will become available under the forthcoming National Minor Irrigation Development Project. The analysis considers only pumps powered by diesel engines, which are expected to remain the dominant source of power in the minor irrigation sector for the foreseeable future.

2 Operating Characteristics of Tubewell Pumping Equipment

Deep Tubewell Pump Characteristics

Pumps, aquifers and wells must be considered as a composite system in order to determine the actual discharge and operating heads (and hence pumping cost) that will be observed in reality. The operation of pumps in deep tubewells is, in principle, the same as for STWs but, by and large, is not complicated by suction restrictions, and thus is described first. A curve relating discharge to head may be defined for both a well, at any particular static water level (SWL) and pumps, as shown in Figure 1. Pump manufacturers provide data for the discharge, efficiency and power requirements at a given rotation speed (which is usually close to the optimum efficiency) as a function of pressure, referred to as the 'pump curve'. The total head (H_i) against which a pump in a well operates is:

Figure 1 Determining the Duty Discharge of a DTW

Figure 2 Suction Limitations for a Typical STW Pump

 $H_t = SWL + s + H_f + H_d$

where:	S	drawdown in the well
	H	friction losses in the pipe work
	H _d	the lift on the delivery side of the pump

The variation of H_t with discharge is known as the system (or well) curve. The intersection of the system curve and the pump curve defines the operating discharge and head ('duty point') for a given pump speed. The 'duty' discharge will not be same as the nominal or rated capacity of the pump. The only ways to change the discharge are to alter the speed of the engine driving it, or throttle the discharge side of the pump. When the speed of a pump is changed the shape of the pump curve varies in a systematic manner, whereby discharge is directly proportional to speed, head to the square of pump speed, and the power requirement to the cube of pump speed (the 'affinity' laws). Thus the manufacturers performance data may be recalculated for any speed with reasonable accuracy for variations within a factor of two (Linsley and Franzini, 1987). Pumping cost is mainly determined by the 'duty point'. For a well designed DTW, the duty discharge will vary from more than the nominal discharge of the pump at the beginning of the irrigation season, to less than the nominal discharge at the end of season, as the regional water table falls. Thus there are actually a continuous series of well curves bounded the greatest and least water table depths, the intersections of which define the 'duty range' of the pump and well.

Shallow Tubewell Pump Characteristics

The characteristics and determination of 'duty discharge' for a STW pump are almost the same as for a DTW pump, except for the inclusion of suction as a limit on discharge. The maximum suction lift (H_s) for a pump in a well is determined by the following equation:

 $H_s = H_a - H_f - e_s - NPSH - F_s$

where:	Π_{a}
	e,
	NPS

unharry U

atmospheric pressure

saturated vapour pressure of water

NPSH the net positive suction head, a parameter related to cavitation and proportional to discharge, which provided with manufacturers performance specifications

F_s a factor of safety (usually 0.6m)

Figure 2 shows the resultant plot of maximum suction lift as a function of discharge for a typical STW pump. Determination of the duty point for a STW is that same as for a DTW except that if the lift to the pump intake exceeds H_s, then suction will be lost and the continuous discharge of water will be broken, necessitating a reduction of discharge or switching the pump off. The characteristics of STWs under typical aquifer conditions have a number of important implications. The notional '0.5 cusec' (14 l/s) STW is not achievable for surface set pumps, except under the most favourable aquifer conditions. Suction limits are the fundamental constraint on STW discharge. In most areas, deep setting of 2 to 4 metres is required to achieve the nominal discharges. Unless constrained, pumps cannot be operated at their 'design' speeds of 1450 or 1500 rpm. Faced with this situation, pump operators may adopt one of three strategies:

set the pump in a pit to reduce the suction head. This increases capital costs, may be difficult to maintain in some soils, and takes land out of cultivation;

- throttle the pump outlet to increase the discharge head and hence reduce the flow of water. This method introduces 'unnecessary' pumping costs. This method is probably more common with electrically driven pumps where the motor speed is fixed;

reduce the engine speed (and also its' power output). This method is thought to be the most common, and increases the capital cost per unit area. Reduced power output at low speed probably accounts for the almost ubiquitous 'over-sizing' of STW engines.

In theory (or at least for the same group of farmers at the same location), the maximum command area that can be served with full irrigation is directly determined by the maximum discharge at time of peak water demand. The maximum discharge that can actually be obtained from STWs under a range of aquifer conditions are shown in Figure 3. the curves shown in Figure 3 should be considered in the light of a water table that will probably fall by 2 to 4 metres during the course of an irrigation season. The low discharges that may be obtained from STWs makes them particularly inefficient (as is well known) on the higher land phases. The sensitivity of STW discharge to suction limits gives rise to a greater variation of discharge during the course of the dry season than is observed with DTWs. Farmers may adopt strategies to reduce these affects by using STWs in a different role within the overall cropping patterns and practices:

- avoid the deepest static water levels (in April) by planting the *boro* crop earlier. This is likely to be lower lands where deep and prolonged flooding has prevented a preceding crop. These low lands will also be have shallower water tables;
- accept the reduced water availability, and deliberately practice partial irrigation, perhaps relying on rains in late March to sustain the crop to harvest, although with substantially reduced yields¹.

3 A Techno-Economic Model of Tubewell Irrigation

The 'Model Aquifer' and Well Design

A simple two layer aquifer system is defined in the model, consisting of an upper aquitard (clay layer) and an aquifer of uniform permeability. No lower aquitards are considered, the aquifer is considered to be unconfined. The volume of water withdrawn by the single well is taken to have no effect on the regional groundwater level. The following parameters are specified:

- mean horizontal permeability (K) of the aquifer;
- thickness of the aquitard;
- depth of water table below ground in the late dry season.

A parallel to this is observed in LLP irrigation where natural water courses dry up towards the end of the dry season.

P. R. LIBRARY. DHI

Figure 3 Maximum STW Discharges

Well designs follow automatically from the aquifer configuration and the specified length of well screen (assumed to be available in 6 metre lengths). The screen lengths of 12 m for STWs and 24 m for (nominal) 56 l/s DTWs were used as defaults, with default diameters of 10 m and 150 mm.

In the model, STWs may be screened from the end of the first 6 m pipe length below the aquitard. Model DTWs have and upper well casing length calculated as the 'duty drawdown' plus 6 metres. Lower well casing is extended to the top of the aquifer if necessary, but in most cases this is not required because good aquifer conditions (i.e. thin clay covers) are considered. The capital costs for the tubewell (including drilling and testing) are then calculated using cost factors taken from the Minor Irrigation Technologies Study (MMI, 1991).

Drawdown in the aquifer is calculated from a form of the Thiem equation:

$\mathbf{S}_{\mathbf{a}}$	=	_Qln	<u>r</u> e
		$2\pi KL$	r.,

where: L - screen length

r.	- radius	of	influence	(assumes	150m)	
		· · ·	minuence	(moonineo	" o o my	

r_w - effective well radius (assumes drilling diameter)

The well loss is calculated the equation given by Barker and Herbert (1992a):

$$s_w = Q^2 \cdot (\underline{\alpha L} + \underline{\beta})$$

4 3

where α and β where experimentally determined coefficients for a particular screen type (Barker and Herbert (1992b). Friction losses above the screen were approximated from published tables.

The costs of engines, pumps, drive arrangements, discharge boxes and pump houses were taken from the estimates given in the Minor Irrigation Technologies Study (MMI, 1991) for wells constructed by and for the private sector. The resulting capital costs for DTWs are significantly lower than the full cost prices presently quoted for BADC DTWs (about Tk 600,000). This is not only because of the design modifications anticipated for private sector wells, but also because the present analysis is concerned with areas of relatively good aquifer conditions in areas where STWs and DTWs are in competition, and not in areas in difficult areas where STWs simply cannot operate (for instance a DTW on the Madhupur Tract might be twice the depth of one of the same discharge on the adjacent Jamuna Floodplain).

The costs and performance data were based on the use a (Japanese) Kubota ER900 engine coupled to a KSB ETA-80-20 pump (made in Bangladesh) for the STW, and a KSB vertical turbine pump, with a nominal capacity of 56 l/s at 15 m (made in Bangladesh) coupled through a right angle gear box to a two cylinder (Indian) Ruston engine. Certain missing engine characteristics were assumed by comparison with data for the Lister HR-2

engine. Based on field experience, the (Japanese²) STW engines and (Bangladeshi) pumps were assigned a working life of five years, while the DTW engine was assigned a working life of 10 year. The vertical turbine pump and gear box for the DTW are expected to last 15 years (or more). Fuel consumptions were calculated from the manufacturers specific fuel consumption figures and the power generated by the selected engines at the modelled speeds, but de-rated for the degree of under-loading of the engine³. Consumption of lubricants were calculated as per manufacturers stated performance. The incidental operating costs such as operator' salary and canal construction were taken as standard per hectare costs based on average values in the Deep Tubewell II (DTW II) Project's 1991 Annual Monitoring Survey (MMI, 1992), with the exception of 'management' which was arbitrarily reduced by half for STWs.

Costs and Benefits of Boro Irrigation

The 'farming' (i.e. non-pumping) costs of *boro* irrigation were taken from the DTW II 1991 Annual Monitoring Survey (MMI, 1992). The costs used in the model were the arithmetic mean of costs on the Old Meghna Estuarine Floodplain, the Young and Old Brahmaputra Floodplains, and the Madhupur Tract. These values are reasonable averages, but it is stressed they are used in the model only for purpose of comparing different tubewell technologies. Similarly no account is taken of payment methods. A summary of the standard parameters used in the techno-economic model are given in Table 1, and should be assumed to apply throughout the following discussion except where stated otherwise.

TABLE 1

Parameter	Rate/ Value	Parameter	Rate/ Value
Seeds, fertiliser and chemicals	4.206 Tk/ha	Aquitard thickness	10 m
labour	8,154 Tk/ha	Permeability	20 m/d
Draft power	2.365 Tk/ha	Static water level	4 m
Rice and straw production	24,290 Tk/ha	STW screen, 12m × 100mmø PVC	230 Tk/n
Diesel fuel	14 Tk/l	DTW screen, 24m × 150mmø PVC	656 Tk/n
Annual pumping	1200 hours	STW installation	100 Tk/m
Irrigation water requirement	800 mm	DTW installation	780 Tk/m
Discount rate	12%	STW engine and pump	26.500 TI
Period of economic analysis	15 years	DTW engine, gear box and pump	200.000 T

Default Parameters for the Techno-Economic Model

² Chinese STW engines are significantly cheaper, but generally have to be replaced after two years. Similarly some European engines (e.g. Ruston) last much longer, but are significantly more expensive.

³ Using de-rating data for the Lister HR-2.

(a) Moderate Aquifer (permeability = 20 m/d)

Economic analysis was carried out using conventional discounted cash flow techniques, and comparisons are based on the NPV of costs and benefits per hectare. It is emphasised again that this is a partial economic analysis (no with and without project comparison) aimed at determining the economically preferred mode of irrigation under different conditions.

3 Results

The different operating characteristics of STW and DTW pumping equipment leads to a greatly different sensitivity to hydrogeological parameters. As shown earlier, maximum STW discharges fall off rapidly with increasing depth to water and decreasing aquifer permeability (i.e. more drawdown), and so must command areas and hence the economic viability. Figure 4 shows the limiting command areas for deep and shallow tubewells under good and moderate aquifer conditions, and for typical (800 mm) and high (1200 mm) irrigation water requirements. The different discharge responses of the well types is crucial to explaining the economic returns to irrigation shown in Figure 5. Under favourable water level conditions the returns are very similar, however, as the water level falls large differences in economic performance become apparent long before suction limitations render STWs inoperable. DTW irrigation (viewed in isolation) is observed to be economically preferable to STW irrigation under almost all conditions. It is important to note that the STW benefit curve does not have a smooth slope, but tends to follow the DTW closely until a critical water table depth and then plunges steeply into a loss making condition.

Figure 5 also shows the effect of diesel price variations, including the present price of 14 Tk/l and the pre-Gulf War price of 8 Tk/l. Diesel price, of course, has a dramatic effect on the overall profitability of irrigation, but the important conclusion from this comparison is that it has little effect on the relative profitability of DTWs and STWs, and yet the post Gulf War price increase may have reduced the economic limit (measured in terms of water table depth as a possible zoning criterion) of STW irrigation by as much as a metre.

It is generally assumed that the success of force mode tubewell development by the private sector depends largely on the ability to reduce to capital cost (per hectare), as in this analysis. The influence of DTW capital cost on economic viability was examined by applying an arbitrary multiplier to the capital and replacement costs of the DTW until the net benefits of the two modes were equal. It was found that in a good aquifer (K=50 m/d) with a water table at 5 metres the capital cost of a DTW may be increased by up to 83% (to Tk 550,000), and in a moderate aquifer (K=20 m/d) with a water table of 4 metres the cost of a DTW may be increased by up to 50% (to Tk 473,544)

It is common practice to use STW engines for other purposes, such as powering country boats or power looms, whereas DTW engines are found to be too heavy and cumbersome to be put to alternative uses. This difference must influence the true economic evaluation of STW irrigation. Although this is basically beyond the scope of the paper, a simple test of its potential impact was carried out by adding a lump sum for non-farming operating profit to the annual income of the STW. In a good aquifer (K=50 m/d) with a water table at 5 metres the required income to equate the net benefits of DTW and STW irrigation is Tk 4,250 a year, and in a moderate aquifer (K=20 m/d) with a water table of 4 metres the required income is only Tk 2,900.

NPV per hectare (Taka)

Figure 7 Sensitivity Analysis

Figure 6 shows the influence of deep setting on the economics of STW irrigation. Both unlined deep setting to 2 metres and lined pits of 4 metres depth have been considered, under both good and moderate aquifer conditions. For a 2 m pit, the effect is basically to shift the benefit curve to the right, moving the point at which the curve plunges steeply by almost as much the depth of the pit. However, while the shift is small it may well be critical to the profitability of STW irrigation over large areas of Bangladesh. That the shift is less than the depth of the pit is highly significant and points to declining returns from attempts to chase a progressively falling water table. This is illustrated by the case of the 4 m lined pit, which shows a small economic improvement over the 2 m unlined pit. Under these conditions, while high discharges may be maintained by increasing the engine speed, the type of pump appropriate for mounting on the surface is forced to operate under very inefficient conditions. Very deep DSSTWs will need larger pumps which will consume more power, and have higher capital costs. This warrants a separate analysis, but it is likely that the economic potential of pits more than 3 metres is limited.

Figure 7 shows the sensitivity of the general analysis given above to irrigation water requirements, pumping hours, discount rate, and the period of economic analysis; and leads to the following conclusions:

- Other things being equal, DTW irrigation becomes economically better where the irrigation water demand is highest. However, it should be noted that this ignores transmission difficulties on sandy soils, which may in fact negate this apparent advantage. In areas of minimum irrigation demand (e.g near the Haor Basin) the differences are insignificant.
- The differences between the returns on DTW and STW irrigation decrease as the as the pumping hours increase.
- Discount rate has negligible influence on the relative performance of DTW and STW irrigation.
- The length of the economic analysis is extremely important. DTW irrigation does not become preferable until five years (the point when the STW pump set needs it first replacement).

4 Discussion

Comparison with Actual Performance

It is instructive to compare the model predictions of performance with actual performance, for which we may use the example of Comilla District, an area where agriculture and all forms of irrigation are well developed. Model predictions of command area are based on a permeability of 20 m/d, a water table of 4 metres and an irrigation requirement of 800 mm; and are compared with actual command areas in 1991 (AST/CIDA, 1991) in Table 2.

TABLE 2

Irrigation Mode	Predicted Command ha	Actual Command ha	Difference
DTW	29.7	23.8	80 %
STW	3.8	5.9	155%
DSSTW (2 m pit)	5.3	6.8	128%

Actual and Predicted Command Areas in Comilla District

While the predicted values are broadly similar to the actual ones, the pattern of the differences are highly significant. These figures also challenge the widespread claims of under-use of capacity in irrigation. DTWs (all of nominal 56 1/s capacity) are under-used by about 20% compared to what might be considered reasonable. DSSTWs have slightly higher commands than surface set STWs, but not as much higher than might be predicted, supporting the view that deep setting is being used more as a reserve capacity than as a deliberate strategy to increase command areas. In terms of efficient use of capacity the performance of STWs and DSSTWs appears so impressive as to verge on the incredible. This is not to suggest that the surveys are in overall error, but rather to suggest that STWs are associated with different farming system than DTWs. The differences in Table 2 would imply that STWs would have to pump for perhaps twice as long as DTWs, a proposition that is not supported by the available data on pumping hours. It is suggested that STW irrigators practice a conscious policy of under-irrigation, planting a large area at the start of the season when the well's discharge is good knowing that the well will not be capable of supplying all the water required later, and hoping for some rain late in the dry season to produce a reasonable yield from the crop. Under these conditions, rice yields at STWs would be lower than at adjacent DTWs, but since the percentage yield reduction declines more slowly than the percentage of water applied (as a proportion of the theoretical water requirement), this may lead to a different optimum farming practice for different modes of irrigation.

Implications for Force Mode Tubewell Design

The preceding analysis, indicates that DTW irrigation, conducted on the basis of minimum capital cost designs, and assuming a farming practice of full irrigation, and making full use of the available capacity is economically preferable to STW irrigation, even in areas with the best aquifer conditions (which in recent years have been treated as 'unsuitable' for DTWs). On the other hand, comparison with actual performance indicates that STWs operate with more efficient use of capacity. Private sector STWs have undoubtedly been a great success, and the difference between the theory and practice is probably explained by the fact the standard assumption of comparative analyses, that of *ceteris paribus* (other things being equal) does not apply. Farmers practice, and will probably continue to practice, an apparently sub-optimum irrigation system for a variety of reasons, including:

a smaller number of farmers need to be organised to irrigate the maximum possible area. For 50 - 75 l/s DTWs this might involve more than a hundred people, certainly more than optimum from a managerial perspective.

186

- small diesel engines used for STWs and DSSTWs may be used for other purposes during the other eight months of the year. An operating profit of only a few thousand taka a year from these activities can turn STWs into the economically preferred mode of irrigation.
- critically, although long term economic benefits may be lower, STW irrigation runs into profit earlier.
 - in some areas, the supply of DTWs through BADC could not keep pace with demand.

Nevertheless, the results of the are encouraging for the development for the promotion and development of force mode tubewells by the private sector. The results indicate that the force mode irrigation should be possible at about the same cost (or better) as STW irrigation, but that it will take longer for the operation to run into profit (unless good credit facilities are available). Important lessons may be learned from the STW experience:

- lower capacity tubewells may achieve full use of the installed capacity owing to the simplified management requirements, and unlike STWs force mode wells would not be obliged to adopt the under-irrigation compromise since their maximum discharges would be more constant during the irrigation season.
 - lower capacity tubewells would require smaller diesel engines (than the current DTWs) that could be put to other uses outside the irrigation season (i.e. the majority of the year) and earn added profits for the organising group (i.e. the investors in the tubewell should not see it as simply an irrigation business).

References

AST/CIDA. 1991. Census of Lift Irrigation. Bangladesh - Canada Agricultural Sector Team, Ministry of Agriculture. Canadian International Development Association.

Barker, J.A. and R. Herbert. 1992a. Hydraulic tests on well screens. Applied Hydrogeology, 0, 7-19.

Barker, J.A. and R. Herbert. 1992b. A simple theory for estimating well losses: with application to test wells in Bangladesh. Applied Hydrogeology, 0, 20-31.

Linsley, R.K., and J.B. Franzini. 1987. Water Resources Engineering. 3rd ed. McGraw Hill.

MMI. 1992. Deep Tubewell II Project. Final Report. Mott MacDonald International in association with Hunting Technical Services. Report prepared for the Bangladesh Agricultural Development Corporation under assignment to the Overseas Development Administration, UK. Especially:

vol 2.1 Natural Resources, vol 2.2/4 Minor Irrigation Technologies, vol 5.1/3 Annual Monitoring Survey 1991,

Sadeque, S.Z. and M.A.Hakim. undated. Review of Studies on Shallow Tubewell Irrigation Management in Bangladesh. Bangladesh Agricultural Research Council.

APPENDIX 1

Sample Output of Model for the Default Conditions

	STW	DTW
Screen Length (m)	12	24
Screen roughness parameter α (s ² /m ⁶)	156	17
Screen roughness parameter β (s ² /m ⁵)	3750	735
Drilling depth (m)	24	50
Capital cost of well	9,415	115,696
Capital cost of pump set	26,500	200,000
Specific drawdown (m/l/s)	0.0051	0.0025
Limiting Command Area (ha)	3.8	29.7
Actual Discharge (l/s)	6.97	55
Total Head (m)	7.8	18.6
Pump speed	1170	1500
BHP requirement	1.4	17.5
BHP output	4.8	22.6
Engine loading factor (load/output)	0.30	0.77
Fuel consumption (underloading) factor	0.38	0.79
Specific fuel consumption (g/HP.Hr)	244	178
Fuel Consumption (litres per m3)	0.021	0.019
Cost of Fuel (Tk)	8,954	63,941
Cost of Lubricants (Tk)	730	4253
Annual operating cost (Tk)	68,317	540,245
Annual income (Tk)	91,432	721,413
Fotal capital cost (Tk)	35,915	315,696
Benefit / Cost ratio	1.18	1.23
NPV of benefits per hectare (Tk)	25,728	30,971

8-182 Call No := B-N-138
Call No. :- BIN-138 Author :- Noft MacDonald Title :- Gumfiphase IS FAP-5 Title :- Final Report Agnese C DATE BORROWERS NAME DEG. SIGNATURE LIB. USE
DATE BORROWERS NAME DEG. SIGNATURE LIB. USE