PEOPLE'S REPUBLIC OF BANGLADESH Ministry of Irrigation, Water Development and Flood Control Bangladesh Water Development Board

CYCLONE PROTECTION PROJECT II - FAP 7 FEASIBILITY AND DESIGN STUDIES

FINAL PROJECT PREPARATION REPORT APPENDIX D - AGRICULTURE

May 1992

BN-293 A-35

P-7

1-293

- 351

V-4

Joint Venture of KAMPSAX INTERNATIONAL A/S, BCEOM DANISH HYDRAULIC INSTITUTE in association with DEVELOPMENT DESIGN CONSULTANTS LTD

Financed by European Community - Project No. ALA/87/05

PEOPLE'S REPUBLIC OF BANGLADESH Ministry of Irrigation, Water Development and Flood Control

Bangladesh Water Development Board

CYCLONE PROTECTION PROJECT II - FAP 7 FEASIBILITY AND DESIGN STUDIES

FINAL PROJECT PREPARATION REPORT APPENDIX D - AGRICULTURE

V L

Joint Venture of KAMPSAX INTERNATIONAL A/S, BCEOM DANISH HYDRAULIC INSTITUTE in association with DEVELOPMENT DESIGN CONSULTANTS LTD

Financed by European Community - Project No. ALA/87/05

TABLE OF CONTENTS

PART 1. PRESENT AGRICULTURE

		Page No.
1.	INTRODUCTION	1
2.	LAND RESOURCES AND SOIL	5
	2.1 Land Resources2.2 Soil	5 6
3.	LAND USE	9
4.	FARMING PRACTICES	12
5.	CROP CALENDER AND ITS PRACTICES	15
6.	CROPPING PATTERN AND INTENSITY	16
7.	PRESENT CROPS AREA AND YIELD	24
8.	PRESENT LEVEL OF INPUT USE	25
	 8.1 Seed Use 8.2 Fertilizer Use 8.3 Pesticides Use 	25 25 27
9.	LIVESTOCK	29
10.	AGRICULTURAL LOAN	30
11.	FARM LABOUR	31
12.	AGRICULTURE EXTENSION SERVICES	32
13.	AGRICULTURE RESEARCH	35
14.	EXTENSION RESEARCH LINKAGE	36
15.	MAJOR AGRICULTURAL DEVELOPMENT CONSTRAINTS	40

PART 2. FUTURE AGRICULTURE

Page No.

16.	INT	RODUCTION	42
17.	FUT	URE LAND USE	42
18.	PRO	JECTED POTENTIAL CROPPING PATTERN	44
19.	PRO	JECTED CROPS AREA AND YIELD	52
	19.1 19.2	Projected input Use Improved Support Services	52 54
20.	AGR	ICULTURAL DEVELOPMENT POSSIBILITIES	55
	20.1 20.2 20.3 20.4		55 55 55 56
21.	AGRI	CULTURAL RESEARCH NEEDS	58
22.	IMPF SOIL	ROVED AGRICULTURAL PRACTICES FOR CONTROLLING SALINITY	60
	22.1 22.2 22.3 22.4 22.5	Land Leveling Tillage Selection of Appropriate Cropping Patterns Pre-plant Irrigation Fertilization	60 60 60 60 61
	ENCL	OSURES	

REPORT VOLUMES

The present Report Volume is part of the

CYCLONE PROTECTION PROJECT II - FAP 7 FEASIBILITY AND DESIGN STUDIES BWDB COMPONENT FINAL PROJECT PREPARATION REPORT

12

Consisting of the following Volumes :

Volume 1	-	Main Report
Volume 2	•	Annexes I - XI, XIII
Volume 3		Annex XII - Polder Data
Appendix A	-	Hydraulic Studies
Appendix B	•	Field Surveys and Soil Investigations
Appendix C		Embankment Design
Appendix D		Agriculture
Appendix E		Socio-Economics
Appendix F	-	Operation & Maintenance
Appendix G	-	Cyclone Early Warning System
Appendix H	٠	Afforestation
Appendix I		Feasibility Study on Patenga Project.
Appendix J	-	Fisheries.

AEZ	Agro Ecological Zone.
AMAN	Rice planted before or during the monsoon and harvested in November or December.
AUS	Rice planted during February or March and harvested during June or July.
BARC	Bangladesh Agricultural Research Council.
B.AMAN	Broadcast Aman.
BBS	Bangladesh Bureu of Statistics.
BEEL	Low-lying area subject to flooding by rain or river water.
BORO	Rice Transplanted in January or February and harvested in May or June.
BRDB	Bangladesh Rural Development Board.
BWDB	Bangladesh Water Development Board.
CPP-II	Rice Transplanted in January or February and harvested in May or June.Bangladesh Rural Development Board.Bangladesh Water Development Board.Cyclone Protection Project-II .Government of Bangladesh.National Canal.
GOB	Government of Bangladesh.
KHAL	National Canal.
HYV	High Yielding Variety.
KHARIF	Summer cropping season (May through November).
KHASLAND	Undisposed Government Land.
MONSOON	Period of rains starting in June and ending in October.
NGO	Non-government Organisation.
POLDER	Land area protected by embankment.
RABI	Winter cropping season (November through May).
SRDI	Soil Resources Development Institutes, Ministry of Agriculture.
T.AMAN	Transplanted Aman.
UPAZILA	Smallest administrative unit of local government.

J.

PART 1 PRESENT AGRICULTURE

1. INTRODUCTION

Bangladesh is in the delta region formed by the rivers Ganges and Brahmaputra. The land is largely flat and fertile. The country has typical tropical monsoon climate with temperatures varying from 4 degees centigrade in the winter months to as high as 40 degrees in the summer. Relative humidity is high - 80% to 95%.

The agricultural sector in Bangladesh provides almost half of the Nations GDP, 40% of the country's export earnings and provides employment for about 60% of the population. Agricultural productivity in the coastal belt is generally low due to salinity problems, poor cummunication, service and credit facilities as well as natural calamities such as floods and cyclones.

Natural calamities are the recurring phenomenon in Bangladesh. Cyclones have been reported around the Bay of Bengal and caused severe devastation and damage to lives, livestock, crops and properties. The damages are caused by both storm winds and the storm surges and the second one is most disastrous.

The project covers a vast area of about 401,680 ha. This consists of 11 districts, 5 Bangladesh Water Development Board (BWDB) Circles, and 33 polders (Table 1-1) and Base Map.

The coastal embankment in the study area will cover the coastal districts of Chittagong, Cox's-Bazar, Laxmipur, Feni, Noakhali, Patukhali, Bhola, Borguna, Bagerhat, Khulna and Satkhira. The embankments will be reconstructed with the main purpose of protecting the low lying land in the coastal belt from inundation and intrusion of saline water during high tide and thereby increase cultivable area, cropping intensity and yields.

Bangladesh includes a wide range of environmental conditions. Environmental diversity occurs not only at national or regional levels, it occurs also at Upazila and village levels. In fact small scale complexity of soil and hydrological conditions is an important characteristics of this kind of environment. Besides variability in moisture, temperature and flood regimes create major problems for planning environment, specific agricultural development, research and extension programmes.

It is necessary to develop a basic classification of the polders in accordance with the present level of agricultural development, agro- ecological conditions etc. Existing classification in Bangladesh have used soil, climate, flood and water data in developing area categories. One is the division into agro-ecological regions (AEZ), which use land forms as the main parameter.

DATE 31-4	

30 (thirty) agro-ecological regions (AEZ) and 88 (eighty eight) sub-regions (Sub - AEZ) were established in Bangladesh by adding successive layers of information on the physical environment which are relevant for land use and for assessing agricultural potential. Regions 13, 18, 23 and 29 fall under this project (Table 1-1).

5)

AEZ and sub-AEZ are very broad units. The fertility status of these regions varies considerably. Individual farmers have fragmented the land into small pieces causing wide variation in the management of each and every piece of the land by the farmers of different economic groups. This leads to the large variation in the fertility levels even between the adjacent plots. Another is the planning areas developed by MPO which uses water catchment as the main parameter. Neither of the two classifications provide sufficient details for the basic categorisation of polders within the context of the present project. They do, however, provide guidelines for such categorisation.

In a few cases polders will protect relatively new land, which will have a lower production potential than land further inland due to soil salinity. Such polders will be grouped together. Protection against sea waves and intrusion of saline water mainly result in reduced losses on the aman and aus crops but may not generate much winter cropping due to high soil salinity or lack of irrigation water. Mainly three categories of salinity exists in the project area but the range is S1 to S4 refer Table 1.3. The highest area is under S2 category which follows by S1 and then S3. However, in cases where the issue is improved drainage or even higher inflow of fresh water winter cropping may develop as a result of project activities.

Considering the above different points below follows a categorisation mainly focusing on the benefit side of the project.

Category - I : Polder nos. - 5, 7/1, 7/2, 10-12, 14/1, 14/2, 15,31, 32, 35/1 -high to moderate dry soil salinity, high dry season soil salinity, low cropping intensity, shrimp culture.

Category - II : Polder nos. 40/1, 40/2, 45, 48 - moderate to low dry season soil salinity, high dry season water salinity, low cropping intensity.

Category - III : 56/57 (northern and central part) and 72- Moderate to low dry season soil salinity (Northern Bhola has nonsaline soil), high dry season water salinity, high cropping intensity.

Category-IV: 56/57 (Southern part) and 73/2B - High dry season soil salinity, high dry season water salinity, polders complete with severe damages or polder incomplete, low cropping intensity.

Category - V: 59/1A, 59/2, 59/3B, 59/3C and 60 - High dry season soil salinity, high dry season water salinity and low cropping intensity.

Category - VI : 61/l, 62, 63/1A, 64/1A, 66/l, 66/3, 68, 69, 70, 71 - High to moderate to low dry season soil salinity, high dry season soil salinity, high cropping intensity and economic infrastructure.

BWDB Circle	Districts	Upazilas	Polders	AEZ and s	ub-AEZ Regio	ons	
Circle				13	18	23	29
Khuina	Satkhira	Kaligong + Shamnagar Ashasuni Shamnagar Koyra	5 7/1,7/2 15 14/1,- 14/2	5 (13 e&f) 7/1 (13f) 7/2(13f) 15(13f) 14/1(13f) 14/2(13f)	(m .)	-	-
	Khulna	10-12 Dacope	10-12(1- 3f) 31, 32	- 31(13f) 31, 32	-	~	•
	Baghe- rhat	Sarankhola	35/1	35/1(13d)	-	-	÷
Barisal Circle	Borguna	Pathorghata	40/1,- 40/2	40/1 (13d) 40/2 (13d)	-	-	-
		Borguna	45	45(13d)	-	-	-
	Patuak- hali	Kalapara	48	48(13d)		-	7
Bhola Circle	Bhola	Bhola Doulatkhan Tazumuddin Burhanu- ddin Lalmohan Charfasson	56/57				
Muhuri Circle	Noakh- ali	Compani- gong Degunbu- iyan Begumgonj Sudharam Sudharam Hatiya	59/1A 59/3C 59/3B 73/2B		59/1A(18f) 59/3C(18f) 59/3B(18f) 73/2B(18f)	•	
	Laxim- pur Feni	Ramgati Sonagazi	59/2 60		59/2(18f) 60(18f)	-	:
Chittag- ong Cir- cle	Chitta- gong	Sandwip Sitakundu Chittagong (Port) Anowara Banskhali	72 61/1 62 63/1A 64/1A		72(18e) - -	- 61/1(23a) 62(23b) 63/1A(23a) 64/1A(23a)	
	Cox's Bazar	Chokoria Ramu Cox's Bazar Kutubdia Teknaf Moheskhali	64/2B 66/1 66/3 71 68 69,70		•	64/2B(23c) 66/1(23c) 66/3(23c) 71(23c) 68(23d) 70(23c)	- - - - - - - - - - - - - - - - - - -
	Total		33	14	8	10	1

Table 1.1-Sheet 1: Polders under different Circles, District and AEZ Regions

1	.3
	d
	e
F	f

Ganges Tidal Floodplain Saline, noncalcareous Saline, Calcareous and noncaleareous Saline, Acid Sulphate Soils

18
a
b
d
e
f

23

a

b

с

d

Young Meghna Estuarine Flood-plain

Nonsaline : North Bhola

Nonsaline : Central Bhola

Saline : Central Bhola

Saline : Sandwip and South Bhola

Saline : Noakhali, Hatiya and Meghna Estuary

Chittagong Coastal Plains

Piedmont plains and river floodplain

Young tidal floodplain

Mangrove tidal floodplain

Beach ridges, mangrove tidal floodplain and mud complex

Northern and Eastern Hills

4

Mainly high hill ranges.

Table 1.1-Sheet 2 : Agro-ecological Regions and Subregions

2. LAND RESOURCES AND SOIL

2.1 Land Resources

The project area is dominated by medium high land (F1) followed by high land (F0) and medium low land (F2) and then low land (F3) Table 1.2 below gives the detail classifications and break-up of different land types of the project. Table 1.3 gives the detail soil salinity classification on the basis of electrical conductivity of the project and Fig. 2-I shows the soil salinity area under dry season condition of the project.

22

Out of 4 (four) Polders of Satkhira district. 5, 7/1, 7/2 represent four categories (SI-S4) of soil salinity but Polder 15 represents three (S2-S4) categories where S2 category is dominant. In Khulna district Polder 10-12 represent four (S1-S4) categories of soil salinity but Polders 14/1, 14/2 and 31, 32 represents three (S2-S4) categories. S2 category is more dominant in these above polders than other categories. In Bagerhat, Polder 35/1 represents only S2 category of soil salinity.

Polders 40/l, 40/2, 45 of Borguna and Polder 48 of Patuakhali represent only two (S1-S2) types of soil salinity and S1 type is more dominant than S2 type. The categories of soil salinity which, exist in Polder 56/57 of Bhola are S1 and S2, but S2 is the dominant category. Largest saline area is found in Lalmohan and Charfession Upazilas.

Polders 59/1A, 59/3B and 59/3 of Noakhali represent mainly two (S1-S2) categories and 73/2B represents also two (S2-S3). In both cases S2 category is dominant. Polders 59/2 and 60 of Laxmipur and Feni represent three (S1-S3) categories of salinity. In Polder 59/2, S1 is dominant and in Polder 60, S2 is dominant. In Chittagong district, Polder 63/1A represents only S2 category of salinity.

In Polders 62 only two (S1-S2) categories of soil salinity exist where S1 is dominant. In Polder 61/1 three (S1-S3) types and 72 four (S1-S4) types of soil salinity are found where also S1 is dominant.

In Polder 64/1A, three (S1-S2, S4) category is found where S2 category is dominant.In Cox's Bazar district Polders 64/2B, 66/3, 68, 69, 70 represent four (S1-S4) types of soil salinity where in Polder 66/3, S2 is dominant and in other polders S3 is dominant. In Polder 66/1 only two (S1-S2) category are found and S2 category is dominant.

LEGENO;	
Nen - Source	

			EC.	VALUE			
Non – Sailne 🔔		-	_	mhas/Cm		Se	
Very Slightly Sallne			2-4			5.	
Silgntly Saline	***		4-8			5 2	
Madarately Solling	-	_	8-15			\$3	
Strongry Seline			>15	••	17 Marcular 12 M	5.4	
Stightly to Moderatel	y Saline				XXXXX	52 and 53	Mized
International Boundar		-		-	.~/	~. `	
Clatrici Saundery and	ø Name.					<u>"</u> ~	
Upezile Beundary a		iec	CHORE		,	••••	
Rivers and Khats	-		_		\approx	<u> </u>	
Vean February Mazim	um Water	\$a	HINITY 600	00 <u>ú</u>	ka	\sim	

Cox's Bazar

THILD BE THE

	Flooded up 30 cm	, tı
High land (F0)	Land which is above normal flood level	
Medium High land (F1)	Land which normally is flooded up to about 90 cm deep during the flood season. $30 - 90$	
Medium Low land (F2)	Land which normally is flooded between 90 and 180 cm deep during the flood season.	
Low land (F3)	Land which normally is flooded between 180 and 300 cm deep during the flood season. More than 180 up 1	re
Very Low land (F4)	Land which normally is flooded deeper than 300 cm deep during the flood season. MNC the depth, dwatter,	- In

28

Table 1.2: Classification of land types. when the rise do not between the growing of between the growing of between

Salinity Class	Conductivity of saturated extracts (dS m-1)	Plant growth condition
Non saline (So) Slightly saline (S1) restricted. Moderately saline (S2) Saline (S3) Highly saline (S4)	<2 2-4 4-8 8-6 >16	Salinity effects mostly negligible Yields of very sensitive crops may be restricted. Yields of many crops are restricted. Only tolerant crops yield satisfacto- ry. Only very tolerant crops yield satis- factorily.

Table 1.3 : Soil Salinity classification on the basis of electrical conductivity.

Soil

In the project area 4(four) agro-ecological regions (Table 1-1) and 9 (nine) general soil types occur. Among AEZ regions the dominant ones are Ganges Tidal Floodplain. Nine main soil types are : Calcareous Alluvium, Noncalcareous Alluvium, Calcareous Grey Floodplain Soils, Noncalcareous Grey Floodplain Soils, Calcareous Dark Grey Floodplain soils, Noncalcareous Cark Grey Floodplain soils, Acid sulphate soils and peat. A summary soil characteristics is given below AEZ wise and categorywise.

AEZ 13 : Ganges Tidal Floodplain

Category I : 5, 7/1, 7/2, 14/1, 14/2, 15, 10-12, 31, 32, 35/1 **Category II:** 40/1, 40/2, 45, 48

6

2.2

This region occupies an extensive area of tidal flood plain land. The greater part of this region has smooth relief. There is a general soil pattern of grey, slightly calcareous, heavy soils on river banks and grey to dark grey noncalcareous, heavy silty clays in the extensive basins. Noncalcareous Grey Floodplain soil is the major component of general soil types. Acid sulphate soil also occupies significant part of the area, where it is extremely acidic during dry season. in general most of the top soil is acidic and sub-soil are neutral to mildly alkaline. Soils of Sunderban are strongly alkaline. General fertility level is high with medium to high organic matter content and very high CEC, but with limitations of high exchangeable Na and low Ca/Mg ratio.

According to the land capability classification this area is predominantly moderately good to poor agricultural land. Salinity is the major constraint with additional hazard of damage from storm surges. Intermittent tidal flooding (by breaking poor embankment) and drought are the limitations.

AEZ 18 : Young Meghna Estuarine Floodplain

Category - III: 56/57 (North and central part) and 72 Category - IV: 56/57 (Southern part) and 73/2B. Category - V: 59/1A, 59/2, 59/3B, 59/3C, 60.

This region occupies young alluvial land in and adjoining the Meghna estuary. It is almost level with very low ridges and broad depressions. The major soils are grey to olive, deep, calcareous silt loam and silty clay loams and are stratified either throughout or at shallow depth. Calcareous Alluvium and Noncalcareous Grey Floodplain soils are the dominant soil types. The soils in the south become saline in dry season. Top soils and subsoils are mildly alkaline. General fertility is medium but low in N and organic matter. Sulphur status is moderate to high.

Land capability classification of this area presently covered by poor to moderately good agricultural land and poor to moderate suited land would become good to moderate good agricultural land and moderate to well suited land after strong flood protection.

AEZ 23 : Chittagong Coastal Plains

Category - VI: 61/1, 62, 63/1A, 64/1A, 64/2B, 66/1, 66/3, 68, 70, 71

This region occupies the plain land in greater Chittagong district and the eastern part of the Feni district. It is a compound unit of piedmont, river, tidal and estuarine floodplain landscapes. Grey, silt loam and silty clay loam soils are predominant. Acid sulphate soils, which are potentially extremely acidic occur in mangrove tidal floodplain. Noncalcareous Grey Floodplain soils, Noncalcareous Alluvium and Acid Sulphate soils are the major components of the general soil types of the area. General fertility of the soils is medium but N and K are limiting. Status of S is high. Organic matter content is low to moderate.

The present land capability classes of this area presently covered by poor to moderately good agricultural land and poor to moderate suited land would become good to moderate good agricultural land and moderate to well suited land and will produce 2-3 crops per year.

AEZ 23 : Northern and Eastern Hills

Category VI: 69

This region includes country's hill area. Only polder no. 69 in Moheshkhali Upazila falls under this region. Soils are yellow brown to strong brown, permeable, friable, loamy, very strongly acidic and low in moisture holding capacity. Soil patterns are generally complex due to local differences in sand, silt and clay contents. Organic matter content and general fertility level is low.

LAND USE

Agricultural land use is primarily dependant upon soil characteristics, the hydrological conditions and the stage of development of agricultural infrastructure of the area. In the saline soils rice, jute sugarcane, pulse, oilseeds, spices, vegetables and fruits are grown but their productivity vary greatly with the salt content in the soils.

29

Category-I

The topography of the land of this category is somewhat regular, flat and low. The differences between maximum and minimum elevation is very small. This category covers a gross area of some 133,310 ha refer Table 3.1, Enclosure-1). of which about 80% (107,210 ha) are cultivated. The uncultivated area of about 20% (26,100 ha) includes homesteads, graveyards, markets, roads, schools, water bodies, embankments and fallow land etc.

The percentage proportions of the various depth of flooding classes in each sub-region cultivated area are shown in Table 3-2 (Enclosure-1).

Category-II

This category covers a gross area of 16,020 ha (Table 3-3, Enclosure-1) of which about 65% (10,445 ha) are cultivated and the rest about 35% (5,575 ha) area are uncultivated. In this Category T.aman (Local Variety) is the dominant crop. B.aman is also grown in some of the low lying areas of this category.

The percentage proportion of the various depth of flooding classes in each sub-region cultivated area are shown in Table 3.4 (Enclosure-1).

Category III

This category covers a gross area of 56,20 ha Table 3-5 (Enclosure-1) of which 76% (42,800 ha) are cultivated and the rest 24% (13,320 ha) are uncultivated. The main dominant crop is T.aman (Local Variety) followed by T.aman High Yield Variety (HYV) and then T.aus.

The percentage proportion of the various depth of flooding classes in each sub-region cultivated area as shown in Table 3.6 (Enclosure-1).

Category - IV

This category covers a gross area of 48,350 ha Table 3-7 (Enclosure-1) of which about 75% (36,150 ha) area are cultivated and 25% (12,200 ha) are uncultivated. T. Aman (Local Variety) is the dominant crop which covers about 71% of the total cropped area.

The percentage proportion of the various depth of flooding classes in each sub-region cultivated area are shown in Table 3-8 (Enclosure-1).

Category -V

This area covers a gross area of 99,640 ha in Table 3-9 (Enclosure-1) of which about 85% (85,085 ha) area are cultivated and the rest about 15% (14,555 ha) area are uncultivated. In most of the area only a single crop of T. Aman paddy is grown, but sometimes a poor crop like Kheshari or lentils is cultivated after the Aman. Dryland rabi crops especially chili are grown in a part of Noakhali mainland (sub-region 18f).

The percentage proportion of the various depth of flooding classes in each sub-region cultivated area are shown in Table 3-10 (Enclosure-1).

Category VI

This area consist of a gross area of 48,240 ha Table 3-11 (Enclosure-1) of which about 64% (30,960 ha) area are cultivated and 36% (17,280 ha) area uncultivated which include homesteads, markets, school, play ground embankment, water etc. B.aus, T. aman are the main crops of this area, cowpea, chili, watermelon are widely grown in the pre-monsoon season before aus is planted. Where irrigation facilities are available, HYV boro paddy is grown. Aus and Aman HYVs are also widely grown. Coconut, Betalnut are also grown in high land area. Betal leaf are the main cash crop of Teknaf area.

The percentage proportion of the various depth of flooding classes in each sub-region cultivated area shown in Table 3.12 (Enclosure-1).

The total area under study of the project consist of a gross area of 401,680 ha of which about 78% area are cultivated and about 22% are uncultivated, refer Table 3.13.

Categories	Gross Ar	rea	Cultivated	Area *2*	Uncultivated Area		
	Area (ha)	%	Area (ha)	%	Area (ha)	%	
Category- I	133,310	100	107,210	80	26,100	20	
Category-II	16,020	100	10,445	65	5,575	35	
Category-III	56,120	100	42,800	76	13,320	24	
Category-IV	48,350	100	36,150	75	12,200	25	
Category-V	99,640	100	85,085	85	14,555	15	
Category-VI	48,240	100	30,960	64	17,280	36	
Total	401,680	100	312,650	78	89,030	22	

Table 3.13

* 2 * =

The actual cultivated area polderwise are not available either in BWDB or Upazila level offices. Sometimes one polder covers 2-3 Upazilas or one Upazila covers 2-3 polders. So, calculation of cultivated area polderwise, is based on B\$S- Upazila Statistics -1988-90. UAO offices and field visit experiences

B

FARMING PRACTICES

Seasons

The Wet Season (Kharif season)

The agricultural year is divided into two principal seasons: the kharif season which is the summer pre-monsoon and monsoon period from March until November and the rabi season which is the dry winter period from late November till March.

The khariff season is divided into two: i) kharif I, the early summer which in parts of the project area coincides with high salinity and ii) kharif II, the late summer with high rainfall and overall reduced salinity, refer Table 4.1.

There are two summer rice crops, The early, pre-monsoon Aus and the monsoon Aman. Aus is short-season, non-photo sensitive paddy that matures about 90 days after the seedling stage. Aman varieties are photo sensitive with inherent plant growth regulators that cause them to bloom in October/November after the day length has become less than the darkness. Both crops can be grown either by broadcasting or transplanting and exist in many varieties. Transplanted varities give higher yields but are more demanding with regard to growing conditions.

Transplanted varieties of aus (T.aus) are grown in irrigated seed beds. Transplanting takes place in the pre-monsoon period, where rainfall normally provides sufficient moisture for land preparation and planting. If the rainfall is inadequate land must be irrigated. T.aus is harvested in August.

Transplanted aman (T.aman) is transplanted into fields with a maximum of 0.3 m of water during August/September. Under optimal conditions T.aman may follow T.aus, particularly when inundation of the fields occurs late August/early September. T.aman is harvested in November/December.

On lands which are heavely innundated, farmers have traditionally grown broadcast aus (B.aus) and B.aman in the kharif season. B.Aman cultivated in the polders 45, 48, 56/57, 59/1A, 59/2, 59/3B, 59/3C, 71 & 72 in low basin pocket areas where there are no drainage facilities. In some cases they broadcast a mixture of aus and aman in March/April and allow the two crops to grow together. The aus will be harvested in July, if water level allows. The aman, which is floating rice with long stems, will be harvested in December . By planting the two crops together, the farmers hope to obtain at least one crop. Under average conditions they may secure a small aus crop which will tide them over the summer period until the harvesting of the main aman crop at the end of the year.

With the expansion of coastal protection since the 1960s farmers have gradually reduced mixed cropping of aus and aman.

The Dry Season (Rabi Season)

Rabi Growing Period:

The Rabi season (November-February) is characterised by low temperature, high radiation and low humidity. Salinity goes up towards the end of this season. So, farming practices of this zone are adopted according to this typical coastal agro-climatic conditions.

Accuracy of sowing/harvesting period depends on mainly availability of sweet water, labour and draught power at the right time.

In late November/December some rabi crops are planted under nonirrigated conditions when the soil still has a high moisture content after the heavy monsoon or flooding. Such crops are mustard, pulses, vegetables and wheat. In some cases pulses are sown together with aman, being left to grow in the fields after harvesting of paddy. The yield of these crops will depend on factors such as residual moisture after the rice crop, salt content in the soil and possible irrigation facilities.

In December, where sufficient irrigation water is available, the local varieties of boro rice are planted. These varieties are tolerant to low temperatures and are harvested before the rice of the monsoon floods. The high yielding varieties of boro cannot be transplanted as early as the local varieties because of their lack of tolerance to low temperatures.

Transplanting takes place from mid-January to mid-February. Irrigation requirements are heavy particularly during the month of March before rainfall starts and when temperatures are rising fast. Harvesting takes place during May/June.

Table 4.1 : Mean duration, starting date and end date of reference pre-kharif,kharif and rabi growing periods and mean duration of minimum temperatures of different agroecological regions in different districts under CPP-II.

District	: : .kroecological	:Reference	Pre-Khar period	:Reference Pre-Kharif growing : period	:Kharif g	:Kharif growing period	po	:Rabi Gro :	Rabi Growing period	ъ	:Duration :	Duration in Days of minimum temparature:	ıf ainigun	temparatu
	Regions	:Mean :Star :Duration :Date :(days) :	:Starting :End :Date :Date :	:End :Date :	:Nean :Nuration :(days)	:Starting :Date	:Bnd :Date :	:Mean :Duration :(days)	:Starting :Date :	: Bad : Date :	: 15.0 c :	: 17.5 c :	: 20.0 c :	: 22.5 c :
1.Satkhira 2.Khulana	Ganges Tidal Ploodplan :40-70 Gandes Tidal Ploodplan :40-70	in :40-70	: 17 Mar	: 21 May	:190-210			:115-145		: 2 Mar	:50-90	:70-120	: 25-70	:70-110
3.Dagerhat	Ganges Tidal Ploodplan :40-60	in :40-60	24 Mar	: 10 May	:200-220	: 16 May	: 10 Dec : 10 Dec	:115-135	: 15 Oct : 15 Oct	: 17 Feb : 22 Feb	:40-70	:70-105	:25-50	:70-90
4. Barguna 5 Detwebbeli	:Ganges Tidal Floodplan :40-60	in :40-60	24 Mar	: 18 May	:210-220	: 9 May		:120-140			:30-70	:65-105	: 15-50	:70-90
TTOHYDAYD			29 Bar	0 Hay	: 210-230	3 May	: 14 Dec	:120-145	: 21 Oct :	: 2 Mar :	:30-70	:65-105 :	:15-50 :	:70-90
6.Bhola	Toung Meghna Estuarine :40-50 Plood plan	e :40-50	24 Mar	: 8 May	:220-240	: 27 Apr	: : 18 Dec	:120-145	: : 21 Oct	: 5 Mar	: :30-70	: :65-105	: :15-50	: 70-90
7.Chittagong	:Chittagonj Goastal plan:40-50 :Young Meghna Estuarine : -Plood plan	an:40-50 e :	24 Mar	. 8 May	:220-240	: 27 Apr :	: 18 Dec : 1	: :120-145 :	: : 21 Oct :	: 5 Mar	: :30-70 :	: : 65-105 :	: :15-50 :	: :70-90 :
ox's Bagar	8.Cox's Bazar :Chittagonj Coastal plan:40-50 :Northern Eastern Hills:	an:40-50	24 Har	8 Kay	: :220-230 :	: 3 May :	: : 14 Dec :	: :120-145 :	: : 21 Oct :	: 2 Mar :	: :30-50 :	: :65-85 :	: :15-30 :	:70-90 :
9.Noakhali	: Young Meghna Estuarine :30-50 : Flood plan :	e :30-50 :	22 Mar	: 8 May	:220-240	: 27 Apr	: : 18 Dec	: :120-145	: 24 Oct :	: 2 Har	: :30-70	: :65-105	: :15-50	: :70-90
10.Laxmipur	:Young Meghna Estuarine :40-50 :Flood plan :	e:40-50 :	24 Mar	: 8 Hay	:220-240	. 3 May	: 18 Dec	:120-145	: 21 Oct	: 5 Mar	: 30-70	: 65-105	:15-50	:70-90
11.Fani	11.Fani :Young Meghna Estuarine :30-50 : 22 Mar : 8 May :Flood plan :	e :30-50 : :	22 Mar		:230-240	: 27 Apr :	: 18 Dec :	:120-145	: 24 Oct :	: 5 Mar	: 30-50 :	: 65-85 :	:15-30 :	:70-80

Sources : Coastal Saline Soils and Their Management in Bangladesh by 2. Karim, BARC Soils and Irrigation Publication No.8, 1983.

5.

CROP CALENDER AND ITS PRACTICES

Aman (HYV and Local Varieties) is the main crop grown in the coastal area. In the Rabi season, a small area of Boro HYV, wheat, pulses, oilseeds, chillies, G.nut and winter vegetables are grown.

20

A general crop calendar illustrates the sowing - harvesting period of crops of the project area (Table 5-1)

Season	Crops	Land Preparation	Sowing/Transplanting	Harvesting
Kharif-I (March-June)	B. Aus T. Aus Jute S. Til S. Vegetable	February/March March February/March March March	Mid April-Mid May Mid April-Mid May Early March-Early April March April	Mid July-Mid August Early July-Late July Early July-Early August June July - September
Kharif-II (July-October)	T. Aman (HYV) T. Aman (L)	June July	Early July-Late July Late July-Late August	Late November-Mid December November/December
Rabi (November- Februray	Boro (HYV) Wheat Oil Seeds Potato S.Potato W.Melon Pulses W.Vegetable G. Nut Cowpea (Fal Chilli Spices	December/Janu- ary November November December December November November	Late JanMid Febru- ary Mid NovEarly Dec. December January January Late NovMid Dec. Mid NovMid Dec. December	Early June-Late June Late February-Early March February March May April-May February-March January-March March
	Spices	December December	January January	March-April March-April

Table 5-1 : Crop Calendar

CROPPING PATTERN AND INTENSITY

The cropping pattern is mainly conditioned by the flooding characteristics (depth, time and frequency), which in turn is related to the land topography, rainfall pattern, soil type, quality of water and soils as well as the stage of development of agricultural infrastructure i.e availability of irrigation, drainage efficiency of water management and institutional of Them What was the own when the delay y 1 ? factors as well as the expected returns.

28

Category-I :

Aman rice constitutes a major portion in this pre-dominantly single cropping zone. Salinity is the main limiting factor and farmers can only produce crops when and where the salinity level is sufficiently low.

The most favourable season of this zone is the wet season, Kharif-II. During the other seasons like Kharif-I and Rabi saline water sometimes inundates the fields during high tides or the salt level in the root zone increases as the soils dry out. Only on about 8% of these soils do the farmers grow a second crop after the Aman. The cropping pattern presently practiced in this zone are presented in Table 6-1 (Enclosure-2). This has also been displayed in Figure - I.

Category II :

yielding ild not Single croppping pattern is predominant with T. aman (ILYV) of about 78% cultivated area, rest 22% is double cropping area. The cropping pattern of category -II are presented in Table 6-2 (Enclosure-2) diagrammatically in Figure - II.

Category III :

Double cropping pattern is predominant of about 50% of cultivated area, rest 35% is single and 15% is triple cropping area, Cropping pattern of Category - III is presented in Table 6-3 (Enclosure-3) and diagrammatically in figure-III.

Category IV :

Single cropping is predominant with T. aman (LYV) of about 83% of cultivated area, the rest 17% is double cropping area, Cropping pattern of category -IV are presented in Table 6-4 (Enclosure-2) and diagrammatically in figure - IV.

Category V :

The soils like Category I & II are also sometimes subjected to tidal

6.

inundation at high tides. Saline water may enter into the polders through the breakage portion of the embankment. Due to this condition winter cropping in Rabi and Kharif-I season is very limited. Salinity level of both soils and water reduces with the onset of monsoon rainfall and conditions become favourable for T. aman cultivation. The cropping pattern is therefore, like category I & II aman rice based.

20

Single cropping pattern is pre-dominant with T.aman of about 64% of cultivated area the rest 36% is double cropping area. B.aus/ T.aus is grown to a very limited scale followed by T.aman. Pulse, oilseeds, chillies, cowpea (falon) are also grown as a rabi crops, HYV Boro and A. aus are grown widely in Bhola with LLP irrigation. Cropping patterns are presented in Table 6-5 (Enclosure-2) and diagrammatically in Figure - V.

Category VI :

The main crop of this category like the other categories is rice. Single crops (29%) like T.aman, betel leaf (Teknaf) are also practiced. Betel leaf is planted in Nov-Dec in high land in Teknaf area and harvested in May-June. After harvesting the land remain fallow, but in Sandwip and Moheshkhali and Bhola area the cultivation of betel leaf differ from Teknaf. The betel leaf of Sandwip and Moheshkhali is perennial and remain for many years in the same field and the farmers harvest the leaf from time to time. Double cropping of this region is about 59% and triple cropping area is about 12%.

The main cropping pattern presently practiced in the above categories are presented in Table 6-6 (Enclosure-2) and diagrammatically in figure - VII.

The average cropping intensity of the 6 categories in the project area is shown in Table 6-7.

Cate- gory	Single crop- ped area	Double crop- ped area	Tripple cropped area	cultivated area	Total cro- pped area
I	98544 (92%)	8666 (8%)	-	107210	115876
II	8193 (78%)	2252(22%)		10445	12697
III	14946 (35%)	21510(50%)	6344(15%)	42800	76998
VI	30041 (83%)	6109(17%)	-	36150	42259
v	54603 (64%)	30482(36%)		85085	115567
VI	8845 (29%)	18357(50%)	3758(12%)	30960	56833
	215172	87376	10102	312650	420230

Table 6-7 : The approx. present cropping intensity in the project area is = 134 %.

For polder in the Mid-Term Programme, Phase 2 the cropping pattern has been evaluated individually. The 1 ha Model Fram Budgets for these polders are included in Enclosure 2, Tables 6-7 to 6-18.

.

FIG. II

21-

FIG. IV

AREA LAND TYPE JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC (ha) (SANDWIP, BHOLA, KUTUBDIA, MOHESHKHALI) 625 BETEL LEAF . (TEKNAF) 10 878 RABI B. AUS T. AMAN (LYV) RABI 13 HIGH LAND 3,280 BORO (HYV) T. AMAN (HYV) (21.2%) 50 27 1,775 RABI T. AMAN (LYV) RABI 6558 2,880 RABI B. AUS T. AMAN (RABI 16 2,785 BORO (HYV) T. AMAN (LYV) MEDIUM 15 HIGH LAND (58.1%) 7, 320 T. AUS (HYV) T. AMAN (HYV) 41 305~) JUTE T. AMAN (LYV) 1 (26)4,710 T. AMAN (LYV) 18000 925 B. AUS T. AMAN (HYV) 15 MEDIUM LOW LAND 390 T. AUS (HYV) T. AMAN (LYV) 6 (19-8%) 1,302 RABI B. AUS RABI 21 73,510 T. AMAN (LYV) 5 6127 LOW LAND 275 RABI B. AMAN RABI (0.9%) 217 p. 43 CATEGORY-VI PRESENT CROPPING PATTERN C . P. P - II

23

60

FIG. - VI

7. PRESENT CROPS ITS AREA AND YIELD

Rice is the most dominant crop in the project area occupying approximately 86.8% of the total cropped area. Of the total rice cropped area 61.7% by T.aman (Local Variety), 5.7% by T.aman(HYV), 8.5% B.aus, 6.1% T.aus(HYV) and 2.4% Boro(HYV)and 2.4% by B. aman. Rabi crops occupy 12.7% of the total cropped area of which 4.1% is Pulses (Kheshari, Mashkalai lentil etc). 1.5% chillis, 2.1% cowpea(falon), 0.7% oilseeds, 1.7% winter vegetables (cabbage, cauliflower, radish etc), 0.6% Potato, 1.6% Sweet Potato and the rest is under brinjal, wheat, cucumber, watermelon Betel leaf etc. 03

On the whole, the productivity level of different crops grown in the project area are lower than the national average.

The main reasons for the low productivity level are as follows -

- Sources of surface and ground water irrigation are very much limited and its management is inadequate.
- Farmers know-how on improved agricultural technology are limited.
- Low doses of input use.
- Difficult communications. This severely hampers administrative, extension, research, input, supply and works.
- Big land ownership specially in Satkhira, Khulna, Noakhali, Barisal districts. This means that most of the land is leased out to landless farmers who do not have the resourses to procure items such as fertilizers and pesticides even if they were available.
- Poor quality draft animal, due to poor feeding specially in wetseason.
- Embankment erosion along major rivers and sea facing polders
- Flooding in basin centres in deep area in the polders in rainy season.
- Salinity
- Exposure to cyclones and storm surges.

Category wise area under different crops with production are presented in Table 7.1 to 7.7 (Enclosure-3).

For polders under Mid-Term Programme, Phase 2 the cropareas and yields are shown in Enclosure 3, Tables 7.8 to 7.19.

00

8. PRESENT LEVEL OF INPUT USE

Level of input use in the context refers to seed, fertilizer and pesticides use, mechanization of agricultural practices, irrigation and water management. In association with above, availability of farm labour, agricultural loan and agricultural extension services and research must be tagged to get the full agricultural benefit of the project.

8.1 Seed Use

Improved seeds used by the farmers in the project area is very limited. It is mainly only used for crops like T.aus, T.aman, Boro and Watermelon. The most common crop in the area is T. aman (Local Variety). Almost all rabi crops cultivated in the project area are produced by seeds from local varieties.

The distribution of improved seeds by type and by former districts for 3 years are shown in Table 8.1.

Dis- tricts	Seasons	ŀ	Aus	A	man	E	loro	Wheat	Potato Seeds	Oil	W.
uicts		LYV	HYV	LYV	HYV	LYV	HYV			Seeds	Veg.
Chit- tagong	1986-87 1987-88 1988-89	3,500 4,460 1,330	20,530 27,990 19,420	6,450 3,330 3,930	183,500 125,210 129,610	•	74,540 89,380 87,460	12,080 26,120 157,660	77,990 108,007 52,525	1,100 1,097 996	416 426 289
Noak- hali	1986-87 1987-88 1988-89	2,500 1,200 1,130	10,220 9,086 8,918	930 440 1,200	78,290 81,560 83,603	-	24,180 34,450 52,350	196,180 255,960 208,760	45,940 103,641 60,880	1,200 500 800	252 204 159
Barisal	1986-87 1987-88 1988-89	1,900 220 1,240	8,160 3,142 7,110	- 2,800	21,314 24,750 23,910		60,717 66,690 78,425	270,940 299,920 277,250	31,631 56,636 45,140	943 510 752	229 155 130
Khulna	1986-87 1987-88 1988-89	600 240 1,410	11,470 12,760 8,260	5,940 - 2,000	77,830 78,100 123,430	•	36,070 25,470 58,350	500,800 430,240 439,140	120,400 204,071 479,492	988 510 2228	195 156 169
Patua- chalil	1986-87 1987-88 1988-89	300 - -	3,050 2,850 6,170	- 3,500	8,875 5,300 5,750		1,400 1,000 3,500	8,800 6,400 5,000	6,000 8,000 5,200	420 250 444	152 71 63

Table 8 - 1

Source : Statistical year book of Bangladesh - BBS - 1990.

Fertilizer Use

There is a considerable variation on the utilization of fertilizer in the different polders as well as among the districts. These variations can be contributed partly to the characteristics of the soils and partly to land ownership patterns and the farmers ablity to procure fertilizers.

Presently the fertilizer distribution and marketing system in the coastal areas include a combination of both public and private sector involvements. BADC has its Primary Distribution Point (PDP) at different district levels, which have been the main outlet for fertilizer to be supplied to the project area. Private wholesalers and dealers participate in the fertilizer marketing from the factory and / or PDP and down to the farmers level.

Fertilizers are generally used on HYV and irrigated crops. Although B.Aus is grown under rainfed condition, the crop often suffers under drought conditions or is damaged by saline water intrusion. So only a negligible quantity of fertilizers are used on this crop. During field visits, it was reported that only a small quantity of urea is applied as a top dressing in this crop.

The level of fertilizer used in local varieties of T.aman is also very low. Farmers also hesitate to invest on fertilizers in crops when considering the risk of crop damage by tidal inundation as the empoldered area is often damaged by storm, tidal wave, cyclones, river erosion etc.

In the Rabi season the plant may not utilize the fertilizers optimally, because of the low residual soil moisture content. Pulses especially Kheshari, which are grown as a relay crop with local varieties of T.aman rice, are leguminous crops and are not fertilized. Only a small quantity of fertilizers are used in oil seeds and vegetables, and even less is used on sweet potato and chillies.

Often farmers do not use the recommended doses of fertilizer due to their financial constraints. The ratio between urea and TSP & MP are much higher than the recommended ratios. The general practice is to apply uera two to three times during the growing period, whereas TSP & MPare only applied during planting.

Distribution of fertilizer by type and by district for 3 years are shown in Table 8.2 (Enclosure-4). Pattern of fertilizer consumption by district for 4 years are shown in Table 8.3.

	1985-86	1986-87	1987-88	1988-89
Chittagong	5	5	4	3
Noakhali	3	3	4	3
Barisal	2	3	3	3
Khulna	3	2	3	7
Patuakhali	-	1	1	1
Total	13	14	15	17
Bangladesh	100%	100%	100%	100%
% of 5 Dis- tricts in relation to Bangladesh	13%	14%	15%	17%

Table 8.3 : Pattern of chemical fertilizer consumption by former district

Source BADC and BBS - 1990.

Pesticides Use.

8.3

The incidence of pest and insect attack is higher in the aus and aman season than the Rabi season. The dry weather reduces the insect population though it is reported that in the 1990 rabi season the mustard crop was severely affected by the 'Zab' insect. It is reported that about most farmers in the coastal belt area were affected and the damage caused a loss of 10-15% of the total production.

Most farmers do not have adequate knowledge about the appropriate use of pesticides. They have little experience in chemical plant protection. The quantities of pesticides used are well below the recommended dosages which does not protect the plant effectively from insect infestation. The incorrect use of those pesticides can also cause serious health hazards to the users.

There is a lack of effecient extension services and motivation, and farmers have limited knowledge of the use of chemical insecticides, health hazards and the use of disease/pest resistant varieties. Since plant protection can not be done effectively on individual basis, due to the generally small plots, joint plant protection measures would be an important issue. However, at village level neighbour farmers co-operation is absent. It was reported at the time of the field visit that the following insecticides were used in the project area.

1.	Dimecron	-	100
2.	Sevin	-	85 sp
3.	Furadon	-	3 G
4.	Malathion	-	57 EC or dust
5.	Diazinon		14 G
6.	Phythilon	2	
7.	Roxyon and weedicides,	differ Roder	rent kinds of soil insecticides, fungicides, nticides etc.

Mechanical sprayers in most cases are not available and the spraying is done indegenously. The effectiveness of chemicals is sometimes reduced due to adulteration. Insects have also developed resistance against certain types of chemicals because of prolonged use. The districtwise distribution of pesticides for 3 years are furnished in Table 8.4 (Enclosure-5).

(Metric Tonne)

Former District	Year	Gran- ular	Conven- tional- /Borerp- estcom- plex	Soil Insec- ticides	Acaric- ides	Fun- gic- ides	Rode- nticides	We- edic- ides
Chitta-	1986-87	300	55	2.5	2	2	20	0.5
gong	1987-88	345	52	2	5	2	0.5	16
20121-0222	1988-89	405	63	1.5	3	2	0.25	10
Noak-	1986-87	210	33	1	1	2		0.5
hali	1987-88	230	32	1	5	1	-	0.5
	1988-89	270	46	1.5	2	3	0.5	
Barisal	1986-87	190	32	0.5	1			
	1987-88	212	30	-	2			
	1988-89	245	34	-	1.5	-	-	
Khuina	1986-87	80	20	1	0.5	1		
	1987-88	92	18	1	1	1	-	
	1988-89	107	26	1.5	1.5	2	-	-
Patuak-	1986-87	150	16		0.5			
hali	1987-88	180	16	-	2			
0.0400.025	1988-89	185	21		1.5			

Table 8.4 : Former District-Wise distribution of pesticides.

Source : Bangladesh Pesticides Association. BBS - 1990.
LIVESTOCK

9.

Livestock plays a vital role for the draft power of the agricultural activities in the project area. They are utilized to a great extent for ploughing the land, transporting and threshing as well as producing milk and cowdung. In Khulna, Barisal and Noakhali about 45% to 49% households and 50% to 54% households in Chittagong and Patuakhali have livestocks (Agril and livestock census -1983-84). The per capita livestock number in Chittaging is 0.22, in Noakhali 0.19, in Barisal 0.23, in Khulna 0.31 and Patuakhali 0.33.

The scarcity of animal fodder and inadequate veterinary services are the basic problems for the livestock management in the project area. The short turn a round time between harvesting of the Aman crop and the planting of the Rabi crops coincides with the period where fodder is of greatest shortage. Therefore are most of the animals⁴very thin and weak and not capable to undertake much work.

Upazila Livestock Offices (ULO) deal with the comprehensive livestock development programme in the project area including animal breeding, health care and extension services.Breeding work is, however, very limited in the project area. Medical treatment as well as preventive work of disease infection are also the concern of the Livestock Offices. Following malnutrition the most serious problem for cattle in the area is reported to be parasitical infestation.

10. AGRICULTURAL LOAN

Borrowing practice in cash and in the form of crop loan has been found to exist together. Cash loan is found prominent. Medium. small and tenant farmers largely depend on non-institutional sources (local lenders) for their credit whose interest rates they are reluctant to disclose. The amount of credit could not be quantified.

The institutional sources are Banks mainly Krishi and Grameen Bank and BRDB through the co-operative societies. The rate of interest is about 16% in case of Banks and 22% in case of BRDB.

Loans could be classified into three categories by terms and purposes. Short term credit might be provided principally for purchase of fertilizer, seed and pesticides with repayment after the crop has been harvested. Medium term credit has been provided mainly for the purpose of purchasing of draft animal, poultry or fishery equipment with a repayment period of 1 - 4 years. Long term credit may be provided mainly for purchase of agricultural machineries with 8 years repayment.

The recovery of agricultural loan is also a great problem and mainly depends on crop production and farmers financial condition.

11. FARM LABOUR

Farm labour is found to be an occupation of the male work force in the study area. Landless tenant and marginal household are the main sources of farm labour. There are many important market places where non-farm labours are available.

The demand and supply of farm labours is conditioned mainly by :

- (a) Present land use and cropping pattern.
- (b) Cost of cultivation per ha.
- (c) Cultivable area of the project.
- (d) Average labour force engaged in agricultural production per farm household.
- (e) Number of land holding farm household in the project area.
- (f) Number of landless tenant and marginal farm household.
- (g) Per month workable day throughout a year.

It is evident that local farm labours are generally sufficient to meet the demand except in the peak period that is from June - July transplanting of T.aman crop. The wages differ according to season and crop conditions and it was reported during field visits that the average wages are generally more or less the same throughout the project area.

The participation of women labour force could not be estimated but it can be said without hesitation that they play a vital role in farm activities. Threshing, parboiling, cleaning, sunning and storing etc. are the activities which are performed mainly by the women. They grow most of the kitchen garden, fruit and vegetables, they care for livestocks and poultry beside performing typical household responsibilities as a wife and as a mother. Since these activities are not treated as directly remunerative, women are excluded from the civilian labour force in the conventional/traditional way.

LIBRARY.

12. AGRICULTURE EXTENSION SERVICES

The Extension Services play an important role in the agricultural development of the country. Their objective is to motivate, educate and help farmers to adopt improved farming practices leading to increased farm production and income.

The diffusion of new technology also requires development of local institutions and farmers organisations. These are needed because the majority of farmers are small and individually ineffective in obtaining the services and support required to sustain agricultural development.

Nationwide agricultural extension services are as shown below

The institutional foci for the management of the extension services are the blocks (union), Upazila, Districts and the Headquarter (National Level). At the national level the DAE is headed by a Director General, who is assisted by a Director each of the divisions of Cash Crop, Food Crop, Plant Protection Field Services and Training) and by an Addl. Director each of the Planning and Budget and Personnel and Administration Wings. The Headquarters Specialist Divisions provide technical supervision over the field extension personnel through appropriate SMSs. They also maintain liaison with concerned national level research institute. The line

function over the field extension services are exercised by the Field Services Division of DAE.

The District is the most important focal point for managing the operation of DAE. The managerial direction and administrative professional support for an average of 7-8 Upazilas with a combined establishment of over 300 personnel is provided either by an A.D. or D.D, supported by a team of 2-5 specialists and supervisory staffs (SMSs and TOs).

The Upazila is the closest point of institutional service to farmers. Each unit is under the UAO who is supported by 3-4 supervisory officers (SMO, AUAO, AAEO, JAEO).

At the Block (Union) level there is a BSs who provides extension services to farmer or group of farmers. A BS covers 600 to 1200 farm families depending upon the intensity of agriculture in a given area.

The total staff strength of DAE is about 23,000 including those involved in service and regulatory functions.

Jurisdiction agriculture extension services under the project area covers the same boundaries as the local government.

The Upazila Agril.Extension Services who are practically engaged in the field level agricultural activities in the whole project area are similar and are as follows:-

Upazila Agricultural Extension Serivces

The extension staff (BS) posted at village level, carry out their extension activities following the Training and Visit (T&V) system. Under this system the union is divided in several blocks, each containing about a thousand households. A block is sub divided into 8 sub-blocks, each of which has 10 contact farmers with whom the BS maintains a regular contact. These contact farmers serve as change agent for the other farmers within the sub block. All BS attend a meeting in the Upazila Office once in a week either to report on their activities or to be trained on the coming fortnights impact points. Primary responsibility of the extension worker is to create awareness and advice farmers on the adoption of improved agricultural practices including cultivation of HYV crops.

BS is also responsible for establishing at least one demonstration block in farmers to demonstrate improved technology to the farmers. All blocks are generally rice oriented. Farmers are provided with seeds, fertilizer and plant protection free of cost. They are allowed to retain the output.

The information gathered from the field level, is that the extension workers generally visit large and medium scale farmers and the farmers visit to extension workers is very insignificant.

Among the other important activities of UAO' offices are :-

- Supervision of Upazila Demonstration Farm.
- Farmer's Training Programme.
- Plant Protection
- Farmer's Motivation Tours.
- Farmer's Rally.
- Tree Plantation Programme.
- Upazila Soil Conservation and Research.
- Making of Compost Fertilizer Programme.
- Crop Cutting Programme and Prize Distribution.
- Upazila Nursery.
- Certified and Improved Seed Distribution
- Multiple Crop Demonstration and homestead Vegetable Programme.
- Crop Diversification Programme.

13. AGRICULTURE RESEARCH

There are many Institutes and Organisations which are carrying out research activities in Bangladesh. These include :

- Bangladesh Rice Research Institute (BRRI).
- Bangladesh Agricultural Research Institute (BARI).
- Bangladesh Jute Research Institute (BJRI).
- Bangladesh Institute of Nuclear Agriculture (BINA).
- Sugarcane Research and Training Institute (SRTI).
- Bangladesh Tea Research Institute (BTRI).
- Fisheries Research Institute (FRI).
- Bangladesh Livestock Research Institute (BLRI).
- Forest Research Institute (FRI).

The Bangladesh Agricultural Research Council (BARC) co-ordinates the activities of all these institutes.

RRI is responsible for research on various aspects of rice improvement and production and for training of extension workers and subject matter specialists on rice production. The main research station is at Joydebpur with nine Regional Stations. BRRI has four Sub-Stations, one of which is at Khulna. It is very near to the project area and is carrying out research on testing varieties under different agro-climatological conditions and topohydrological situations.

BARI also located at Joydebpur carries out research work on all crops other than rice, jute, tea and sugarcane. It has four Regional Research Stations specializing on the crops and cropping systems of the area. In addition there are 5 (Five) special crop stations and 18 (eighteen) Research Sub-stations, one of which is located in Jessore. It is headed by one SSO assisted by three SOs, One economist, three Field Assistants and a Fieldman.

14. EXTENSION RESEARCH LINKAGE

The development of a close working relationship between extension and research is important for the successful operation of both. It involves a two-way flow of information between research and the farmers with extension bridging the two ends. Extension is required to bring the findings of research to the farmers. Without these the extension 's impact on sustained agricultural growth would be very limited. Also findings have to be practical and should offer viable solutions to farm problems. Research need extension's help in bringing such problems to their attention.

The main operational features of the extension research linkage include the following :

- Identification of production constraints faced by farmers.
- Generation of improved technology and its on farm validation.
- Joint formulation of extension recommendations(impact point) by researchers and extensionists.
- Dissemination of technology.
- Development of an institutional framework for carrying out extension research linkage activities.

Extension and research work together in planning and implementing the above activities although their responsibilities vary. While the role of research is more dominant in technology generation, extension takes the main responsibility for spread of technology and for bringing farmers production problems to the attention of the researchers.

A regular, documented feed-back of farmers problems is an important aspect of the extension research linkage system. The operational steps for recording feed back is as follows :

- BS will record all field problems raised by farmers which they are unable to offer solutions during their visit. They also record their observations which they consider as problems.
- These problems will be discussed with SMOs in the training day
- As far as possible SMOs with the help of UAOs will provide solutions to BS and subsequently will prepare a list of unsolved problems with their recommendations/observations to DDAE/AD-AE within two days of each training day.
- DDAEs/ADAEs in consultation with SMSs should provide solutions to these problems and prepare a list of unsolved problems for discussion at the DTC. The DTC will prepare a list of unsolved

problems and send copies to (a) nearest research stations (b) Director, Field Services Division (c) RTC and (d) Directors of concerned research institutes.

Local research stations initiate research programmes to solve these problems within their capabilities. Otherwise, they send these problems to the National Head Quarters (NTC) for their attention and solve.) solution

The sequence of activities undertaken to generate improved technology is -

- Cropping Farming System Research (FSR)
- **On-Farm Multilocation Testing**
- Verification trial-cum-demonstration in farmers field.

The first two activities are jointly undertaken by research and extension. The last one is the exclusive responsibility of the extension services, although the help of research may be taken when planning the trials and in analysis of their results.

Crop Damages

boly is this table of plang District Technical Committees and Collaborating Research Stations : Under the project area.

Category I and special Destricts having DTC	Collaborating Research Stations	Category II Districts as members of DTC
1. Chittagong	BARI Pahartali BARI Hathazari BRRI Comilla	Cox's Bazar Noakhali Laxmipur
2. Khulna	BARI Jessore BRRI Barisal	Satkhira
3. Bagherhat	BARI Jessore BRRI Barisal	-
4. Barisal	BARI Barisal BRRI Barisal	Bhola, Patukhali Barguna.

Pest and Disease

In the past years farmers in the project area were not interested to protect crops from the attack of pest/disease but now a days they are very much aware against such attacks mainly by medium and large group of farmers. It is reported by the farmers of polders under AEZ Regions 13 and 18 that they are very much affected last season of T.aman period by the virus (locally called Zandish) disease. It is also reported that in some areas as much as 25-50% of the production was lost due to virus attack on the

T.aman crop. The Asstt. Director (Agril.Extension) expressed his views, that every year about 10-15% crops were damaged by such attacks. Generally T.aman is attacked by stem Borer and Bacterial diseases, Potato by leaf blight and mosaic, wheat by rust etc.

Salinity

Crop production in saline soils is constrained by salt accumulation and concentration in the crop root-zone. These salts are water soluble and are easily transported by water. If evaporation exceeds leaching the salt will accumulate in the root-zone and it will interfere with the crop growth when the concentration exceeds tolerance limits. The plants will suffer from water stress even though enough water may be present in the rootzone. This is because of higher osmotic potential created due to the presence of salt in the system. Crop production is possible in salt affected soils when the salt concentration in the root-zone is diluted or leached below the root-zone.

Germination and early vegetative stage of growth of most crops are affected by salinily Table refer 15.1 and 15.2 below :

Crop	EC water of Irrigation water (ds M 1)								
	2	4	8	12	16				
Rice	82	78	47	43	5				
Wheat	71	74			-				
Barley	73	63	44 55	30 35	-				
Maize	72	73	70	49	48				
Mustard	76	73	30	22	-				
Cotton	68	50	28	6	-				

Table 15.1 : Germination percentage of some field crops as affected by saline water.

Source : Complied from Bhumbla and Singh (1968) ; Rai(1977a), and Rai (1977b)

Stages		EC extra	ct (ds m1)	
	3	8	14	21
Early growth stage Reproductive stage	0 0	50 0	75 10	96 52

Table 15.2 : Percent decreased of yield due to soil salinity at early growth

and reproductive stages of rice.

Source : Compiled from Das and Mchrotra (1971); BRRI (1983) and BARC (1981-82 & 1982-83).

15.

MAJOR AGRICULTURAL DEVELOPMENT CONSTRAINTS

The agricultural development in the the project area is constrained by various physical, chemical and social factors. In general the major factors that impedes development are mentioned in this section.

- * High year to year variability of rainfall, uncertain dates of onset and recession of seasonal floods and risk of drought restrict cultivation of aus and aman rice. Uncertain rainfall delays sowing /transplanting and flood damages aus and aman crops. Heavy monsoon rainfall causes delay in transplanting of aman and sometimes flash floods washes away the standing crop.
- In the coastal saline belt the winter season is very short, therefore, timely sowing/planting of rabi crops is essential but this is restricted by late harvest of aman rice.
- * Soil salinity is the most dominant limiting factor in the region, especially during the dry season. It affects certain crops at different levels of soil salinity and at critical stages of growth, which reduces yield and in severe cases the total yield is lost. A substantial area of land is tidally affected by saline water, appropriate management practice for crop production in this area is not available.
- * Fertility status of most saline soils ranges from low to very low in respect to organic matter content, nitrogen, phosphorus and micronutrient like zinc and copper. The crop yields obtained in these soils are also low.
- Scarcity of quality irrigation water during dry season limits cultivation of boro rice and rabi crops, and aus cultivation during kharif-I season.
- * Narrow technological and germplasm bases for salt tolerant crops limit crop choices. On the other hand, due to the extensive cultivation of a particular cultivar of crop year after year makes the crop susceptible to pests and disease attack. Pests and diseases like hispa, leaf-hopper and tungro virus are prevalent in the region and extensive damage is caused by these almost every year.
- * A considerable area of the coast is within the polders of different types. Soil salinity levels has not decreased considerably within the poldered areas. Polder management like maintenance of sluice gates, water height in different times of the year is not maintained matching with the present time agronomic development for the cultivation of modern cultivars. This seriously constrained the adoption of HYV aman and/IIYV aus in these areas.

- The texture of most of the saline soils varies from silty clay to clay. Land preparation becomes very difficult as the soil dries out, deep and wide cracks develop and the surface soil becomes very hard. After harvest of transplanted aman rice the turn around time to catch the optimum time for rabi crop is very short in this region. These necessitate deep and rapid tillage operations.
- * Perennial water-logging due to inadequate drainage and faulty operation of sluice -gate facilities restricts potential land use of the lowlands within the poldered areas. In these areas unauthorized digging of channels for intake of saline water for shrimp culture by shrimp farmers also creates many social conflicts.
- Lack of appropriate extension programmes for diffusion of modern technologies. Extension personal trained in saline soil management is also inadequate. These lackings retarded adoption of HYV technologies.
- * Big land ownerships and unfavorable land tenurial system, and dominance of absentee farmers discourages adoption of modern technologies.
- * Difficult communication and remote marketing facilities also retard agricultural development of the region.

Considering the above constraints is there ample scope for agricultural development. Some of the constraints are inherent or natural but some are physical and social and could be completely or partially eliminated by improved management practices.

what about v shrimp?

PART 2 FUTURE AGRICULTURE

16. INTRODUCTION

Increase in agriculture production is one of the main objectives of this project, and thereby the income of the farmers to improve their living standard and also to bring a change in the social and economic conditions by developing the land resources. Development plan of the land resources of the project area for potential agricultural production depends mainly on the engineering working development of the respective polder.

For achieving the above objective the project would

- prevent crop damage from mainly saline hazard, cyclone, storm surges.
- Remove drainage congestion of the entire project area.
- Remove drainage and irrigation structures which are partially or completely damaged.
- Re-sectioning of the existing embankment and providing new sluice gates to use tidal water with no or low salinity for supplemental irrigation or drainage.

In the dry season the project would check inflow of saline water into the project area. In the monsoon, cultivated area would be protected from inundation by high tides. The regulators would be used for intake of water during drought which also preserved sweet water stored in the Khals for irrigation of rabi crops.

17. FUTURE LAND USE

Salinity problems received very little attention in the past, but due to increased demand for growing more food to feed the booming population of the country it has become imperative to explore the potentials of these lands.

Therefore, it was felt essential to compile all the available indigenous research and survey information. This will serve as a data-base for planning adaptive research, formulating extension messages and production plans. These will provide the appropriate ways and means to maximize the agricultural land use of these regions and thereby attain the ultimate goal of increasing food production of the country.

Due to construction of high embankment and growing afforestation, the polders under this project will receive protection from tidal and monsoon flooding and salinity intrusion and also from bank erosion.

The above provisions will enable the area under this project to increase agricultural production by increasing the cropping intensity. This will come about through improved agricultural practices and services and application of modern agricultural technologies. The present double and triple cropped areas will be increased. The land use within the project area is shown in Table 17.1.

Category	Gross	Uncultivated	Cultivated		Cultivated Area	
Area	Area	Area	Area	Highland	Medium Highland	Medium Lowland
I	133310	26100	107210	3416	98746	5048
п	16020	5575	10445	252	10067	126
III	56120	13320	42800	230	40447	2123
IV	48350	12200	36150	115	32416	3619
v	99640	14555	85085	-	68648	16437
VI	48240	17280	30960	6558	18000	6217(217)
Total	401680	89030	312650	10571	268324	33755

Table 17.1

This project covers cultivated area 78% and uncultivated area 22% which include homesteads, markets, roads, schools, graveyard, water area and embankment etc.

. Title ?

LIBRARY.

PROJECTED POTENTIAL CROPPING PATTERN

High potentials of the area for increased crop production can be realised by intensifying cropping through desalinization, improved irrigation and drainage system and better soils and water management practices. Rice is grown extensively in the wet season and considered as a compatible crop in the area. This is not because of its growth being favoured in the saline soils but, because of dilution of salinity with the monsoon rains and leaching/washing of excess salts from the root-zone. This lowers the salinity level within the tolerance limit of the crop. Whereas wheat, barley, groundnut etc. being more salt tolerant crops than rice can bring substantial change in agricultural practice in the salt-affected soils towards increased crop production. Coastal saline soils and their management in? Bangladesh, by Z. Karim, BARC soils and Irrigation publication No. 8, 1983.

On analysing the crop tolerable limits of salinity refer Table 18-B

farmers in the selection of variety of aman rice crop grown. Flood free condition, with assurance of no or less damage by cyclone, intermittent flooding during high tides. significant increase in production and cropping intensity is expected. Local variety of T.aman will still continue to dominate after implementation of this project. Adaptation of local variety of T.aman, reasonable yield of the crops) with low level of management expenditure and the demand of its long straw as cattle feed would influence farmers to grow this crop as a major part of the cultivated area.

In dry season, protection of saline water intrusion would create scope of local B.aus cultivation on comparatively medium and lower medium elevation. Significant increase in area under rabi crops are also expected after implementation of this project. Farmers, after getting assurance from order saline water intrusion will cultivate pulses as a relay crop with T.aman on the medium lower elevated area. Removal of saline inundation which acts as a great constraints, farmers would expect to grow more other rabi crops

Nood thereof s

00

FIG.I

45

•

FIG-V

at

FGI. VI

like oilseeds, chilies, water melon, cowpea(Falon), winter vegetables etc. In future cropping pattern of Category I and VI some HYV Boro cultivation is possible. In Catagory I some polders have some beel and low areas and some polders STW where irrigation is possible in Rabi season.In Category VI presently some HYV Boro is cultivated with the water coming from hilly areas like Sitakunda (61/1), Anowara (63/1A). So, this pattern should not be avoided. Cropping patterns which expected to be practiced after implementation of the project are presented in Tables 18.2 to 18.6 (Enclosure-7) category wise and diagrammatically in Fig Fig.-1 to Fig.-VI.

After implementation of the project the cropping intensity under category-1 polders would be increased by 31%(present 108%), single cropping area will decrease by 20% (Present 92%) and double cropping area will increase by 10% (Present 8%). Triple cropping pattern system is expected to introduce by 10% area.

The future cropping intensity under category-II polders would be increased by 20% (present 122%); single cropping area will be decreased by 13%, but double cropping area will be increased by 5.Triple cropping area will be introduced and the area will be enhanced by 8%.

The future cropping intensity under category-IV are expected to be increased by 8% (present 183%) but the single cropping area will be decreased by 9% and double and triple cropping area will be increased by 10% and triple cropped area will stand similar with present position.

The average cropping intensity of the 6(six) categories i.e the future(with project) cropping intensity of the project area is calculated below (Table 18.7) which will increase by 18% than the present intensity of 134%.

					(in na)
Catego- ry	Single Crop- ped Area	Double Crop- ped Area	Triple Cro- pped Area	Cultivat- ed Area	Total Cro- pped Area	Cropping Intensity
I	76855(72%)	19056(18%)	11299(10%)	107210	148864	139%
п	6832(65%)	2818(27%)	795(8%)	10445	14853	142
ш	10946(26%)	24990(58%)	6864(16%)	42800	81518	190%
IV	26394(73%)	7956(22%)	1800(05%)	36150	47706	132%
v	50603(60%)	28664(34%)	5818(06%)	85085	125385	147%
VI	6227(20%)	21405(69%)	3328(11%)	30960	59021	191%
	177857(57%)	104889(33%)	29904(10%)	312650	477347	

(Area in ha)

ON

Table 18.7

The increased cropping intensity of CPP-II will be 152%.

The above table shows that the single cropped area will be decreased by 12% but the double and triple cropped area will be increased by 5% and 7% respectively after the project implementation.

19.

PROJECTED CROPS AREA AND YIELD

This rever happend unpos How do we expect them How to do they now? After implementation of the project, the DAE, BARC, BRRI, BARI should give attention on different points in respect of agricultural development possibilities (Chapter-20) and agricultural research needs (Chapter-21). Under post-project condition, slight increase in HYV rice area and yield are expected. Higher level of input use in certain crops will contribute toward their yield increase. Safety from damages is also expected to increase yield of local T.aman rice. Post-project area and production from different crops are presented in Table 19.1 (Enclosure-8) categorywise and the total project in Table 19.7 (Enclosure-8).

For polders under the Mid-Term Programme, Phase2, the post project areas and production from different crops are presented in Enclosure 3, tables 7.8 to 7.19.

19.1 Projected Input Use.

Under post project conditions some increase in input use is expected in the project area. It is anticipated that farmers wil invest in more inputs on HYV crops. Input use in local variety is also expected to increase slightly as the risk of damage by saline water inundation will be reduced. Level of input use in rabi crops will also increase due to the same reason.

Post-project fertilizer recommendation of different crops are presented in Table 19.8 and 19.9 categorywise.

Category -I, II.IV and V

(In kg/ha)

Seasons	Crops		Categor	у I & П			Category	IV & V	/
		N	P205	K20	S	N	P205	K20	s
Rainfed (Non-saline)	B. aus	20	.	•	-		-	-	
(Non-saline)	T. aman (HYV)	40	-			-	-	(.)	-
	T. aman (HYV)	60	20	20	10	14		-	
	Wheat	40	20	20	-	-		-	
	Chilli	60	60	40		•		-	-
	Mungbean	20	40	20	-		82	-	-
Rainfed (Sal-	B. aus	20		,		30		-	-
line)	T. aman (LYV)	40	720	10		40	20	20	-
	T. aman (HYV)	60	20	20	10	-	125	-	
	Onion	50	40	100	10	-	-	-	-
	Watermelon	40	20	50	-	40	20	50	
	Cowpea (Falon)	10	40	20	-	10	40	20	
	Chilli	60	60	40	-	60	60	40	
	Mustard		÷	-	-	80	30	40	10
	Kheshari		-	-	5	10		÷	
Irrigated	Mustard	60	40	40	20		-	*	:20
	Boro (HYV)	80	20	20		80	40	40	10
	T. aman (HYV)	60	20	20	<u>.</u>	60	30	30	
	T. aman (LYV)	-		-		40	20	20	2
	T. aus (HYV)		•	-	-	60	-		-
	Wheat	-	-	-	-	80	30	40	10
	Boro (HYV)	-				60	20	20	10

.

Table 19.8

Source : Fertilizer recommendation guide-BARC

	- A
N	2
-	1

Category	Ш	and	IV
----------	---	-----	----

(In kg/ha)

Seasons	Crops		Category	1 & II			Category	IV & V	
		N	P205	K20	s	N	P205	K20	s
Rainfed	B. aus	30				30	(inc.)	-	
(Non-saline)	T. aman (LYV)	50	20	20	-	50	20	20	10
	T. aman (HYV)	70	30	30	10	70	30	10	-
	Vegetables	150	80	100	-	70	40	50	- 2
	Cowpea (Falon)	•	-		-	20	50	40	
	Brinjal	-	-		2	80	60	40	
	Sweet Potato	-		-		80	60	100	-
Irrigated	T. aus (HYV)	70	40	40		70	40	40	-
	T. aman (HYV)	70	20	20	10			(1)	
	Vegetables	150	80	100		150	80	100	-
	Gourd (diff. Type)	-	÷			70	40	50	
	Mustard	-	-	0 2 1	•	80	30	40	10
	Kheshari	-		-	-	10		2	

Table 19.9

Source : Fertilizer recommendation guide - BARC

19.2 Improved Support Services

The support services from the Government are generally limited at Upazila level. Due to the difficulties in communication in the polder area, the Govt. officials are some what reluctant to visit the rural area. For the development of especially the agricultural sector, incremental support services are necessary. The extension staff (BS) should be provided with bicycles and Upazila Officers should be provided motor cycles. Regular training to BS and farmers must be ensured. DTC and RTC must be more active than the present position. Agricultural research should be more active in the coastal area.

It is realised from the field visit experiences that some small/large scale comprehensive water and agricultural development schemes of different types may be undertaken in the project area which requires a special organization set up of its own. Some possible schemes on agricultural development and agricultural research needs are described in chapter 20 and 21.

AGRICULTURAL DEVELOPMENT POSSIBILITIES 20.

LIBRARY

40

20.1 General

The coastal belt is pre-eminently suited to transplanted paddy cultivation. Therefore, development efforts need to focus on methods to increase paddy yields and production. Constraints appear to be as much social and economic as physical and deserve greater attention in project, research, extension and development planning.

Rainfer Token folins?i. I Token we formed publice we formed the two formed the two formed to the foliation -wayon factor -20.2 **Rainfed** agriculture

Improve soil and crop management by :

improved tillage on basin clays: either by use of stronger draught animals or by use of power tillers; increased use of fertilizers;

- improved pest/disease monitoring and treatment;
- improved regulation of water-levels within polders;
- use of supplementary irrigation from non-saline rivers;
- improve land tenancy conditions.
- Expand cultivation of HYV aus and HYV aman paddy. ii.
- In areas of wet soils, make raised beds for cultivating dryland kharif iii. and rabi crops.
- iv. Grow fuelwood crop on river-bank soils.
- Expand cultivation of quick maturing dry land rabi crops on ridge v. and marginal soils. Make field drains to reduce the risk of damage by late or early rains.
- Improve management of coconut, betelnut and betel leaf gardens, vi. especially by using fertilizers, manures, mulches and better pest/disease management
- Dryland kharif crops and early rabi crops can be grown on level vii. tops of some low hills or on slopes that are terraced. Suitable crops include : pineapple, ginger, cassava, aus paddy, maize, banana, betel leaf, jackfruit, coconut, betelnut etc.

20.3 Small-scale irrigation/drainage

- Expand command areas of existing low-lift pumps by: i.
 - round-the-clock pumping (where tidal conditions permit);

- rotational irrigation;
- ii. Increase the number of pumps used in non-saline areas;
- iii. Identify sites where double lifting of water would increase the irrigable area.
- iv. Use traditional irrigation equipment.
- v. Identify local schemes for flood protection and drainage to protect boro, aus and/or t.aman from damage by local floods.
- vi. Where fresh water in tanks and in underground aquifers are not fully needed for domestic use, provide supplementary irrigation to dryland rabi crops.
- vii. Use dug wells or STW's, where possible, to expand the cultivation of dryland rabi crops and to provide supplementary irrigation to aman on drought-prone soils.
- viii. Improve crop management

20.4 Large-scale irrigation/drainage

- i. Because most of this area is only shallowly flooded and it is well served with a network of perennial rivers and creeks, the need for large-scale irrigation projects is small. Embankment and pump drainage would benefit some northern parts to reduce flood-levels so that HYV aus and aman could be grown.
- ii. The greatest need is to provide embankments to protect the land from salt water flooding and to provide sluice-gates to permit drainage of excess water derived from local rainfall and run-off. Improved management and maintenance of existing embankments, sluices, internal drainage channels and outlet channels are also needed.
- iii. The possibility of making smaller polders than the existing Coastal Embankment Project polders deserves examination. This might simplify management, and make operation and maintenance by Union/Upazila Parishads possible.
- iv. Large-scale embankment and drainage projects in this area should take into account:
 - the saucer-shaped basin relief, creating problems for water management for transplanted aus and aman cultivation within embanked areas;

56

- the tendency for creeks to silt up rapidly after embankments are built;
- the difficulty of providing regular extension and support services because of difficult communications, especially in the rainy season;
- the prevalent heavy clay soils, difficult to compact by hand when constructing embankments and providing poor material for road foundations and surfacing;
- the unstable banks of some main river channels;
- the heavy monsoon rainfall of most of the area;
- the exposure of the region to cyclones and storm surges which can severely damage embankments, sluices, buildings and equipment; disrupt communications by breaching road embankments, destroying bridges/culverts and sinking ferry boats; flood land unseasonably causing widespread damage to crops; and cause large-scale human and livestock casualties;
- the fact that much land, especially in the south, is possessed by big, absentee, land owners who, to-date, have shown little interest in intensifying methods of crop production.

21. AGRICULTURAL RESEARCH NEEDS Multiple Socio-economic surveys in different areas to identify actual constraints on more rapid development in particular areas. The objective should be to try to find possible ways to reduce or remove specific constraints Agronomic trials on different soils and land types in different parts under to find possible ways to reduce or remove specific constraints.
Agronomic trials on different soils and land types in different parts under trainfed and irrigated conditions:
new HYVs of boro, aus and aman paddy;
dryland rabi crops to follow t.aman on basin margin and river bank soils; trial should include salt-tolerant crops and varieties.
optimum use of fertilizers in different crop rotations on different soils;
improved agricultural practices, including optimum plant spacing and pest/disease management;
agricultural practices to minimize soil salinity or to minimize its effects on crop growth.

ف ط

Fertilizer trials on different soils and cropping patterns:

- optimum doses.
- most efficient methods of application;
- optimum times of application in crop rotations;
- use of organic manures;
- special techniques for use on saline, calcareous and acid sulphate soils.

Water management trials, both on irrigated and non-irrigated land.

Soil management trials:

- improvement of land preparation on heavy basin clays.
- techniques of reducing topsoil salinity.
- methods of neutralizing acid sulphate acidity.

Trials with improved methods of seed/grain drying and storage.

Studies to investigate the acceptability of paddy threshers, driers and improved stores, especially in areas where big land-owners predominate.

Trials to identify improved management techniques for coconut, betelnut and betel leaf gardens.

Trials with quick-growing fuelwood species.

1

Trials with techniques for reclaiming Acid Sulphate Soils.

Study of possible ways to provide improved advisory, input supply and marketing services.

Study of techniques and crops suitable for the rapid rehabilitation of agriculture following:

- a cyclone and storm surge in the pre-monsoon season;
- a cyclone and storm surge in the post-monsoon season;
- damage to T.aman by late Ganges floods.
- damage to T.aman by salinity caused by salt-water flooding or resulting from drought within the kharif growing period;
- breaching of an embankment in any season;
- large-scale loss of animals.
- large-scale loss of seed of locally-adapted paddy varieties;
- scarcity of all or individual fertilizers.

Studies to monitor and assess changes in fertility and physical properties of different soils:

- in embankment areas;
- in irrigated areas;
- in areas used continuously for HYV paddy cultivation with continuous use of fertilizers;
- in areas near the boundaries between saline and non-saline zone.
- in areas affected by a saline storm surge.

Study of possible ways to improve advisory, input supply, equipment supply and maintenance, plant protection and marketing services by - providing boats or improving launch services;

- improving the network of all-weather roads and paths;
- reducing the work areas of field and supervisory officials to manageable sizes;
- improving radio communications and radio advisory services.

22. IMPROVED AGRICULTURAL PRACTICES FOR CONTROLLING SOIL SALINITY

22.1 Land Leveling

Slight variations in the micro-relief lead to salt accumulation in the raised spots. The effect of poor leveling is more pronounced in the presence of shallow saline ground water tables. During final land preparation all care should be taken for uniform leveling of the land. This will facilitate uniform germination of seeds and better growth of all field crops.

22.2 Tillage

After harvest of transplanted aman rice the turn around time left for growing rabi crops is very short. As moisture content in the soil drops deep and wide cracks develop and the surface soil becomes very hard and makes tillage operations very difficult with the traditional plough. Rapid and deep tillage reduces soil salinity by breaking the capillary continuity for upward movement of saline groundwater. Therefore, light mechanised tillage implements such as power tillers should be used to increase the How to ensure / implement speed and depth of tillage operation.

Avoiding Fallow Condition

Considerable quantity of salts may accumulate at the soil surface by evaporation particularly in the presence of shallow saline water table during the fallow periods. If the fallow period is long severe salinity may develop. Therefore, it is recommended/to avoid fallowing of the land during rabi season. Salt tolerant crops should be chosen and as many crops as possible should be grown. This will lower the profile salinity.

22.3 Selection of Appropriate Cropping Patterns

The cropping patterns in an area influence soil salinization, chiefly by affecting the water regime. Frequent irrigation tends to maintain a net downward flux of water and salts thereby keeping the root-zone relatively salt free. Rabi crops of longer duration will favour the accumulation of salts in the root-zone. It is suggested to grow relatively salt tolerant crops in the saline areas.

22.4

In the saline areas. Pre-plant Irrigation Salinity above 3 dS m1 may seriously hamper crop germination and early growth can be improved by a beam and yield. Germination and early growth can be improved by a heavy pre-plant to be irrigation, which is likely to reduce the surface salts beyond the sowing taken depth and root-zone of the crop. This should be practiced well in advance in fe of the desired planting date to allow for cultivation to remove weeds and account

preparation of seedbeds.

Extra care should be taken in furrow irrigated fields as there is a possibility of salt accumulation on the ridges. The practice of knocking off the top of the ridge before planting can be used. Care must be taken, however, on seed placement.

It is better to apply an irrigation before the onset of scanty rains during winter. This irrigation will keep the soil profile saturated with water and winter rain water will provide excess fresh water for leaching.

Placement of Seed

It is experienced, that when poorer quality of water is used in furrow irrigated crops on saline soils, maintaining a desired stand is a serious problem. Farmers sometimes compensate by sowing two or three times as much seed as normal, or making appropriate adjustments in planting procedures. The soil area around the seeds is lowered in salinity to create an environment conducive to germination. This can be done by selecting suitable planting practices, bed shapes and irrigation management.

22.5 Fertilization

When salinity is a problem, care should be taken in placement and timing of fertilization. Seedlings are sensitive to salts and, while small, require little fertilization. Where salinity is a problem, early fertilizer applications should be lower than normal and the main application made at a later date. Therefore, in deciding on split fertilization practices, soil analysis for talking EC extract, N, P, K and other elements prior to planting should be about advised. If soil salinity and fertility are limiting yields, correction of the the family most limiting factor should be made get a yield increase.

pre- or post. (, how In care area alculated? has the area calculated? 20 Enclosure-1 (Page 1 of 5)

Category - I

Table 3.1

Polders with AEZ Sub -	Gross area		Cultivated	area	Uncultivated area	
regions	Area(ha)	%	Area (ha)	%	Area (ha)	%
5						1
(60% 15e +40%	1	1				1
13f)	55,400	100	48,560	88	6,840	1
7/1 (13f)	3,890	100	2,830	73	1,060	12
7/2 (13f)	10,890	100	7,690	71	3,200	27
14/1 (13f)	2,550	100	2,020	79	530	29
14/2 (13f)	11,330	100	8,950	80		21
15 (13f)	3,320	100	3,040	92	2,380	20
10-12 (13f)	16,230	100	14,160	87		8
31 (13f)	10,360	100	7,080	68	2,070	13
32 (13f)	6,350	100	4,280	67	3,280	32
35/1 (13d)	12,990	100	8,600	66	2,070	33
			0,000	00	4,390	34
Tota 1	1,33,310	100	1,07,210	80	26,100	20

Source : (I) Khulna Coastal Embankment Rehabilitation Project. (II) BBS - Upazila Statistics - 1988 - 90 - Sata by Upazila (III) UAO offices.

Table 3.2

1

(Area in ha)

Sub-regions	High land	Medium High Land	Medium Low Land	Low Land	Tota 1
13d	207	8,289	104	-	8,600
13e	2,428	25,667	1,041	-	29,136
13f	781	64,790	3,903	-	69,474
Total	3,416	98,746	5,048	-	1,07,210

Source : Based on Report - 2 AEZ Regions of Bangladesh, UNDP/FAO/BARC.

Sata by AEZ How have suese tur been integrated ?

Category - II

Polders with AEZ Sub -	Gross are	a	Cultivated a	area	Uncultivated area	
regions	Area(ha)	%	Area (ha)	*	Area (ha)	%
40/1(13d) 40/2(13d) 45 (13d) 48 (13d)	2,100 4,450 4,090 5,380	100 100 100 100	1,175 2,405 3,150 3,715	56 54 77 69	925 2,045 940 1,665	44 46 23 31
Total	16,020	100	10,445	65	5,575	35

Table 3.3

Source : (I) On the basis of BBS - 1988-90 (II) UAO Offices (III) Field visit experiences.

Table 3.4

(Area in ha)

Sub-regions	High land	Medium High Land	Medium Low Land	Low Land	Total
13d	252	10,067	126	-	10,445

Source : Based on Report - 2 AEZ Regions of Bangladesh.

Category - III

Table 3.5

Polders with AEZ Sub -	Gross area		Cultivated area		Uncultivated area	
regions	Area(ha)	%	Area (ha)	%	Area (ha)	%
56/57(North + central part) 18a+18b+18d 72 (18e)	33,450 22,670	100 100	23,750 19,050	71 84	9,700 3,620	29 16
Total	56,120	100	42,800	76	13,320	24

Source : (I) BBS

(II) UAO Offices

1

(III) Field visit experiences.

90

Enclosure-1 (Page 3 of 5)

Tob	10	0	C
Tab	ie	3.	D

Sub-regions	High land	Medium High Land	Medium Low Land	Low Land	Total
18a		10,053	126	-	10,179
18b	-	11,484	391	-	11,875
18d	-	1,696			1,696
18e	230	17,214	1606	-	19,050
Tota1	230	40,447	2123	-	42,800

Source : Based on Report - 2 AEZ Regions of Bangladesh.

Category - IV

Table 3.7

Polders with AEZ Sub -	Gross area		Cultivated area		Uncultivated area	
regions	Area(ha)	%	Area (ha)	%	Area (ha)	%
56/57(Southern part)(18b+18e) 73/2B (18f)	39,750 8,600	100 100	28,250 7,900	71 92	11,500 700	29 8
Total >	48,350	100	36,150	75	12,200	25

Source : (I) BBS

(II) UAO Offices

(III) Field visit experiences.

Table 3.8

(Area in ha)

Sub-regions	High land	Medium High Land	Medium Low Land	Low Land	Tota 1
18b	-	17,385	593	-	17,978
18e	115	8,657	1500	-	10,272
18f	-	6,374	1526	-	7,900
	1150	32,416	3619	-	36,150

Source : Based on Report - 2 AEZ Regions of Bangladesh.

* Polder 56/57 (Bhola) covers 5(Five) AEZ sub-regions. The approx. percentage of area may be 18a = 30%, 18b = 35%, 18d = 5%, 18e = 20% and 18f = 10%.

1
96

Category V

Polders with Gross ar AEZ Sub -		a	Cultivated area		Uncultivated area	
regions	Area(ha)	%	Area (ha)	%	Area (ha)	%
59/3B (18f) 59/3C (18f) 59/2 (18f) 59/1A (18f) 60 (18f)	31,380 18,020 26,520 15,500 8,220	100 100 100 100 100	27,615 13,875 24,130 13,795 5,670	88 77 91 89 69	3,765 4,145 2,390 1,705 2,550	12 23 9 11 31
Tota1	99,640	100	85,085	85	14,555	15

Table 3.9

Source : (I) BBS

(II) UAO Offices

(III) Field visit experiences.

Table 3.10

(Area in ha)

Sub-regions	High land	Medium High Land	Medium Low Land	Low Land	Tota1
18f	-	68,648	16,437	-	85,085

Source : Based on Report - 2 AEZ Regions of Bangladesh.

Category - VI

Tab	e	3.	11	

Polders with AEZ Sub -	Gross area		Cultivated	area	Uncultivated	area
regions	Area(ha)	%	Area (ha)	%	Area (ha)	%
61/1 (23a)	7,690	100	4,930	64	2,760	1 20
62 (23b)	1,580	100	890	56	690	36
63/1A (23a)	6,400	100	3,650	57	2,750	44
64/1A (23a)	5,750	100	4,890	85	860	43
64/2B (23c)	6,960	100	4,245	61		15
66/1 (23c)	2,590	100	1,500	58	2,715	39
66/3 (23c)	2,220	100	1,400	63	1,090	42
68 (23d)	3,520	100	2,530	72	820	37
69(a)	1,780	100	500	28	990	28
70 (23c)	3,030	100	2,060	0.000	1,280	72
71 (23c)	6,720	100	4,365	68	970	32
	0,120	100	4,305	65	2,355	35
Total >	48,240	100	30,960	64	17,280	36

Source : (I) Based on BBS Upazila Statistics - 1988-90 (II) UAO Offices. (III) Field visit experiences.

Enclosure-+ (Page 5 of 5)

Table 3.12 (Area in ha)

Sub-regions	High land	Medium High Land	Medium Low Land	Low La	Total
23a + 29a 23b 23c 23d	4,665 18 1,495 380	7,410 750 9,360 480	1,620 122 2,715 1,670	275 - - -	13,970 890 13,570 2,530
	6,558	18,000	6,127	275	30,960

Source : Based on Report - 2 AEZ Regions of Bangladesh.

.

Category - I

Table 6.1

Land Type	Cropping Pattern *4*	Cultivated area *3*	Cropped area	Remarks
High Land (3.2%)	1. B.aus - Rabi crops (W.Veg, Oil seeds, Pulses Potato, S. Potato, Chilli etc).	1,301	2,602	Double Cropping
	2.T.aman(LYV)-Rabi(Pulse	2,115	4,230	-do-
Medium High Land	1. B.aus- Rabi crops (Pulse,cowpea,chilli) etc.	3,035	6,070	Double Cropping
(92.1%)	 T.aman(LYV)-Rabi(Pul- se,cowpea,chilli,etc) T.aman(LYV) Fallow 	2,215 93,496	4,430 93,496	-do- Single cropping
Medium Low Land(4.7%)	1. T. aman (LYV) Fallow	5,048	5,048	Single cropping
	Total	1,07,210	1,15,876	

- estimated on the basis of Upazila - SS - BBS, UAO offices and field visit experiences. - Basis of calculating cropping pattern is . Field visit experiences i. D. D./A.D and UAO offices of Agril. Extension iii. Fertilization Recom. Guide - BARC iv. Report - 2 Agro - Ecological Regional of Bangladesh -UNDP, FAO, BARC. . UNDP, FAO, BARC. . How way the form the form of the form o

Enclosure-2 (Page 2 of 6)

Category - II

TABLE 6.2

(Area in ha)

8.4

Land type	Cropping pattern *4*	Cultivat ed area *3*	Croppe -d area	Remark s
High land 2.4%	 B. aus - Rabi(Pulse, Mustard, Cowpea etc.) Jute - Rabi 	140	280 224	Double croppi ng -do-
	(Millet, Pulse, Mustard, etc.)	_		
Medium High Land (96.4%)	1. b. aus - T. aman (LYV) 2. T. aus (HYV)- T. aman (LYV) 3. T. aus (HYV) - T. aman (HYV) 4. B. aus - Rabi (pulse, Cowpea,	875 230 525 370	1750 460 1050 740	double -do- -do- -do-
	Chilli, etc.) 5. T. aman (LYV) - Fallow	8067	8067	Single cropin g
Medium Low land (1.2%)	1. T. aman (LYV) - Fallow 2., B. Aman - Fallow	96 30	96 30	Single croppe -do-
		10445	12697	

Cropping intensity=122%

;

Enclosure-2 (Page 3 of 6)

Category - III

Table 6.3

Land type	cropping pattern *4*	Cultiva ted area *3*	Croppe d area	Remarks
High Land (0.5%)	1. B. aus - Rabi (W. Veg., Pulse, oilseeds, Chilli, S. Potato, Cowpea etc.)	230	460	Double croping
Medium High land (94.5%)	 B. aus - T. aman (LYV)- Rabi (Pulse, Cowpea,wheat, Mustard, Chilli etc.) T. Aus (HYV) - T. Aman (TYV) Boro (HYV) - T. Aman (HYV) Jute- T. aman (LYV) Jute- T. aman (LYV) T. aman (LYV)- (pulse, Chilli,Cowpea, S. potato, Chilli etc.) T. Aman (LYV) - Fallow 	6,344 7,730 4,125 1,100 7,115 14,033	19,032 15,460 8,250 2,200 14,230 14,033	Triple cropping double -do- -do- -do- Single
Medium low land (5%)	 B. Aman - Rabi (Pulse, Cowpea etc. T. Aman (LYV) - Fallow 	1,210 913	2,420 913	Double croppin Single Cropping
		42,800	76,998	

Cropping intensity =180%

Enclosure-2 (Page 4 of 6)

Category - IV

Table 6.4

Land type	Cropping pattern *4*	Cultiva ted area *3*	Croppe d area	Remarks
High lands (0.3%)	1. B. Aus - Rabi (W. Veg. oilseeds Pulse, Chilli, Millet etc.)	115	230	Doub le
Medium High land (89.7%)	 B. Aus - T. aman (LYV) B. Aus - Rabi (Pulse, Cowpea, oilseeds, S. potato etc.) T. Aman (LYV) - Fallow 	1,998 3,996 26,422	3,996 7,992 26,422	double -do- Single
Medium 1ow 1ands (10%)	1. T. Aman (LYV) - Fallow 2. B. Aman - Fallow	1,603 2,016	1,603 2,016	Single -do-
		36,150	42,259	

Cropping intensity = 117%.

1

91-

<u>Category - v</u>

Enclosure-2 (Page 5 of 6)

Tab	le	6.	5

Land type	Cropping Pattern *4*	Cultivat ed area *3*	Cropped area	Remarks
Medium High Land	1. B. aus - Rabi crops (Veg, pulse, oil seeds chilli, sweet Potato	W. 5818	11636	Double cropping
(80.7%)	2. T. aus (HYV) - T. ama (LYV)	n 9308	18616	- do -
	3. T. aman (LYV) - Rabi crops (pulse, oil see chilli, cowpea, S. po etc.	ds tato	6450	- do -
	 B. aus - T. aman (LYV T. aman(LYV) - Fallow) 3327 46970	6454 46970	- do - single
Medium Low	1. T. aman(LYV)- Fallow	7633	7633	Single
(19.3%)	2. B. aus - RAbi (Pulse, potato, cowpea etc.)	2010	4036	cropping double
	3. B. aman - Rabi (pulse, cowpea etc.)	6786	13572	-do-
		85,085	115,567	

Cropping intensity = 136%.

:

Category - IV

22220 AV 1028	
Table	6.6

Land Type	Cropping Pattern *4*	Cultivated area *3*	Cropped area	Remarks
High Land (21.2%)	1.Betel Leaf - Fallow 2.B.aus- T.aman(LYV) - Rabi(W.Veg).	625 878	625 2,634	Single cropping Triple cropping
	3.Boro(HYV)-T. aman 4.T.Aman(LYV)-Rabi(Pota-	3,280	6,560	Double cropping
	to,S.Potato,Chillis,Len- til,cowpea,Oilseeds water melon etc.)		3,550	-do-
Medium High Land (58.1%)	1.B.aus-T.aman(LYV)-Rabi (Chilli,cowpea,lentil, Brinjal,Potato,S.Potato, water melon).	2880	8,640	Triple cropping
	2.Boro(HYV)-T. aman(LYV) 3. T.aus(HYV)-T.aman(HYV 4.T.aman(LYV)-Fallow 5. Jute - T. aman (LYV)	2,785 7,320 4,710 305	5,570 14,640 4,710 610	Double cropping -do- Single cropping double cropping
Medium Low Land (19.8%)	1.B. aus -T.aman(HYV) 2.T.aus(HYV)-T.aman(LYV) 3.T.aman(LYV) - Fallow 4.B. aus - Rabi (pulse, cowpea, etc.)	925 390 3,510 1302	1850 780 3510 2604	Double cropping -do- Single cropping double cropping
Low Land (0.9%)	1.B. aman - Rabi (pulse etc.)	275	550	double cropping
	Total	30,960	56,833	1

Cropping intensity = 183%

ANGLADESH SYCLONE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a SUBPROJECT : POLDER 35/1

Enclosure 2 TABLE 6.7

to be shown.

		B.Aus LV	T.Aman LV	T.Aman Hyy	Pulses	Oilseeds	Cowpea	Sweet Potato	Chilli (green)	Vegetable	Potato	Total
Percentage	Р	3.70	88.81	0.00	2.13	0.19	1.39	1.20	1.11	1.02	0.46	100
	X	17.71	58.89	4.54	5.47		3.46	2.45	1.51	4.46	0.43	100
Area, ha	P	0.04	0.96	0	0.023	0.002	0.015	0.013	0.012	0.011	0.005	1.08
	¥	0.246	0.818	0.063	0.076	0.015	0.048	0.034	0.021	0.062	0.006	1.39
Production	Cost, TI	(/b	Where	are	the i	mit c					0.000	1.33
Labour	р	170	5760	0	63	6					22	100000
	¥	1169	5317	457	247	49	41 156	98 255	93	105	50	6385
Bullock	Ρ	36	1152	0	17	2	11	200	173	667	63	8552
	¥	295	982	85	57	11	36	1000	15	15	7	1271
Seed	Р	32	346	0	15	1	10	43	26	84	8	1627
	¥	199	294	25	50	9	29	2	2	4	16	428
Urea	p	0	288	0	0	9		15	3	23	19	668
	¥.	Q	147	43	18	0	0	0	3	3	4	297
TSP	P	õ	0	43	0	0		4	1	30	5	255
		0	74	21	9	0	0	0	1	2	2	6
MP	p	ō	0	0	9	U O	0	2	4	15	3	127
	¥.	a	41	9	u 5	0	0	0	1	1	1	2
Pesticides	P	5	240	0 3	5	100	0	1	2	6	1	65
		37	205			1	2	2	3	6	3	266
Irrigation		0		32	11	4	12	1	5	31	3	346
	ý.	0	0	0	0	0	0	0	6	23	6	35
lisc	p	10	0	0	0	0	0	0	16	127	11	154
1130	¥.	94	442 391	0	21	0	3	5	5	1	4	496
		34	331	43	31	4	13	11	13	41	5	645 0
otal	Ρ	258	8467	0	128	10	69	125	132	170	94	9454
	¥	1831	7655	747	440	81	258	344	254	1054	121	12785
roduction	lalue											
roduction	P	36	1152	0	11	1	8	82	24	101	51	1465
(Kg)	¥	271	1227	170	38	8	25	231	44	636	76	2726
ross Yalue/	cP	370	12035	0	159	16	136	165	379	299	139	13698
(Tk)	¥	2764	12826	1765	567	125	459	479	693	1909	181	21768
et Farm Inc	ome, Tk/d											
	P	112	3568	0	31	6	67	40	247	129	45	4244
	ł	933	5171	1018	127	44	201	135	439	855	60	8983
/a	D - Dras		ith Deader		1.1.1.			1000				
/b	Labour,	ent; W = W bullock se	eds, ferti	lizers.	esticide	and builoc s and out	x 30% of put price	total cos s are in	at Annex 7	very.	con	fusing inits au f nece
	Summary (of Financia	al Prices.				50 SK			raysi	cal 4	into cu
/c	Including				1							

B.Aus LV 10.96 5.03 0.132 0.071 k/b 528 319 119 85 107 58 0 0 0 0 0 0	T.Aus HYV 5.98 5.52 0.072 0.078 576 644 91 98 29 31 22 23 11	74.67 35.48 0.899 0.501 6068 3382 1133 601 324 180 270	4,15 33.57 0.05 0.474 388 3792 59 640 20	8.Aman 0.25 0.64 0.003 0.009 14 43 3 8	Pulses 1.99 5.17 0.024 0.073 66 201 19	0ilseeds 0.33 1.06 0.004 0.015 11 41	0.91 4.53 0.011 0.064 30	Potato	Chilli (green) 0.66 1.20 0.008 0.017 62	Vegetable 0.00 4.53 0 0.064	0.08 0.21 0.001 0.003	
5.03 0.132 0.071 k/b 528 319 119 85 107 58 0 0 0 0 0 0	5.52 0.072 0.078 576 644 91 98 29 31 22 23 11	35.48 0.899 0.501 6068 3382 1133 601 324 180 270	33.57 0.05 0.474 388 3792 69 540 20	0.64 0.003 0.009 14 43 3	5.17 0.024 0.073 66 201	1.06 0.004 0.015 11	4.53 0.011 0.064 30	3.05 0 0.043	1.20 0.008 0.017	4.53 0	0.21 0.001	100
0.132 0.071 k/b 528 319 119 85 107 58 0 0 0 0 0 0 0	0.072 0.078 576 644 31 98 29 31 22 23 11	0.899 0.501 6068 3382 1133 601 324 180 270	0.05 0.474 388 3792 59 540 20	0.003 0.009 14 43 3	0.024 0.073 66 201	0.004 0.015 11	0.011 0.064 30	0 0.043	0.008 0.017	0	0.21 0.001	100
0.071 k/b 528 319 119 85 107 58 0 0 0 0 0 0 0	0.078 576 644 31 98 29 31 22 23 11	0.501 6068 3382 1133 601 324 180 270	0.474 388 3792 69 640 20	0.009 14 43 3	0.073 66 201	0.015	0.064 30	0.043	0.017			1.2
k/b 528 319 119 85 107 58 0 0 0 0 0 0 0	576 644 91 98 29 31 22 23 11	6068 3382 1133 601 324 180 270	388 3792 69 640 20	14 43 3	66 201	11	30	127		0.064	0.003	1.4
319 119 85 107 58 0 0 0 0 0 0	644 91 98 29 31 22 23 11	3382 1133 601 324 180 270	3792 69 640 20	43 3	201		1.1	٥	62			
319 119 85 107 58 0 0 0 0 0 0	644 91 98 29 31 22 23 11	3382 1133 601 324 180 270	3792 69 640 20	43 3	201		1.1	Ū.	62			
119 85 107 58 0 0 0 0 0	91 98 29 31 22 23 11	1133 601 324 180 270	69 640 20	3		41		0.0.0		٥	5	7748
85 107 58 0 0 0 0 0 0	98 29 31 22 23 11	601 324 180 270	6 40 20		13	2	176	333	140	640	14	9725
107 58 0 0 0 0 0	29 31 22 23 11	324 180 270	20	U	55	3 11	3 48	0 54	10)	1	1456
0 0 0 0	31 22 23 11	180 270		2	14	2	48 7	34	21	86	3	1712
0 0 0 0	23 11	270	190	1	44	9	38	19	3	0 24	0 1	507
0 0 0	11	1000	27	0	0	0	0	0	0	24	0	604 318
0 0		90	327	٥	18	٥	õ	5	5	31	0	500
٥		Û	14	0	0	0	0	0	1	0	0	25
	12	45	156	0	9	0	a	3	3	15	0	243
	5	0	5	0	0	0	D	0	0	0	0	11
0	6	25	71	0	4	0	0	1	1	6	0	115
0	13	225	13	0	6	1	1	0	2	0	0	261
11	14	125	237	0	11	4	16	9	4	32	0	462
0	0	0	0	0	0	0	٥	0	4	٥	1	5
0	0	0	0	0	0	0	0	0	13	131	0	144
1000									4	0	Ũ	509
21	31	239	321	0	29	4	17	15	10	43	1	750
177	780	8433	560	21	110	18	49	0	84	n	7	10839
500	865	4688	5740	58	370	69	296	439	202	1008		14254
145	135	1438	113	4	12	2	6	0	17	0	1	1874
89	211	902	758	14	47	10	38	292	39	659	2	3062
1481	1421	17324	1075	45	185	31	96	0	265	0	11	21934
903	2206	10859	12609	153	709	142	580	588	627	1979		
704	641	8891	516	24	75	13	47	0	181	0	4	1095
403	1341	6171	6869	95	339	73	284	149	425	971	10 1	7129
1	500 145 89 1481 903 704 403 Tresent : r, bulloc	27 37 777 780 500 865 145 135 89 211 1481 1421 903 2206 704 641 403 1341 resent ; W = Witt r, bullock seeds,	27 37 239 777 780 8433 500 865 4688 145 135 1438 89 211 902 1481 1421 17324 903 2206 10859 704 641 8891 403 1341 6171 Present : W = With Project	27 37 239 327 777 780 8433 560 500 865 4688 5740 145 135 1438 113 89 211 902 758 1481 1421 17324 1075 903 2206 10859 12609 704 641 8891 516 403 1341 6171 6869 resent ; W = With Project ; Hird r, bullock seeds, fertilizers, f	23 34 414 25 1 27 37 239 327 0 777 780 8433 560 21 500 865 4688 5740 58 145 135 1438 113 4 89 211 902 758 14 1481 1421 17324 1075 45 903 2206 10859 12609 153 704 641 8891 516 24 403 1341 6171 6869 95 resent ; ₩ = With Project ; Hired labour r, bullock seeds, fertilizers, pesticide	23 34 414 25 1 5 27 37 239 327 0 29 777 780 8433 560 21 110 500 865 4688 5740 58 370 145 135 1438 113 4 12 89 211 902 758 14 47 1481 1421 17324 1075 45 185 903 2206 10859 12609 153 709 704 641 8891 516 24 75 403 1341 6171 6869 95 339 resent ; W = With Project ; Hired labour and bull r, bullock seeds, fertilizers, pesticides and out	23 34 414 25 1 5 1 27 37 239 327 0 29 4 777 780 8433 560 21 110 18 500 865 4688 5740 58 370 69 145 135 1438 113 4 12 2 89 211 902 758 14 47 10 1481 1421 17324 1075 45 185 31 903 2206 10859 12609 153 709 142 704 641 8891 516 24 75 13 403 1341 6171 6869 95 339 73 resent ; W = With Project ; Hired labour and bullock $30X$ or r , bullock seeds, fertilizers, pesticides and out out or 10	23 34 414 25 1 5 1 2 27 37 239 327 0 29 4 17 777 780 8433 560 21 110 18 49 500 865 4688 5740 58 370 69 296 145 135 1438 113 4 12 2 5 89 211 902 758 14 47 10 38 1481 1421 17324 1075 45 185 31 96 903 2206 10859 12609 153 709 142 580 704 641 8891 516 24 75 13 47 403 1341 6171 6869 95 339 73 284 resent ; M = With Project ; Hired labour and bullock 30x of tota 73 284	23 34 414 25 1 5 1 2 0 27 37 239 327 0 29 4 17 15 777 780 8433 560 21 110 18 49 0 500 865 4688 5740 58 370 59 296 439 145 135 1438 113 4 12 2 6 0 89 211 902 758 14 47 10 38 292 1481 1421 17324 1075 45 185 31 96 9 903 2206 10859 12609 153 709 142 580 588 704 641 8891 516 24 75 13 47 0 403 1341 6171 6869 95 339 73 284 149 resent ; W = With Project ; Hired labour and bullock 30% of total cost r, bullock seeds, fertilizers, pesticides and out out prices are in	23 34 414 25 1 5 1 2 0 4 27 37 239 327 0 29 4 17 15 10 777 780 3433 560 21 110 18 49 0 34 500 865 4688 5740 58 370 69 296 439 202 145 135 1438 113 4 12 2 5 0 17 89 211 902 758 14 47 10 38 292 39 1481 1421 17324 1075 45 185 31 96 0 265 903 2206 10859 12609 153 709 142 580 588 627 704 641 8891 516 24 75 13 47 0 181 403 1341 6171 6869 95 339 73 284 149 425 <td>23 34 414 25 1 5 1 2 0 4 0 27 37 239 327 0 29 4 17 15 10 43 777 780 8433 560 21 110 18 49 0 34 0 500 865 4688 5740 58 370 69 296 439 202 1008 145 135 1438 113 4 12 2 5 0 17 0 39 211 902 758 14 47 10 38 292 39 659 1481 1421 17324 1075 45 185 31 96 0 265 0 903 2206 10859 12609 153 709 142 580 588 627 1979 704 641 8891 516 24 75 13 47 0 181 0 403 <t< td=""><td>23 34 414 25 1 5 1 2 0 14 0 0 27 37 239 327 0 29 4 17 15 10 43 1 777 780 8433 560 21 110 18 49 0 84 0 7 500 865 4688 5740 58 370 69 296 439 202 1008 18 145 135 1438 113 4 12 2 6 0 17 0 1 39 211 902 758 14 47 10 38 292 39 659 2 1481 1421 17324 1075 45 185 31 96 0 265 0 11 2 903 2206 10859 12609 153 709 142 580 588 627 1979 28 3 704 641 8891 516</td></t<></td>	23 34 414 25 1 5 1 2 0 4 0 27 37 239 327 0 29 4 17 15 10 43 777 780 8433 560 21 110 18 49 0 34 0 500 865 4688 5740 58 370 69 296 439 202 1008 145 135 1438 113 4 12 2 5 0 17 0 39 211 902 758 14 47 10 38 292 39 659 1481 1421 17324 1075 45 185 31 96 0 265 0 903 2206 10859 12609 153 709 142 580 588 627 1979 704 641 8891 516 24 75 13 47 0 181 0 403 <t< td=""><td>23 34 414 25 1 5 1 2 0 14 0 0 27 37 239 327 0 29 4 17 15 10 43 1 777 780 8433 560 21 110 18 49 0 84 0 7 500 865 4688 5740 58 370 69 296 439 202 1008 18 145 135 1438 113 4 12 2 6 0 17 0 1 39 211 902 758 14 47 10 38 292 39 659 2 1481 1421 17324 1075 45 185 31 96 0 265 0 11 2 903 2206 10859 12609 153 709 142 580 588 627 1979 28 3 704 641 8891 516</td></t<>	23 34 414 25 1 5 1 2 0 14 0 0 27 37 239 327 0 29 4 17 15 10 43 1 777 780 8433 560 21 110 18 49 0 84 0 7 500 865 4688 5740 58 370 69 296 439 202 1008 18 145 135 1438 113 4 12 2 6 0 17 0 1 39 211 902 758 14 47 10 38 292 39 659 2 1481 1421 17324 1075 45 185 31 96 0 265 0 11 2 903 2206 10859 12609 153 709 142 580 588 627 1979 28 3 704 641 8891 516

/c Including bi-product /d Gross Value - Total Cost

BANGLADESH CYCLONE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a SUBPROJECT : POLDER 48

Enclosure 2 TABLE 6.9

		B.Aus LV	HAA	: T.Aman LV	T.Aman HYV	8.Amai	n Jute	Pulses	0il- s eeds	Cowpea		Chilli (green)	Vegetable	Hillet	Tota
Percentage	p	10.82	5.90	12.70	4.10	0.25	0.90	2.38	0.82	0.98	0.00	0.82	0.00	0.33	100
	¥	4.76	5.12	53.15	18.37		0.81		1.02	4.61	1.83	3.22	0.37	0.44	
Area, ha	P	0.132	0.072	0.887	0.05	0.003	0.011	0.029	0.01	0.012	0	0.01	0	0.004	
	X	0.065	0.07	0.726	0.251	0.009			0.014		0.025	0.044	0.005	0.006	0.0.70
Production	Cost,	Tk/b									0.000	100.000			
Labour	P	594	576	6431	400	17	91	87	30	36	0	85	0	24	8371
9.89	×	358	613	5445	2134	54	102	250	46	205	188	363	56	27	
Bullock	P	119	91	1064	58	3	13	22	8	9	0	13	0	5	1414
	×	78	88	871	339	10	15	81	11	47	32	55	1	8	1641
Seed	P	107	29	355	15	2	2	11	4	5	0	2	0 0	1	533
	¥	61	28	261	100	8	2	30	5	28	11	7	2	1	546
Urea	P	0	26	266	27	0	0	1	0	0	0	3	0	0	322
	¥	0	32	240	173	0	6	18	0	0	3	15	2	1	489
TSP	P	0	13	133	14	0	0	0	0	0	0	2	ō	0	161
	¥	0	15	131	83	0	3	9	0	0	2	8	1	Q	251
MP	Ρ	0	5	44	5	0	0	0	0	0	5	1	a	٥	56
	¥	0	7	54	38	0	٥	5	0	0	1	3	1	a	108
Pesticides	D	17	18	224	25	0	6	1	3	2	ò	3	0	0	303
	¥	10	26	182	126	1	6	12	4	16	0	11	3	2	396
Irrigation	P	٥	118	0	0	D	0	0	0	0	0	5	0	Ő	123
	¥	0	115	0	0	0	0	0	٥	ō	Q	33	10	0	158
Hisc	Ρ	49	38	408	23	1	5	5	2	3	ů.	4	0	2	541
	¥	25	39	347	173	4	1	31	4	17	9	26	3	3	587
Total	P	902	932	9149	601	25	122	141	49	56	٥	119	a	32	12127
	X	541	988	7712	3291	78	145	448	72	329	244	533	88		14511
Production															
roduction	p	139	135	1419	113	4	15	15	6	1	0	21	٥	2	1876
(Kg)	¥	81	189	1271	703	13	19	42	8	38	170	99	51	4	2689
ross Value/	сP	1450	1391	14839	1157	46	159	227	80	117	0	326	٥	33	19825
(Tk)	¥	854	1930	13276	7191	129	199	533	126	677	345	1570	190	47	27167
et Farm Inc	ome, Tk	/d													
	Ρ	548	459	5690	556	21	37	86	31	61	0	207	٥	1	7698
	¥	313	942	5564	3900	51	54	185	54	348	101	1037	102	5	12656
/a	P = Pr	esent ; W	= With	Projec	t : Hire	ed labo	ur and	bullack	301 0	f total	cost				

/c Including bi-product

/d Gross Value - Total Cost

BANGLADESH CYCLONE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a SUBPROJECT : POLDER 59/2

		B.Aus LV	T.Aus Hyv	T.Aman LV	T.Aman Hyv	8.A n an	Jute	Pulses	0il- seeds	Cowpea	Sweet Potato	Chilli (green)	Vegetable	Millet	Tota
Percentage	P	8.18	8.31	65.84	0.59	4.25	0.00	4.58	0.72	1.05	2.29	1.54	2.55	0.00	10
	×	9.71	8.25	57.02	2.98	6.20	0.00		1.46	2.40	1.70	2.40	3.10	0.00	10
Area, ha	P	0.125	0.127	1.006	0.009	0.065	0		0.011	0.016	0.035	0.025	0.039	0.00	1.5
	¥	0.166	0.141	0.975	0.051	0.106	0	0.082		0.041	0.029	0.041	0.053	٥	1.7
Production	Cost, Tk/	b													1.1
Labour	P	563	921	6539	70	309	0	193	30	44	271	200	419		
	X	789	1093	7313	421	504	0	234	71	113	239	338	596	0	955
Builock	Ρ	150	160	1207	12	72	0	53	8	12	46	32		0	1170
	¥	199	178	1170	69	118	Q	59	18	30	38	52	108	ð	186
Seed	p	118	51	362	4	59	a	28	4	7	16		72 14	0	200
	¥	157	56	351	20	95	٥	89	9	18	13	4		0	66
Urea	р	0	46	302	5	0	ō	0	0	0	0	7	20	٥	83
	¥	0	63	322	35	a	0	20	0	0	6	8	16	0	37
TSP	р	a	23	241	2	a	0	0	0	0	0	14	25	0	48
	¥	0	30	176	17	ũ	a	10	0	0	3	a	8	0	27
MP	p	0	10	50	1	Ő	0	0	0	u a	3	7	13	0	25
	¥	0	14	73	8	0	a	5	0	U Q		1	4	0	5
Pesticides	P	16	32	254	2	8	ů	9	u 1	U O	2	3	5	0	11
	¥	25	53	244	26	13	0	12	6	5	0	6	20	٥	34
Irrigation	p	0	208	0	20	0	0	0	0	с 0	6	10	27	0	421
	¥	0	231	a	a	0	0	U D			0	10	30	0	298
lisc	2	46	67	463	5	26	0		0	0	0	31	109	0	371
	X	63	78	466	35	42	ŭ	15 33	2 7	3 11	15 16	11 25	25 35	0	579 811
lotai	p	908	1549	9672	100	100					1000				
0641	¥.	1258		10357	103 656	482 785	0 0	306 473	48 118	66 182	348 329	278 496	714 928		14473
roduction	Value														
roduction	P	138	251	1761	23	78	0	35	6	9	242	45	351	٥	2937
(Kg)	¥	191	324	1755	153	148	Ō	45	14	25	218	86	546	0	3505
ross Value/	сP	1437	2567	18402	227	817	0	525	83	131	405	706	1025	0	26325
(T k)	¥	1993	3304	18340	1569	1554	0	674	210	368	433	1373	1627	0	31445
et Far m Inc	ome, Tk/d														
	P	529	1018	8730	124	335	0	219	35	65	57	428	311	٥	11852
	¥	735	1454	7000	913	769	0	201	93	186	104	877	699		4012

/b Labour, bullock seeds, fertilizers, pesticides and out put prices are in Annex 7

Summary of Financial Prices.

/c Including bi-product

/d Gross Value - Total Cost

Enclosure 2 TABLE 6.10

Enclosure 2

TABLE 6.11

3ANGLADESH CYCLONE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a Subproject : Polder 59/3b

		B.Aus LV	T.Aus Hyv	T.Aman LV	T.Aman HYV	8.Aman	Pulses	0il- seeds	Cowpea	Sweet Potato	(green)			
Percentage	þ	11.62	8.47	55.49	0.00	6.44	5.65	1.05	1.54	2.80	2.31	3.54	0.00	
5	X	13.58	7.64		13.96	5.81	5.12	1.58	2.59		2.59	3.35	0.00	
Area, ha	P	0.156	0.121		0	0.092	0.095	0.015	0.022	0.04	0.033	0.052		1.43
	¥	0.215	0.121		0.221		0.081	0.025	0.041	0.029	0.041			
Prodin. Co	st. Tk		0.000.0000				0.001	0.025	0.041	0.023	0.041	0.053	0	1.58
Labour	р	- 147	968	5749		100					022-0	100500		
Cabbal	¥	1075	1029		1970	483	261	41	61	290	281	520	0	
Bullock	p	149	152	4980 952	1879	506	263	81	133	225	338	557	0	11065
SALLOCK	*	258			0	102	71	11	17	50	42	66	0	1612
Seed	p		152	797	278	102	85	19	31	37	52	72	٥	1882
Seeu	5	134	48	317	0	75	38	6	10	18	5	19	0	671
llees	p	203	48	239	88	83	87	9	18	13	7	20	0	816
Urea	5	0	44	238	0	0	٥	0	0	6	10	22	0	319
100	1	0	64	256	159	0	23	0	0	4	16	30	0	550
TSP	P	0	22	119	0	0	۵	0	0	3	5	11	0	159
	N.	0	30	139	60	٥	11	0	0	2	9	15	0	266
MР	2	٥	9	40	0	0	0	0	0	1	2	5	0	58
	۲	٥	17	70	28	0	7	0	0	1	4	7	0	134
Pesticides	Ρ	21	30	198	0	12	24	4	3	8	8	13	0	320
	×	32	45	166	55	12	12	6	10	6	10	27	٥	382
Irrigation	Ρ	٥	0	0	ŋ	0	0	0	0	0	13	107	0	120
	¥	0	198	0	0	0	0	0	0	0	31	109	٥	338
Misc	P	61	64	365	0	37	21	3	4	14	15	35	Q	619
	X	82	67	317	102	37 0	33	1	11	10	25	35	0	725
Total	Ρ	1113	1337	7978	0	708	415	66	94	390	381	797	0 1	3278
	¥	1651	1650	6964	2649	739	521	122	204	297	491	370		6158
Production \														
roduction	P	203	272	1546	0	110	52	8	12	276	73	468	٥	3020
(Kg)	¥	280	303	1461	685	129	49	15	25	232	98	567	0	3842
lross Value/	cP	2123	2784	16157	0	1148	784	113	215	566	1173	1405	02	6468
(T k)	¥	2926	3093	15256	7004	1339	732	229	439	474	1561	1685	0 3	4738
let Income,T	k/d													
	Р	1010	1447	8179	0	440	369	47	121	176	792	608	0 13	190
	¥	1275	1443	8292	4355	600	211	107	235	177	1070	815	0 18	580
/a	P = P	resent:	¥ = ¥i	th Proie	ect : Hi	red lab	or and b	ullock	30% of t	ntal co	st			
/b	Labou	r, bullo ry of Fi	ick seed	is, fert	ilizers	, pesti	cides and	d out pu	it price	s are i	n Annex	1		
/c 1		ing bi-p		9.12362229	810									
14				1000001010										

/d Gross Value - Total Cost

BANGLADESH CYCLONE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a SUBPROJECT : POLDER 59/3C

Enclosure 2 ABLE 6.12

		B.Aus LV	T.Aus Hyv	T.Aman LV	T.Aman Hyy	8.Aman	Pulses	011- seeds		A Sweet Potato	Chilli (green)	Vegetable	Millet	Tota
Percentage	Р	10.29	7.86	56.94	0.00	7.42	5.47	1 02	+ 17	0.70				
	¥	10.52	8.01	45.25	11.33	7.39	4.61	2.37	1.47	2.72	2.28	3.53	0.00	
Area, ha	P	0.14	0.107	0.775	0	0.101	0.088		0.02		2.31	2.85	0.00	
	¥	0.155	0.118	0.667	0.167	0.109	0.068			0.037	0.031	0.048	0	
Prodtn. Cos	it, Tk		0.110	0.001	5.101	0.103	0.000	0.035	0.000	0.024	0.034	0.042	0	1.47
		-		12221012										
Labour	P	630	856	5619	٥	530	242	39	55	268	264	480	0	8982
	×	775	1003	5003	1420	600	221	114	179	186	281	441	0	10221
Bullock	Ρ	126	135	930	0	112	56	11	15	47	39	60	0	1541
	¥	186	149	800	225	121	71	26	41	30	43	57	٥	1750
Seed	Ρ	113	43	310	0	82	35	5	9	17	5	18	0	637
	¥	146	47	240	67	98	73	13	25	11	6	16	0	741
Urea	P	0	39	233	0	٥	0	Ũ	0	5	g	20	Ō	306
	×	0	ô2	257	134	0	19	0	0	3	13	24	Ő	512
TSP	Ρ	0	19	116	0	٥	٥	0	0	3	5	10	0	153
	¥	0	29	140	64	0	10	0	0	2	1	12	o	263
MP	Ρ	۵	8	39	0	0	0	Ő	0	,	2	5	Ő	55
	¥	٥	17	70	35	0	6	ů	a		4	5		
Pesticides	P	18	27	194	0	13	22	4	3	7	8	12	0	138
19990310010000	¥	23	44	167	84	14	10	9	14	5	9		0	306
Irrigation	P	0	0	0	0	0	0	9	0			21	0	398
	¥.	0	194	a	0	0	a	0	0	0	12	98	0	111
lisc	P	52	56	357	0			255		0	26	86	0	305
1126	¥	59	65	319		40	19	3	4	13	14	32	0	590
	2	33	00	213	115	44 0	27	9	15	8	20	28	0	710
otal	P	939	1182	7797	0	111	384	61	35	361	358	736	0	12680
	¥	1190	1609	6995	2144	876	438	171	273	246	407	689		15039
Production V														
roduction	P	154	212	1356	0	121	44	1	11	255	56	432	0	2648
(Kg)	X	178	271	1201	468	153	37	19	33	185	71	433	0	3049
ross Value/	cP	1605	2162	14174	٥	1263	664	105	201	528	895	1296	0 2	2893
(Tk)	¥	1857	2781	12538	4766	1592	557	290	590	378	1135	1300	02	7784
et Income,T)	k/d													
	р	666	980	6378	0	486	280	44	116	167	537	560	0 1	0213
	¥	667	1172	5543	2622	716	119	119	317	132	728	611		2745

Summary of Financial Prices.

/c Including bi-product /d Gross Value - Total Cost

3ANGLADESH CYCLONE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a SUBPROJECT : POLDER 60

Enclosure 2 TABLE 6.13 69

		B.Aus LV	T.Aus Hyv	T.Aman LV	T.Aman Hyv	8.Aman	Pulses	Dil- seeds	Cowpea		Chilli (green)	Vegetable	Willet	Tota
Percentage	р	9.66	8.08	57.96	3.01	5.86	5.78	0.95	1.27	2.38	1.98	3.09	0.00	100
1992 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	¥	10.33	8.78	44.76	19.19	5.60	3.11	1.01	1.55	1.09	1.55	2.02	0.00	100
Area, ha	Р	0.122	0.102	0.732	0.038		0.073	0.012	0.016	0.03		0.039	0.00	1.26
100003390 1000	¥	0.133		0.576		0.085		0.013	0.02	0.014	0.02	0.026	0	1.29
Prodtn. Cos		/b							5.02	0.014	0.02	0.020	u	1.23
Labour		- 549	816	5307	304	426	201	33	44	218	213	200		210
	¥	732	989	4320	2100	510	130	42	65	109	165	390 293	0 0	8499 9453
Builock	P	110	129	378	51	82	55	9	12	38	32	49	0	1444
	x	160	142	691	333	94	42	10	15	18	25	35		1566
Seed	P	99	41	293	15	60	29	5	13	14	4	14	0	
	¥	126	45	207	39	17	43	5	9	6	3		0	580
Urea	p	0	37	220	24	0	+3	0	0	4		10	0	630
	÷.	0	59	222	199	0	11	0 0	0		3	22	0	314
TSP	p	0	18	110	12	0	0	0	0	2	8	15	0	515
	ÿ	0	28	121	35	a	6	0	0	1	4	11	0	157
MP	p	0	8	37	33	0	0	0		1	0.147.1	1	0	262
	- 6	a	16	50	52	0	3	0	0		2	5	0	59
Pesticides	2	15	26	183	19	g	18	3		0	2	4	0	138
636161063	¥	20	42	144	124	11	10 6		2 5	6	6	20	٥	307
Irrigation	P	0	+2	0	0		0 0	3 0		3	5	13	0	376
LITIYacion	n M	0	185	0	0	0	- R		0	0	10	80	0	90
Hisc	p	45	54	337		0	0	0	0	0	15	53	0	254
1136	,	45 51	62	275	26	30	16	3	3	11	11	26	0	561
	2	31	02	210	170	34 0	16	4	5	5	12	17	0	652
lotal	Ρ	818	1127	7364	458	606	319	52	68	293	289	617	0	12012
	W	1088	1569	5041	3171	725	257	63	99	144	239	446		13845
Production \														
roduction	Ρ	134	202	1281	95	89	38	1	9	207	53	351	0	2465
(Kg)	¥	153	260	1094	741	119	24	8	12	97	46	283	٥	2837
ross Value/	cP	1375	2016	13119	965	912	569	96	159	421	831	1050	0 3	21513
(T k)	¥	1565	2597	11215	7416	1220	351	110	213	196	718	828	0 2	6429
et Income,T	k/d													
**************	P	557	889	5755	507	306	250	44	91	128	542	433	0	9501
	¥	477	1028	5174	4245	495	94	47	114	52	479	382	0 1	2584
/a		Present	: ¥ =	With Pr	olect .	Hired	labour a	nd bull	ock 30%	of tot	al cost			
/b	Labo	ur, buì	lock se	eds, fe al Pric	rtilize	rs, pes	ticides	and out	put pr	ices ar	e in Ann	nex 7		
/c		ding bi-												

1

/c Including bi-product /d Gross Value - Total Cost 3ANGLADESH SYCLONE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a SUBPROJECT : POLDER 56/1

Enclosure 2 TABLE 6.14

DHATA

		B.Aus LV	T . Aus Hyv	T.Aman LV	T.Aman Hyv	Boro HYV	Pulses	0il- seeds	Cowpea		Chilli (green)					Shrimp	Total
Percentage	P	9.99	15.06	34.70	5.34	2.29	7.70	0.00	5.76	1.04	1.18	3.47	2.29	1.87	4.65	4.65	100
		19.69	5.52	34.47			4.72		5.52	2.46	2.46	3.40			100 4, 4040	6.94	100
Area, ha	P	0.144	0.217	0.5	0.077	0.033	0.111	0	0.083	0.015	0.017					0.067	1.44
	¥	0.417	0.117	0.73	0.117					0.052		0.049			0.1		2.12
Prodin. Cos	st, I	k/b															
Labour	p	648	1736	3625	515	289	305	0	228	150	145	525	272	243	302	251	9335
	¥	2085	995	5475	995	620	300	0	351	559	429	515	388		450	375	14025
Bullock	Ρ	130	273	600	97	40	83	a	62	21	21	63	42	10	- 0	0	1442
	¥	500	147	876	147	80	105	0	88	72	66	66	59	19	0	ů	2226
Seed	P	117	87	200	31	13	44	0	37	47	3	19	83	500	0	201	1380
	¥	394	47	263	47	27	108	0	53	164	g	18	118	981	0	300	2526
Urea	P	0	78	150	42	22	0	Ő	0	12	5	21	26	24	0	52	
	¥	0	61	281	84	44	28	đ	ő	41	20	21	37	48	0	78	432 749
TSP	р	0	39	75	21	11	0	0	ũ	5	3	11	13	40	0	572-20	
araa 1	¥	0	29	153	32	22	14	0	0	20	11	14	13	27	0	0	191
MP	p	0	16	25	10	4	0	0	0 0	20	1	5	10	3		0	340
	Y	0	16	11	15	8	8	0	0	8	5	7			0	0	72
Pesticides	p	18	54	125	19	17	28	0	10	4	4		8	5	0	0	158
		63	44	183	29	34	15	0				13	17	14	0	50	372
Irrigation	p	0	0	0	29		1127.11	0	29	13	13	25	24	27	0	75	571
LITIYacion	2	0	192	0	0	116	0	-	0	18	1	103	41	33	٥	134	451
lisc	p	53	114			235	0	0	0	64	39	100	58	65	٥	200	953
1156	¥	159		230	35	25	25	0	16	10	8	34	26	567	435	784	2362
		123	65	349	54	50	40	0	32	35	31	33	38	1113	650	1170	3818
lotal	Ρ	966	2398	5030	870	535	485	1	355	270	196	792	524	1407	737	1473	16037
	¥	3201	1596	7656		1120	619	0	552	975	623	804		2775		2198	
roduction		176	488	975	215	106	61	0	46	158	37	450	363	32	623	1	3737
(Kg)	¥	542	293	1606	363	235	60	0	70	524	125	524	588	80	930	12	5050
ross Value/	cP	1835	4980	10189	2210	1125	913	0	825	477	587	1350	1833	1964	1240	2144	1672
(Tk)	¥	5660	2979 1	6790	3694	2462	900	0	1260	1855	1978					3200	
et Income.T	k/d																
	ρ	869	2582	5159	1340	590	428	0	470	207	391	558	1309	557	503	671 1	5635
	¥	2459	1383	9134	2292	1342	281	0	708	880	1355	1093	2189	998	760	1002 2	6876
/a /b	P = Labo	Present our, bul	lock s	With P eeds, f ial Pri	ertiliz	; Hir zers,	ed labo pestic	our an ides a	d bullo nd out	ock 30% put pri	of tota ces are	l cost in Ann	ex 7		1	And A	R.F
															11	1	
		iding bi													(1	(LIBRAI

64

Enclosure 2 TABLE 6.15

60

BANGLADESH GYCLOWE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a Subproject : Polder 68

		B. Aus LV	T.Aus Hyv	T.Aman LV	T.Aman Hyv	HYY	Pulses	0il- seeds	Cowpea	Potato	(green)	Veget-	Water	Bete	l Salt	Shring	Tota
								36603			(green)	autes	Aeron	Lear			
Percentage	Ρ	10.47	0155				1.77		1.64	1.05	0.59	0.46	0.52	1.24	1.37	1.37	10
	M	23.64	8.98	27.98	15.76	2.82	2.53	1.67	1.86	1.53	1.38	4.38	1.57	2.29	3.99	3.99	10
Area, ha	P		0.128		0.247	0.167	0.027	0.003	0.025	0.016	0.009	0.007	0.008	0.01	0.021	0.021	1.5
	X	0.495	0.188	0.586	0.33	0.059	0.053	0.035	0.039	0.032	0.029	0.067				0.061	2.0
Prodin. Co	st, T	k/b															
abour	Р	720	1024	4858	1976	1461	74	8	69	160	11	74	56	171	95	79	1091
		2475	1598	4395	2805	546	159	105	117	344	239	704	198		275	229	1451
lullock	P	144	161	804	311	200	20	2	19	22	11	9	10		0	223	172
	¥	594	237	703	416	71	56	37	29	44	37	90	30		0	0	
eed	P	130	51	268	99	67	11	1	11	50	1	30	20	1.1.1		1 65	235
	¥	468	75	211	132	24	57	38	18	101	5	25			0	53	112
Irea	p	0	46	201	133	110	0	0	0	1000			60		0	183	204
		0	99	226	238	39	15	10	0	12	3	3	5	17	0	16	54
SP	5	0	23	101	1.	17655	0.73			25	11	38	19	32	0	48	79
U.	5	0	46	3.5.6	57	55	0	0	0	6	1	1	3		0	0	26
Ρ		1004		123	89	19	1	5	0	12	6	19	9	18	0	0	35
r	5	0	10	34	31	21	0	0	0	2	1	1	1	2	0	0	10
11.11		0	26	62	41	7	4	3	0	5	3	9	4	4	0	0	16
esticides	Ρ	20	32	168	52	84	7	1	3	4	2	2	4	10	0	16	41
		74	71	147	83	30	8	5	10	8	1	34	12	18	0	46	550
rrigation	P	0	0	0	0	585	0	0	0	20	4	14	10	23	0	42	691
	X	0	308	0	0	207	0	0	0	39	22	137	30	43	0	122	908
ISC	Ρ	59	67	308	114	125	5	1	5	11	4	5	6	399	137	246	1492
	¥	189	104	280	152	44	21	14	11	22	17	45	19	735	397	714	2763
otal	P	1073	1414	6740	2792	2708	118	13	107	288	104	111	127	390	231	462	17278
	×	3800	2564	6146	3955	986	328	217	184	600	347	1100		1832			24452
roduction																	
roduction	р	105	190	1207		141								1212	0.121	<i>0</i> .c	
		195	288	1307	692	534	15	2	14	168	20	63	88	23	195	2	3605
(Kg)	¥	544	470	1289	1023	207	32	21	23	384	70	717	300	53	567	1	5806
oss Value/	cP	2040	2942	13653	7055	5627	225	30	252	504	320	189	440	1380	390	567	35614
(Tk)	¥	6729	4801	13472	10450	2166	480	315	414	1152	1120	2151	1500	3180	1134	1952	51016
t Income,T																	
	р	967	1528	6913	4263	2919	107	17	145	216	216	78	313	390	159	105	18336
	x	2929	2237	7326	6495	1180	152	98	230	552	773	1051	1119	1348	463	611	
		Descert														*:00 O	
/a	r =	rresent	; • =	with P	roject	; Hire	a labou	r and	Dullock	30% of	f total	cost					
/b	Labo	ur, bui	IOCK S	eeds, f	ertiliz	ers, p	esticid	es and	out pu	t price	es are i	n Annex	1				
				ial Pri	ces.												
		ding bi															
/d				al Cost			×:										

/d Gross Value - Total Cost

20

Enclosure 2 TABLE 6.16

JANGLADESH CYCLONE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a SUBPROJECT : POLDER 70

		B.Aus LV	T. Aus Hyv	T.Aman LV	T.Ama Hyv	n Bora HYV	Pulse	s Oil- seeds	Cowpea	Potato	Sweet Potato	Chilli (green)	Veget-	Wate	r Bete 1 Leaf	l Salt	Shrim	o Tota
Percentage	P			5.91					0.86	0.12	0.12	0.31	0.25	0.12	0.68	36.39	36.39	10
	×	5.07		8.95				0.11		0.17	0.22	0.33	0.12	0.12	0.80	36.39	36.39	100
Area, ha	P			0.096				0.002		0.002	0.002	0.005					0.591	1.62
Prodtn. Cos	t, T)		0.071	0.162	0.1	0.07	0.01/	0.002	0.008	0.003	0.004	0.006	0.002	0.002	0.01	0.591	0.591	1.81
Labour	р	- 158	680	696	808	613	36	5	39	20	15		10					
		550	504	1215	1275		51	5	24	32	31	43 50	42	17				8144
Builock	P	32	107	115	127		10	2	11	32	31	5U 6	21	17	1.1		2216	9602
0.011 10.000		132	39	194	189		18	2	5	1	5	8	53	3		0		510
Seea	þ	28	34	38	40		5	1	5	5	3	0	3	83	- 100 ST	0	0	752
	¥	104	28	58	60		18	2	4	9	2	1	1	5	C. TRUE ALC: N	0	2000 C 000 C 000 C 00	2172
Urea	p	0	31	29	55		0	ō	ō	2	0	2	2	5		0	1773	2338
	X	0	37	62	108		5	1	0	2	1	2	2	2		0	461 461	638
TSP	Ρ	0	15	14	27		ũ	0	0	1	ġ.	ĩ	1	1		Ŭ	401	746
	×	0	17	34	41		2	0	0	1	ő	1	-	1	7	0	0	89
MP	p	0	6	5	13		Q	ō	a	0	0	a	â	0	1	0	0	131 35
	¥	٥	10	17	19		1	0	0	0	0	1	0	0		0	0	50
Pesticides	Ρ	4	21	24	25	35	3	1	2	1	ũ	1	1	1	5	0	443	568
	X	17	27	41	38	40	3	0	2	;	1	2	1	1	7	0	443	620
Irrigation	Р	0	0	0	0	245	0	0	0	2	ŋ	2	8	2	14	0	1182	1456
	×	0	116	0	0	277	0	0	٥	4	0	5	4	2	16	0	1182	1606
ISC	Р	13	45	44	46	53	3	0	3	1	1	2	3	2	231	3842	5915	11203
	¥	42	39	77	69	59	7	1	2	2	1	4	1	2	273	3842		11336
lotal	P	235	939	966	1142	1135	57	9	60	36	20	58	63	32	573	6501	12990	24815
	X	844	968	1699	1798	1320	105	12	38	56	41	72	33	32	681		12990	
roduction V																		
roduction	2	42	191	187	283	224	7	1	8	21	14	11	36	22	13	5496	89	5545
(Kg)	¥	143	177	356	465	277	10	1	5	36	32	14	21	25	20	5496	95	7174
ross Value/c	CP	452	1955	1958	2883	2366	105	12	144	53	28	176	106	110	794 1	0984 1	4332	36468
(Tk)	×	1498	1810	3729	4738	2907	150	14	90	108	64	224	63	125	205 1	0984 1	5218	2927
et Income.Ik																		
	ρ	217	1016	992	1741	1231	48	3	84	27	8	118	43	78	221	4483	1342	1653
			842															

Summary of Financial Prices.

/c Including bi-product /d Gross Value - Total Cost

BANGLADESH CYCLONE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a SUBPROJECT : POLDER 72

Enclosure 2 TABLE 6.17

		B.Aus LV	T.Au: Hyv	s T.Aman LV	T.Aman HYV	8.Aman	Jute	Pulses	seeds		Potato	(green)			Tota
Percentage	р	8.85	10.40	51.32	5.52	0.29	1.49	7.93		4.71	1.90	2.36	0.00	1.32	10
	¥	11.13	10.24	34.24		1.47	0.00	8.14		3.26	2.99	2.99	2.84	1.21	
Area, ha	Р	0.154	0.181	0.893	0.096	0.005	0.026	0.138		0.082	0.033	0.041	0	0.023	
	¥	0.212	0.195	0.652	0.317	0.028	0	0.155	0.092		0.057	0.057	0.054		1.90
Prodtn. Cos	st, Tk	/b -										0.55.570			
Labour	р	693	1448	5474	768	26	234	380	187	226	239	349	O	138	11161
	×	1060	1658	4890	2695	154	۵	504	299	202	442	470	567		13089
Bullock	Ρ	139	228	1072	130	6	33	104	51	52	42	52	0		1932
	¥	254	246	782	428	31	0	163	69	47	72	72	73	17	
Seed	P	125	72	357	38	4	5	55	27	37	15	1	0	21	
	X	200	78	235	127	25	0	167	33	28	26	g	20	21	
Urea	P	0	55	268	50	0	14	0	0	0	5	12	20	4	
	×	0	102	251	255	0	۵	43	0	a	8	22	30	4	
TSP	Ρ	0	33	134	30	0	5	0	0	a	2	5	30	4	
	¥	0	48		122	0	Ő	22	0	a	4	12	15	3	
MP	Ρ	0	14		17	0	2	0	0	0	1	3	0	3	362
	¥	0	27	68	67	a	0	13	0	ŋ	2	5			82
Pesticides	Ρ	19	45	223	48	1	13	35	17	10	2	0 10	8	1	192
	¥	32	73	163	159	4	0	23	23	16	11	14	0	3	
Irrigation	Ρ	0	0	0	0	ō	0	0	0	0	0		27	3	547
en men doen d eerts die 1939. W	¥	0	320	0	a	Ő	0	0	a	0 0	ů ů	17 43	0	0	17
Misc	P	57	95	411	66	2	14	30	15	16	12		111	0	473
	¥	81	108	312	219	11	0	62	25	17	20	18	0	8	745
						0	0	42	23	11	20	34	36	8	932
Total	р	1033	2000	8984	1158	38	320	603	297	350	200	171			
	¥.	1628	2659	6838	4070	225	0	398	449	308	322 585	474 683	0 386		15772 19534
Production V	alue 												10.00		
Production	P	169	353	1518	278	7	41	83	34	41	248	86	٥	32	2890
(Kg)	¥	265	439	1174	1030	39	0	101	55	37	439	128	567	38	4312
Fross Value/	CP	1765	3597	15871	2855	69	429	1242	508	735	502	1370	0	512 2	9455
(īk)	¥	2770	4474	12265	10528	413	0	1512	826	673	902	2057	1707	605 3	8732
let Income,TI	/d														
	p	732	1597	5887	1697	31	109	639	211	385	180	896	0	318 1	3683
	¥	1142	1815	5427	6458	188	0	514	377	365	317	1374	821	399 19	108

/c Including bi-product /d Gross Value - Total Cost

.

Enclosure 2 TABLE 6.18

BANGLADESH CYCLONE PROTECTION PROJECT-II FARM BUDGET: 1 HECTARE MODEL FARM /a SUBPROJECT : POLDER 73/18

		ð. Aus LV	T.Aus Hyv	T.Aman LV	T.Aman HYV	8.Aman	Pulses	0il- seeds			Chilli (green)	Vegetable	Millet	Total
Percentage	P	14.44	0.00	71.03	0.00	4.79	3.85	0.77	1.28	1.11	1.03	1.28	0.43	100
	×	20.45	0.00	46.36	11.59	4.24	5.91	0.91		2.50	1.97	2.80	1.52	100
Area, ha	P	0.169	0	0.831	0	0.056	0.045		0.015	0.013	0.012	0.015	0.005	1.17
	¥.	0.27	0	0.612	0.153		0.078		0.023	0.033	0.026	0.037	0.02	1.32
Prodin. Cos		/b									0.420	0.001	0.02	1.32
Labour	p	761	0	5402	0	266	124	25	41	101	36	161	23	6998
	×	1283	0	4284	1224	266	222	34	69	272	215	415	90	8375
Bullock	P	203	0	397	0	62	34	7	11	17	15	41	5	1394
	×	324	0	734	207	62	56	9	17	44	33	49	24	1558
Seed	Ρ	160	0	299	0	50	18	4	1	6	2	-5	5	556
	×	255	0	220	61	50	84	4	10	15	4	14	19	738
Urea	Ρ	0	0	249	0	٥	0	0	0	0	1	5	0	259
	¥.	Q	0	202	106	0	19	0	0	7	9	18	0	360
ISP	Ρ	0	0	199	0	0	0	0	0	ō	0	2	0	203
	¥	0	0	110	50	0	9	0	0	4	5	3	0	188
P	P	0	0	42	0	0	0	0	a	0	1	3	0	44
	¥	0	ŋ	46	23	0	5	0	ñ	2	2	2	0	17
esticides	P	21	0	208	0	1	6	1	2	0	2	8	9	256
	¥	41	0	153	77	ī	12	3	0	7	7	19	2	
rrigation	Ρ	٥	0	0	0	0	0	0	0	0	5	31	3	326 36
767	X	0	0	0	0	0	a	0	0	0	20	76	0	
isc	2	53	0	382	0	22	10	2	3	6	5	10	0	95
	6	102		100	100		10			v		10	4	505

3 0 18 16

38 54 129

53 96 368

25

267

131

308

7 624

36 10249

624 143 12340

Production Value ------

X

Ρ

¥

103

1207

2005

0 293 106

0 5042 1853 408

0 7778

Totai

0 madu at i sa				2022	8									
Production	Р	176	0	1413	0	67	20	4	5	98	20	121	5	1930
(Kg)	¥	297	٥	1163	459	76	43	7	14	264	55	333	18	2727
Gross Value	/cP	1837	0	14754	0	700	301	57	95	196	320	367	67	18704
(T k)	¥	3102	٥	11063	4365	717	643	98	203	529	889	998	284	2 <mark>289</mark> 1
Net Income,	N-110-112													
	Ρ	630	٥	6976	0	292	110	29	31	67	189	100	31	8455
	¥	1097	٥	5021	2512	309	204	45	107	161	581	374	141	10551

22 31

191

439

0

0 408

P = Present ; W = With Project ; Hired labour and bullock 30% of total cost a

/b Labour, bullock seeds, fertilizers, pesticides and out put prices are in Annex 7 Summary of Financial Prices.

.

/c Including bi-product

/d Gross Value - Total Cost

26

Present of Fature ?. Enclosure-3 (Page 1 of 5)

Table 7.1

atego	ory I	Table	7.1	Travlow	(Page 1 of
Nos	Crops	cropped area(ha)	% of cropped area	Av. Yield (T/ha)	Total Production (T)
	A - Paddy	107210	92.5	1	
1 2	B. aus T. aman	4336 102874	3.7 88.8	0.9 1.20	16043 123448
	B. Rabi	8666	7.5		
1 2 3 4 5 6 7	Pulse Cowpea S. Potato W. veg. Chilli (Green) Potato Oil seeds	2425 1617 1386 1155 1270 577 236	2.1 1.4 1.2 1.0 1.1 0.5 0.2	0.47 0.50 6.30 9.15 2.00 10.20 0.50	1139 808 8739 10568 2540 2942 118
		1,15,876	100.0		

28

Enclosure-3 (Page 2 of 5)

<u>Category -II</u>

Table 7	2
Table 7.	

Nos	Crops	Cropped area (ha)	% of cropped area	Av. yield (T/ha)	Total Productio n (T)
	A. Paddy	11963	94.2		
1 2 3 4 5	B.aus T. aus B. aman why w 50 T. aman Why w w T. aman 3 MM w w	1385 M 755 30 9268 525	10.9 6.0 0.2 73.0 4.1	1.05 1.88 1.48 1.60 2.25	1454 1419 44 14828 1181
	B. Rabi	622	4.9		
1 2 3 4 5	Pulse Cowpea Chilli (Green) Mustard Millet	303 127 101 50 41	2.4 1.0 0.8 0.4 0.3	0.52 0.55 2.10 0.55 6.30	157 69 212 27 258
	C. Jute	112	0.9	1.40	156
		12,697	100.0		

Category III

Enclos	sui	re-:	3
(Page	3	of	5)

51.	:		:Crop	ped	:% Cro	pped	: A	v. Yield	:Total	Prod-	
No.	:	Crops	:area		:area			T/ha)	:uction		
	Α.	Paddy	:	60999	:	79.2	:	, d	:		1
1	B. aus	0	:	6574	:	8.5	;	1.08	·	7099	-
2	T. aus	0.5	:	7730	:	10.0		1.95	14.11	15073	
3	T. ama	n (L(Y)V)	:	29505	:	38.3		Pr 1.70		50158	
4	T. ama	n (IIYV)	:	11855	:	15.3		2.90		34379	
5	Boro ()	IIYV)	:	4125	:	5.6		3.10		12787	
6	B. ama	n	:	1210	:	1.5		1.35	SS I M	1633	
	B. Rab	i Crops	:	14899	:	19.4	:		:		-
1	Pulse		:	4224	:	5.5	:	0.60	· •	2535	
2	Cowpea		:	3840	:	5.0		0.55		2112	
3	chilli	(Green)	:	1920	:	2.5		2.10		4032	
4	S. Pota	ato	:	1536	:	2.0		7.50		11520	
5	Mustaro	1	:	921	:	1.2		0.50		460	
6	Wheat		:	1075	:	1.4	:	0.58		623	
7	W. Veg.		:	1383	:	1.8		9.00		12447	

C Jute : 1100 : 1.4 : 1.58 : 1738 :

Category VI

Table 7.4

Table 7.3

S1. No.		Crops	:Crop :area		:% Cro :area		:Av. Y :(T/ha		:Total :uction		
	Α.	Paddy	:	38148	:	90.3	:		:		
1	B. aus	1	:	6109	:	14.5	:	1.04		6359	-
2	T. aus		:	30023	:	71.0		1.25		37528	
3	B. ama	n	:	2016	:	4.8		1.32	1.7	2661	
	в.	Rabi Crops	:	4111	:	9.7	:		:		1
1	Pulse		:	1611	:	3.8	•	0.45	·	724	-
2	W. veg		:	551		1.3		8.05		4435	
3	Cowpea		:	1018		2.4	-	0.42		427	
4	Oilseed	ds	:	339	:	0.8		0.48		162	
5	Chilli	(Green)	:	424		1.0	-	1.70		720	
6	Millet		:	168		0.4		6.10		1024	
			:	42259	:	00.0	:				

20

	Category V	Ta	ble 7.5			Enclosure (Page 4 o		* C	AY
S1. No.		:Cro :aro	opped ea (ha)	:% :a	Cropped rea	:Av. Yield :(T/ha)	:1 :1	Total Production (T)	l-
	A. Paddy	:	97720) :	84.6	:	:		
	B. aus	:	11163		9.7	: T. An M. 1. : Yields 1. : should be 1. : should be 1. : should be 1. : should be 1.	10 :	1227	9
4	T. aus (IIYV)		9308		8.0	: Yield by.	: 86	1842	9
4	T. aman (LYV) B. aman	:	70463		61.0	: show 1.	75 :	12331	0
		: 	6786	:	5.9	:Wg 1.:	20 :	8143	3
	B. Rabi Cro	ps :	17847	:	15.4	:	:		:
1		:	6606	:	5.7	: 0.5	0 :	3303	3 .
2	- 0	:	3593		3.1		: 0	32337	
3 4			2318		2.0	: 1.8	: 0		
5		:	1043				8 :) :
6	이 같은 것이 다. Mark 및 SCREET NY 2015		2782		2.4		0 :	19196	5 :
		:	1505	:	1.3	: 9.9	0 :	14899) :
.===	Total		115567	:	100.0		:		:
Cate	egory VI	Tab	le 7.6			Annex-3	====:	==========	:==
51.	:	:Cro	pped	:%	Cropped	:Av. Yield			
0.	: Crops	:are	a (ha)	:ar	ea	:(T/ha)	:uc	ction (T)	:
	A. Paddy	:	48793	:	85.9	:	:		
	B. aus	:	5985	:	10.5	: 1.2	····	7302	
		:	7710				5:		
3	T. aman (LYV)	:	17233	:	30.3	: 1.9		33604	:
4	T. aman (IIYV)	:	11525	:	20.3	: 2.80		32270	
5	Boro (IIYV)	:	6065	:	10.7	. 2 2	· ·	10100	
6	B. aman	:	275	:	0.5	: 1.2	:	349	:
	B. Jute	10	305	•	0.5	: 1.66		506	
(C. Betel leaf	:	625	:	1.1	. 14.80		0.050	:
	D. Rabi	:	7110	,	12.50	:	:		•
1	W. veg.					: 10.50		 6405	
	rocaco		408	•	0.72	12 50		5100	
3	S. potato	:	814	:	1.43	8.50	1	6919	
4	Chilli (Green)	:	460	:	0.80 :	2.20	:	1012	
	Lentil	:	56	:	0.09 :	0.60		24	
	Pulse Oil seeds		2080		3.70 :	0.65	:	1352	:
	Cowpea	:	254		0.04 :	0.50	:	127	
	Watermelon	:	2280		4.00 :	0.55	:	1254	:
	Brinjjal	:	70 :		0.12 :	12.60 4.70	:	882	
1971 - 3 2010 - 1972		•	/0 :		0.14 :	4.70	:	337	:

(LIBRARY.

A R. P.

わり

Enclosure-3 (Page 5 of 5)

29

Table 7.7

S1 No.	Crops	Cropped area (ha)	% Cropped Area	Total Pro- duction (T)	
	A. Paddy	364833	86.80		
1 2 3 4 5 6	T. aman(LYV) T. aman (HYV) B. aus T. aus (HYV) Boro (HYV) B. aman	259366 23905 35552 25503 10190 10317	61.70 5.70 8.50 6.10 2.40 2.40	382876 67830 50530 52268 32195 12830	
	B. Rabi Crops	53255	12.70	598529	
1 2 3 4 5 6 7 8 9 10 11 12	Pulse Cowpea S. Potato W. Veg. Chilli (Green) Potato Oil seeds Watermel Wheat Brinjal Lentil Millet	17249 8882 6518 7292 6493 2490 2843 70 1075 78 56 209	4.10 2.10 1.60 1.70 1.50 0.60 0.70 0.01 0.31 0.02 0.01 0.05	9210 4670 46374 66192 12688 22941 1394 882 623 337 34 1282	166
	C. Betel Leaf	625		9250	1875
	D. Jute	1517		2400	
	Total	420230			

5 The average yield per ha in tons has been considered on the basis of the following -

- From farmers level at the time of field visit i.
- ii. UAO offices
- Different books printed by BARI, BRRI iii.
- Upazila Statistics BBS iv.

.*

at

r-[8 v	moun n ould sk	K		B PROTECTION /a, YIELDS SUBPROJECT	AND PROD	N PROJECT-I UCTION /b	I		Enclosure TABLE 7.8
/	Area,		ha	Yie	id, M. T.	/ha	Proc	luction,	M.T.
Crop	P	×.	¥	pared	Ŵ	W	P	₩/c	¥
B. Aus LV	170	170	1038-10	0.9	0.8	1.1	153	138	1142
T.Aman LV	4050	4050	-/3453	1.2	1.1	1.5	4860	4374	5180
T.Aman HYV	0	037	264	0.0	0.0	2.07	0	0	546
Pulses	95	95	319	0.5	0.4	0.5	45	40	160
Oilseeds	9	9	64	were 0.5	0.5	0.55	5	4	35
Potato	23	23	24	10.2	9.2	12.7	235	211	30 5
S. Potato	54	54	145	6.3	5.7	6.8	340	306	986
Vegetable	46	46	262	9.2	8.2	10.25	421	379	2686
Cowpea	64	ô4	203	0.5	0.5	0.53	32	29	108
Chilli(green)	50	50	87)	2.0	1.8	2.1	100	90	183
Total	4561	4561	5859				6190	5571	11329

Note: P = Present

W bar = Without Project

W = With Project

/a Cropping intensity increase from 108% without project to 139% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.

- /b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 5% the third year, 8% the fourth year and 10% starting the fifth year.
- /c Crop production without the project in the fifth year.

22

BANGLADESH

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 40/2

	Area,		ha	Yie	eld, M. T.	/ha	Proc	Production, M.T.		
Crop	P	Ā	¥	Ρ	Ŷ	¥	P	¥/c	¥	
B, Aus LV	317	317	170	1.10	0.99	1.25	349	314	213	
T.AUS HYV	174	174	188	1.88	1.69	2.70	327	294	508	
T.Aman LV	2161	2161	1204	1.60	1.44	1.80	3458	3112	2167	
T.Aman HYV	121	121	1140	2.25	2.03	2.80	272	245	3192	
B.Aman	7	7	22	1.48	1.33	1.60	10	9	35	
Pulses	57	57	175	0.52	0.47	0.65	30	27	114	
Oilseeds	9	9	35	0.55	0.50	0.65	5	4	23	
S. Potato	0	0	104	0.00	0.00	6.80	0	0	707	
Vegetable	0	0	154	0.00	0.00	10.30	0	0	1586	
Cowpea	28	28	155	0.55	0.50	0.60	15	14	93	
Chilli(green)	19	19	41	2.10	1.89	2.30	40	36	94	
Millet	3	3	7	0.55	0.50	0.60	2	1	4	
Total	2896	2896	3395				4508	4057	8736	

Note: P = Present

W bar = Without Project

W = With Project

/a Cropping intensity increase from 120% without project to 141% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.

/b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 6% the third year, 8% the fourth year and 10% starting the fifth year.

/c Crop production without the project in the fifth year.

;

BANGLADESH

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 48

	Area,		ha Yield, M. T/I			/ha Production		uction, M	, M .T.	
Сгор	Ρ	Ŵ	۲	P	Ŵ	¥	P	₩/c	¥	
B. Aus LV	491	491	243	1.05	0.95	1.25	516	464	304	
T.Aus HYV	269	269	260	1.88	1.69	2.70	506	455	702	
T.Aman LV	3297	3297	2697	1.60	1.44	1.75	5275	4748	4720	
T.Aman HYV	187	187	934	2.25	2.03	2.80	421	379	2615	
B.Aman	11	11	34 15	1.48	1.33	1.35	16	15	45	
Pulses	108	108	285 th	0.52	0.47	0.55	56	51	157	
Oilseeds	36	36	52	0.55	0.50	0.60	20	18	31	
S. Potato	0	0	92	0.00	0.00	5.80	0	0	625	
Vegetable	0	0	23	0.00	0.00	10.25	0	0	236	
Cowpea	44	44	233	0.55	0.50	0.60	24	22	140	
Chilli(green)	36	36	162	2.10	1.89	2.25	76	68	365	
Millet	14	14	18	0.55	0.50	0.60	8	7	11	
Jute	40	40	40	1.40	1.26	1.75	56	50	70	
Total	4533	4533	5073		0.00		6973	6276	10021	

Note: P = Present

W bar = Without Project

W = With Project

- /a Cropping intensity increase from 122% without project to 137% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.
- /b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 6% the third year, 8% the fourth year and 10% starting the fifth year.

BANGLADESH

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 59/2

	Area,		ha	Yield, M. T/ha			Production, M.T.		
Сгор	Р	Ŷ	×	P	Ŵ	¥	P	₩/c	¥
B. Aus LY	520	520	690	1.10	0.99	1.15	572	515	793
T.Aus HYV	528	528	585	1.98	1.78	2.30	1045	941	1346
T.Aman LV	4186	4186	4056	1.75 2.50 1.20	d 1.58	1.80	7326	6593	7301
T.Aman HYV	4186 37	3742	213	y \$2.50	12.25	3.00	93	83	639
8.Aman	291	291	442	pus 1.20	1.08	1.40	349	314	619
Pulses	291	291	340	0.50	0.45	0.55	145	131	187
Oilseeds	46	46	106	0.50	0.45	0.55	23	21	58
S. Potato	122	122	120	5.90	6.21	7.50	842	758	900
Vegetable	158	158	219	9.00	8.10	10.30	1422	1280	2256
Cowpea	66	66	170	0.55	0.50	0.60	36	33	102
Chilli(green)	102	102	170	1.80	1.62	2.10	184	165	357
Total	6347	6347	7111				12037	10833	14558

Note: P = Present

W bar = Without Project

W = With Project

/a Cropping intensity increase from 153% without project to 171% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.

/b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 6% the third year, 8% the fourth year and 10% starting the fifth year.

BANGLADESH

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 59/38

	Area,		ha	Yield, M. T/ha			Production, M.T.		
Crop	Ρ	Ŷ	¥	Р	ÿ	¥	P	w/c	¥
B. Aus LV	1839	1839	2379	1.22	1.10	1.30	2244	2019	3093
T.Aus HYV	1338	1338	1338	2.25	2.03	2.50	3011	2709	3345
T.Aman LV	8758	8758	7330	1.95	1.75	2.20	17078	15370	16126
T.Aman HYV	0	0	2443	0.00	0.00	3.10	0	0	7573
8.Aman	1011	1011	1011	1.20	1.08	1.40	1213	1092	1415
Pulses	1050	1050	898	0.55	0.50	0.60	578	520	539
Oilseeds	166	166	281	0.50	0.45	0.60	83	75	169
S. Potato	442	442	319	6.90	6.21	8.00	3050	2745	2552
Vegetable	591	591	580	9.00	8.10	10.70	5319	4787	6206
Cowpea	240	240	449	0.55	0.50	0.60	132	119	269
Chilli(green)	368	368	449	2.20	1.98	2.40	810	729	1078
otal	15803	15803	17477				33516	30165	42365

Note: P = Present

W bar = Without Project

W = With Project

/a Cropping intensity increase from 143% without project to 158% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.

/b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 6% the third year, 8% the fourth year and 10% starting the fifth year.

2

Enclosure 3 TABLE 7.13

206

BANGLADESH

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 59/3C

Сгор	Area,		ha	Yie	Yield, M. T/ha			Production, M.T.		
	P	Ÿ	¥	P	Ŷ	×	р	₩/c	¥	
B. Aus LV	1389	1389	1537	1.10	0.99	1.15	1528	1375	1768	
T.Aus HYV	1063	1063	1177	1.98	1.78	2.30	2105	1894	2707	
T.Aman LV	7708	7708	6629	1.75	1.58	1.80	13489	12140	11932	
T.Aman HYV	0	0	1657	0.00	0.00	2.80	0	0	4640	
8.Aman	1002	1002	1082	1.20	1.08	1.40	1202	1082	1515	
Pulses	880	880	672	0.50	0.45	0.55	440	396	370	
Dilseeds	139	139	350	0.50	0.45	0.55	70	63	193	
6. Potato	371	371	238	6.90	6.21	7.70	2560	2304	1833	
/egetable	479	479	434	9.00	8.10	10.30	4311	3880	4470	
Cowpea	202	202	543	0.55	0.50	0.60	111	100	325	
Chilli(green)	309	309	336	1.80	1.62	2.10	556	501	706	
otal	13542	13542	14655				26372	23735	30458	

Note: P = Present

W bar = Without Project

W = With Project

/a Cropping intensity increase from 136% without project to 147% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.

/b Without the project it is expected that the production will decrease
2% the first year, 4% the second year, 6% the third year, 8% the fourth
year and 10% starting the fifth year.

*.**

BANGLADESH

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 50

	Area,		ha	Yield, M. T/ha			Production, M.T.		
Сгор	р	Ŵ	¥	р	Ŷ	¥	P	₩/c	¥
B. Aus LV	595	595	648	1.10	0.99	1.15	655	589	74
T.Aus HYV	496	496	550	1.98	1.78	2.30	982	884	1265
T.Aman LV	3569	3569	2810	1.75	1.58	1.90	6246	5621	5339
C.Aman HYV	188	188	1204	by 2.50	2.25	3.00	470	423	3612
3.Aman	362	362	415	0.52	21.08	1.40	434	391	581
Pulses	353	353	194 m	0.52	1 0.47	0.60	184	165	116
ilseeds	58	58	61 Do	dro.55	0.50	0.60	32	29	37
. Potato	148	148	69 W	W 6.90	6.21	6.90	1021	919	476
egetable	191	191	126	9.00	8.10	10.90	1719	1547	1373
owpea	80	80	98	0.55	0.50	0.60	44	40	59
hilli(green)	123	123	97	2.10	1.89	2.30	258	232	223
otal	6163	6163	6272				12045	10840	13827

Note: P = Present

W bar = Without Project

W = With Project

/a Cropping intensity increase from 126% without project to 129% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.

/b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 6% the third year, 8% the fourth year and 10% starting the fifth year.

1

Enclosure 3 TABLE 7.15

200

BANGLADESH

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 66/1

	Area, ha		ha	Yi	Production, M.T.				
Crop	P	¥	¥	Ρ	¥	¥	р	₩/c	¥
B. Aus LV	95	95	275	1.22	1.10	1.30	116	104	358
T.Aus HYV	143	143	77	2.25	2.03	2.50	322	290	193
T.Aman LV	330	330	482	1.95	1.76	2.20	644	579	1060
T.Aman HYV	51	51	77	2.80	2.52	3.10	143	129	239
Boro HYV	22	22	44	3.20	2.88	3.50	70	63	154
Pulses	73	73	66	0.55	0.50	0.60	40	36	40
Dilseeds	0	0	0	0.50	0.45	0.60	0	0	0
S. Potato	0	0	0	6.90	6.21	8.00	0	0	0
/egetable	33	33	39	9.00	8.10	10.70	297	267	417
Cowpea	55	55	77	0.55	0.50	0.60	30	27	46
Chilli(green)	11	11	34	2.10	1.89	2.40	23	21	82
otato	10	10	34	10.50	9.45	12.00	105	95	408
ater Melon	22	22	31	11	9.90	12.5	242	218	388
etel Leaf	18	18	35	1.2	1.08	1.5	22	19	53
alt	44	44	66	9.3	8.37	9.3	409	368	614
hrimp	44	44	66	0.1	0.09	0.12	4	4	8
otal	951	951	1403				2457	2220	4058

Note: P = Present

9

ţ

0

W bar = Without Project

W = With Project

/a Cropping intensity increase from 143% without project to 211% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.

/b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 6% the third year, 8% the fourth year and 10% starting the fifth year.

BANGLADESH

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 68

	Area, ha		ha	Yield, M. T/ha				Production, M.T.		
Crop	Р	ÿ	¥	Ρ	Ŵ	¥	P	Ŵ/c	¥	
B. Aus LV	240	240	743	1.22	1.10	1.30	293	264	966	
T.Aus HYV	192	192	282	2.25	2.03	2.50	432	389	705	
T.Aman LV	1005	1005	879 1375	1.95	1.76	2.20	1960	1764	1934	
T.Aman HYV	370	315 370	495	2.80	2.52	3.10	1036	932	1535	
Boro HYV	250	250	88	2.80 Decrear shy 2.20	2.88	3.50	800	720	308	
Pulses	40	40	80	0.55	0.50	0.60	22	20	48	
Dilseeds	4	4	52	0.50	0.45	0.60	2	2	31	
S. Potato	0	0	0	6.90	6.21	8.00	0	0	0	
/egetable	11	11	100	9.00	8.10	10.70	99	89	1070	
Cowpea	37	37	59	0.55	0.50	0.60	20	18	35	
Chilli(green)	14	14	43	2.10	1.89	2.40	29	26	103	
otato	24	24	48	10.50	9.45	12.00	252	227	576	
ater Melon	12	12	36	11.00	9.90	12.5	132	119	450	
etel Leaf	29	29	53	1.20	1.08	1.5	35	31	80	
alt	31	31	91	9.30	8.37	9.3	288	259	845	
hrimp	31	31	91	0.10	0.09	0.12	3	3	11	
otal	2290	2290	3140				5404	4863	8698	

Note: P = Present

4

00000000

W bar = Without Project

W = With Project

/a Cropping intensity increase from 153% without project to 209% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.

/b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 6% the third year, 8% the fourth year and 10% starting the fifth year.

Enclosure TABLE 7.17

BANGLADESH

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 70

	Area,		ha	Yield, M. T/ha			Production, M.T.			
Crop	P	¥	¥	P	ÿ	4	Ρ	W/c	¥	
B. Aus LV	45	45	140	1.22	1.10	1.30	55	49	182	
T.Aus HYV	108	108	90	2.25	2.03	2.50	243	219	225	
T.Aman LV	122	122	206	1.95	1.76	2.20	238	214	453	
T.Aman HYV	128	128	190	2.80	2.52	3.10	358	323	589	
Boro HYV	89	89	100	3.20	2.88	3.50	285	256	350	
Pulses	16	16	22	0.55	0.50	0.60	9	8	13	
Oilseeds	2	2	2	0.50	0.45	0.60	1	1	1	
S. Potato	3	3	5	6.90	6.21	8.00	21	19	40	
Vegetable	5	5	2	9.00	8.10	10.70	45	41	21	
Cowpea	18	18	10	0.55	0.50	0.60	10	9	6	
Chilli(green)	6	6	7	2.10	1.89	2.40	13	11	17	
Potato	3	3	4	10.50	9.45	12.00	32	28	48	
Water Melon	2	2	2	11.00	9.90	12.5	22	20	25	
Betel Leaf	14	14	17	1.20	1.08	1.5	17	15	26	
Galt	750	750	750	9.30	8.37	9.3	6975	6278	6975	
hrimp	750	750	750	0.10	0.09	0.12	75	68	90	
otal	2061	2061	2297				8397	7558	9061	

Note: P = Present

.

0

0

0 4

ģ

00

W bar = Without Project

W = With Project

/a Cropping intensity increase from 162% without project to 181% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.

/b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 6% the third year, 8% the fourth year and 10% starting the fifth year.

* farmens for crop diversification ?

DDF

BANGLADESH

1

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 72

	Area,		ha	Yie	Yield, K. T/ha			Production, M.T.		
Crop	P	Ŷ	¥	Р	Ŵ	¥	P	₩/c	¥	
B. Aus LV	814	814	1124	1.10	0.99	1.25	895	806	1405	
T.Aus HYV	957	957	1032	1.95	1.76	2.25	1866	1680	2322	
T.Aman LV	4735	4735	3456	2 1.70	w.11.5d	d.80	ov~8050	7245	6221	
T.Aman HYV	511	511	1681	My 2.90	2.61	\$3.25 1	1482	1334	5463	
B.Aman	20	26	150	K 1.35	11.22	arto !	35	32	210	
Pulses 57	731	731		10.60	10.54	0.65	439	395	534	
Cilseeds	359	359	486	0.50	0.45	0.60	180	162	292	
S. Potato	173	173	303	7.50	6.75	7.70	1298	1168	2333	
Vegetable	0	0	287	9.00	8.10	10.50	0	0	3014	
Cowpea	433	433	330	0.50	0.45	0.60	217	195	198	
Chilli(green)	216	216	303	2.10	1.89	2.25	454	408	682	
Wheat	121	121	122	1.40	1.26	1.65	169	152	201	
Jute	136	136	0	1.58	1.42	0	215	193	0	
Total	9212	9212	10096				15298	13768	22875	

Note: P = Present

W bar = Without Project

W = With Project

- /a Cropping intensity increase from 174% without project to 190% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.
- /b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 6% the third year. 8% the fourth year and 10% starting the fifth year.
Don

Enclosure 3 TABLE 7.19

BANGLADESH

1

CYCLONE PROTECTION PROJECTON PROJECT-II

CROP AREAS /a, YIELDS AND PRODUCTION /b

SUBPROJECT: Polder 73/18

	Area,		ha	Yie	1d, M. T/	'ha	Pro	duction,	M.T.
Crop	P	ÿ	¥	P	¥	¥	P	₩/c	¥
B. Aus LV	1335	1335	2132	1.04	0.94	1.10	1388	1250	2345
T.Aus HYV	0	0	0	0.00	0.00	0.00	0	0	0
T.Aman LV	6561	6561	4837560	544.70	1.53	1.90	11154	10038	9190
T.Aman HYV	0	0	1209	2.50	2.25	3.00	0	0	3627
B.Aman	441	441	441	1.20	1.08	1.35	529	476	595
Pulses	352	352	616	0.45	0.41	0.55	158	143	339
Dilseeds	74	74	94	0.48	0.43	0.55	36	32	52
. Potato	103	103	261	7.50	6.75	8.00	773	695	2088
egetable	120	120	292	8.05	7.25	9.00	966	869	2628
Cowpea	119	119	178	0.42	0.38	0.60	50	45	107
chilli(green)	93	93	209	1.70	1.53	2.10	158	142	439
illet	37	37	156	0.90	0.81	0.90	33	30	140
otal	9235	9235	10425				15245	13721	21550

Note: P = Present

1

0

4

W bar = Without Project

W = With Project

/a Cropping intensity increase from 130% without project to 147% with project and change from rice local varieties to rice HYV and crop diversification is estimated to occur in seven years period.

/b Without the project it is expected that the production will decrease 2% the first year, 4% the second year, 6% the third year, 8% the fourth year and 10% starting the fifth year.

/c Crop production without the project in the fifth year.

Table 8.2

Distribution of fertilizer by type and by former district

Former	Year	Urea	TSP	MP	DAP HPs Oth	Total	N	P205	K20	Gyp- sumi	Zinc	Total
	1986-87	56930	13927	824	40	71721	26188	6406	494	-	57	33155
Chittagong	1987-88	51938	11852	11161	216	65167	23891	5452	697	1 5	197	30242
	1988-89	38956	10651	882	-	50489	17920	4899	629	1 -	-	23348
H	1986-87	33651	10441	789	-	44881	15479	4803	473	4	41	20800
Noakhali	1987-88	39467	15560	2024	-	57051	18155	1.	1214	1 -	50	26577
	1988-89	31928	13561	2149	-	47638	14687		1289	[-	-	22214
	1986-87	24585	7628	1237	-	33450	11309	3509	742	9	30	15599
Barisal	1987-88	28205	9969	685	-	38859	12974		411	28	61	18060
	1988-89	31137	10518	991	-	42646	14323		595	-	-	19756
1	1986-87	22365	5831	1122		29318	10288	2682	673	36	92	13771
Khuina	1987-88	38746	11106	992	- 1	50844	17823		595	18	157	23702
	1988-89	79088	25293	3843	- [10822	36380			-	-	50321
	1986-87	6812	1258	225	-	8295	3134	579	135	1	2	3851
Patuakhali)	1987-88	8446	1899	38	- [10383	3885	874	23	5	-	4788
	1988-89	8240	1019	55	- 1	9314	3790	469	33	-	-	4292

é

(in MT).

Note : N = 46% of Urea, P2o5 = 46% of TSP, K2O = 60% of MP Source : BADC, & BBS - 1990.

Enclosure-5 (Page 1 of 1)

Table 8.4

11

Former District-Wise distribution of pesticides.

.

(In Matric Ton)

Former district	Year	Granular	Conventio- nal/Borer pestcomplex	Soil Insect- icides	Acari- cides	Fungi- cides	Roden- ticid- es	Weedi- cides
Chittagong	1986-87 1987-88 1988-89	300 345 405	55 52 63	2.5 2 1.5	2 5 3	2 2 2	20 0.5 0.25	0.5 16 10
Noakhali	1986-87 1987-88 1988-89	210 230 270	33 32 46	1 1 1.5	1 5 2	2 1 3	- - 0.5	0.5 - -
Barisal	1986-87 1987-88 1988-89	190 212 245	32 30 34	0.5 - -	1 2 1.5			
Khu1na	1986-87 1987-88 1988-89	80 92 107	20 18 26	1 1 1.5	0.5 1 1.5	1 1 2		
Patuakhali	1986-87 1987-88 1988-89	150 180 185	16 16 21	-	0.5 2 1.5			-

Source : Bangladesh Pesticides Association. BBS - 1990.

Enclosure-6 (Page 1 of 1)

Table 18-B

Tolerable Limit of Salinity

0000	wa	ter			SO	i1
crop	T.D.S mg/1	C1 mg/1	BCw mmho/cm	T.D.S. mg/1	C1. mg/1	ECc mmho/cm
B. aus		Į	2.0	-	-	3.0
Local T. aman	-	-	2.0	-	-	3.0
Local T. aman	-	-	2.0	-	-	3.0
HYV Aman	-	-	2.0	-	-	3.0
Pulses	-	-	N.A	-	-	3.0
Chillies	-	-	N.A	-	-	N.A
Cowpea	-	-	0.9	-	-	1.3
Drinking water	1500	600	-	-	-	-

Source : Coastal saline soils and their Management in Bangladesh by Ζ.

Karim et al. 1983. BARC Soils and Irrigation Publication No. 8 1983.

The original Jhe original Ayers & have nonu i.e. Ayers & Westcot (1976) should have Westcot (1976) should been 9

Pre- of Post?

Enclosure-7 (Page 1 of 6)

Category - I

.

Table 18.1

(area in ha)

226

Land type	Cropping pattern	Cultiva ted area	Cropped area	Remarks
High land (3.2%)	 B.aus-Rabi (pu- lse,W.veg.Potato, Chilli, Oilseeds etc.) B. aus - T. aman (HYV)-Rabi (W.veg., oilseeds, Potato, 	1301 2115	2602 6345	Double cropping Triple cropping
Medium high land	Chiili etc.) 1. T. aman(LYV) -Fall low	73490	73490	Single cropping
(92.1%)	 B. aus -Rabi (Pul- se,S.potato,Chilli cowpea,(Falon) etc. Boro (HYV) -T.aman 	13776 2296	27552 4592	Double Cropping
	(HYV) 4. B. aus - T. aman (LYV)-Rabi (Cowpea pulse, S. potato, Chilli etc.)	9184	27552	Triple cropping
Medium Low land (4.7%)	 T. aman(LYV) -Rabi (pulse, cowpea,S. potato etc.) T. aman (LYV)-Fal- low 	1683 3365	3366 3365	Double cropping Single Cropping
	Total	107210	148864	

Crooping intensity = 139%

Enclosure-7 (Page 2 of 6)

Category - II

.

Table 18.2

:

(Area in ha)

Land type	Cropping pattern	Cultiva- ted area		Remarks
High land (0.3%)	1. B. aus -Rabi (po- to,oilseeds,W.veg. Chilli, etc.).	140	280	Double cropping
	2. Jute-T.aman(LYV) Rabi (W.veg., pulse, cowpea etc.	112	336	Triple
Medium high land	1. T. aus (HYV) -T. aman (LYV)	223	446	Double cropping
(84.6%)	2. T. aus (HYV)-T. aman(HYV)	509	1018	-do-
	3. T. aman(LYV)-Rabi (Pulse,oilseeds, chilli, cowpea,S.) potato	1850	3750	-do-
	4. B. aus-T. aman(LYV -Rabi (pulse oils- eeds, S. potato, cowpea, etc.)	683	2049	Triple cropping
	5. T. aman (LYV) -Fa- llow	6802	6802	Single cropping
Medium Low land	1. B. aman-Rabi (pulse, cowpea,S.) potato etc.)	96	192	Double cropping
15.1%)	2. T. aman (LYV)-Fai- low	30	30	Single Cropping
	Total	10445	14853	

Cropping intensity = 142%

<u>Category - III</u>

-

Enclosure-7 (Page 3 of 6)

Land Type	Cropping Pattern	Cultivated area *3*	Cropped area	Remarks
High Land (0.5%)	 B. aus-Rabi (W.veg, pulse oilseeds, chili, S. potato, Cowpea etc. B. aus-T aman (HYV)-Rabi (W. veg., oilseeds, potato) 	110	220 360	Double Cropping Triple Cropping
Medium Highland (94.5%)	 B. aus - T. aman(LYV)- Rabi (pulse, cowpea, wheat, mustard, chili etc.) T. aus (HYV) - T. aman (HYV) Boro(HYV) - T. aman (HYV) Jute-T. aman(LYV) T. aman(LYV) - Rabi(pulse, cowpea, S. potato etc.) T. aman(LYV) - Fallow. 	6744 8330 5125 2100 8115 10033	20232 16660 10250 4200 16230 10033	Triple Cropping Double Cropping -do- -do- -do- Single
Medium Lowland	1. B. aman-Rabi (pulse, cowpea, etc.) 2. T. aman(LYV) - Fallow	1210 913	2420 913	Double Cropping Single Cropping
	Total	42800	81518	

Table 18.3

1

Cropping intensity = 190%.

LIBRARY.

Enclosure-7 (Page 4 of 6)

Category - IV

4

Table 18.4

(Area in ha)

Land Type	Cropping Pattern	Cultivated area *3*	Cropped area	Remarks
High Land (0.3%)	 B. aus-T. aman-Rabi (W.veg, pulse oilseeds, chili, millet, wheat etc.) 	115	345	Triple Cropping
Medium Highland (89,7%)	1. B. aus - T. aman(LYV) 2. B. aus-T, aman(LYV)-Rabi (pulse, cowpea, wheat, oilseeds, potato	1490 1685	2980 5055	Double Cropping Triple Cropping
	etc.) 3. B. aus - Rabi (pulse, cowpea,	6466	12932	Double Cropping
	oilseeds, S. potato etc.) 4. T. aman(LYV) - Fallow.	22775	22775	Single
Medium (10%)	1. T. aman(LYV) - Fallow 2. B. aman - Fallow	1603 2016	1603 2016	Single Cropping Single Cropping
	Total	36150	47706	

So, the Cropping intensity stands = 132%.

<u>Category - V</u>

Land Type	Cropping Pattern	Cultivated area *3*	Cropped area	Remarks
High Land (0.3%)	 B. aus-T. aman(LYV) -Rabi (W.veg, pulse, oilseeds, chili, S. potato etc.) 	5818	17454	Triple Cropping
Medium Highland (80.67%)	 T. aus(HYV) - T. aman(LYV) T. aman(LYV)- Rabi(pulse, cowpea, wheat, oilseeds, S.potato, chili etc.) B. aus - T. coop (LYV) 	10308 4225	20616 8450	Double Cropping Double Cropping
	3. B. aus - T. aman (LYV) 4. T. aman(LYV) - Fallow.	4327 43970	8654 43970	Double Cropping Single
Medium (19%)	1. B. aus - Rabi (pulse, potato, cowpea, etc.)	2018	4036	Double Cropping
	2. B. aman - Rabi (pulse, cowpea etc.)	7786	15572	Single Cropping
	3. T. aman(LYV) - Fallow	6633	6633	Single Cropping
	Total	85085	125385	

Table 18.5

1

Cropping intensity = 147%.

Enclosure-7 (Page 6 of 6)

<u>Category - VI</u>

Table 18.6

(Area in ha)

221-

Land Type	Cropping Pattern	Cultivated area *3*	Cropped area	Remarks
High Land (21.2%)	 Betel leaf - Fallow B. aus - T. aman(HYV) T. aman(LYV) - Rabi(potato, chilli, lentil, oilseeds, etc.) B. aus - T. aman (LYV) - Rabi (W. veg., cilseeds, cowpea, potato, etc.) 	625 2880 1575 1478	625 5760 3150 4434	Single Cropping Double Cropping -do- Triple Cropping
Medium Highland (58.1%)	 T. aman (LYV) - Fallow T. aus(HYV) - T. aman (HYV) B. aus - T. aman (LYV) B. aus - T. aman (LYV) - Rabi(pusle, cowpea, lentil, brinjal, potato, s. potato). 	2015 7350 6785 1850	2015 14700 13570 5550	Single Cropping Double Cropping -dc- Triple Cropping
Medium (20.7%)	1. T. aman - Fallow 2. T. aus(HYV) - T. aman (LYV) 3. Boro(HYV) - T. aman(HYV)	3587 590 2225	3587 1180 4450	Single Cropping Double Cropping Double Cropping
	Total	30960	59021	

Cropping intensity = 191%.

Category I Enclosure-8 Table 19.1 (Page 1 of 4) _____ -----S1 Crops :Area(ha) :% of Cropped:Post Project:Total : : : : : : : AV.yield : Production : no : : : (T) : :(T/ha)-----: A. Paddy : 120805 : 81 : : : -----1 B. aus: 26376 :18.0 :1.10 :29014 :2 T. aman(LYV): 89837 :60.0 :1.50 :134755 :3 T. aman(IIYV): 2296 :1.5 :2.70 :6199 :4 Boro(IIYV): 2296 :1.5 :3.50 :8036 : B. Rabi Crops : 28069 : 19.0 : : : -----

 1 Pulse
 :
 8122 :
 5.5 :
 0.50 :
 4061 :

 2 W. Veg.
 :
 6645 :
 4.5 :
 10.25 :
 68111 :

 3 S. Potato
 :
 3691 :
 2.5 :
 6.80 :
 25099 :

 4 Chilli(Green)
 :
 2218 :
 1.5 :
 2.10 :
 4658 :

 5 Oilseeds
 :
 2215 :
 1.5 :
 0.55 :
 1218 :

 6 Cowpea
 :
 5168 :
 3.5 :
 0.53 :
 2739 :

Total : 148864 : 100.0 : : : :

Category II

Table 19.2

S1			Crops	: A	rea(ha)	:% of	Croppe	d:Pos	t Project	t:To	tal
no				:		:area		:AV.	yield	:Pr	oduction
				•		:		:(T/	ha)	: (Τ)
		Α.	Paddy	:	11860	:	80.0	:		;	
1	в.	aus		:	823	:	5.5	:	1.25	,	1029
2	т.	Aus	(IIYV)	:	732	:	5.0		2.70	- 670	1976
3	т.	aman	(LYV)	:	9700	:	65.3		1.50		14550
4			(IIYV)	:	2509	:	3.5	:	2.80	-	1425
5	в.	aman		:	96	:	0.7	:	1.35		130
	в.		Jute	:	112	:	0.7	:	1.75	:	
	c.	1	labi Crops	:	2881	:	19.3	:		:	
1	Pul	se		:	761	:	5.1	:	0.55	:	419
2	₩.	Veg.		:	702	:	4.7		10.25		7196
3		Potat		:	417	:	2.8	:	6.80		2836
4			Green)	:	179	:	1.2	:	2.25		403
5	0i]	seeds	5	:	151	:	1.0	:	0.60		91
6	Con	pea		:	971	:	4.5	:	0.60	:	403
		1	otal		14853	:	100.0	:			

222

	I	able 19	9.3					nclo sure - P age 2 of
Sl Crops no	: A :	rea(ha)	:% of	Croppe	ed:Pos	t Projec	:t:'	Total Production
	:	_	:		:(T/	ha)	:	(T)
A. Paddy	:	63119) :	77.4	+ :		:	
1 B. aus	:	6974	:	8.6	; ;	1.35	:	941
2 T. Aus (LYV)	:	8330	:	10.2				19159
3 T. aman (LYV)	:	8330 27905	:	34.2	:	1.75	1	48434
4 T. aman (IIYV)	:	13575	:	16.7	:	3.25	-	44119
5 Boro (IIYV)		5125				3.50	•	17938
6 B. aman	:	1210		1.4		1.35		1634
B. Jute	:	2100	:	2.6	:	1.80	:	
C. Robi Crops	:	16299	:	20.0	:		:	
1 Pulse	:	4075	:	5.0	:	0.65	:	2649
2 W. Veg.	:	3259	:	4.0	:	1.50	:	37220
3 Chilli(Green)	:	2444	:	3.0	:	2.25	:	5499
4 S. Potato	:	2444	:	3.0	:	7.70	:	18819
5 Potato	:	2038	:	2.5	:	12.70	:	25823
6 Oilseeds	:	1224	:	1.5	:	0.60	:	734
7 Wheat	:	815	:	1.0		0.65		530
Total	:	81518	:	100.0	:		:	
22222222222222222222222								
Category IV	 Ta	ble 19.	. 4			======	:==	
				Croppe	l:Post	Project	·==	
Category IV Sl Crops			:% of	Cropped	l:Post	Project	:: To	otal
Category IV Sl Crops			:% of	Croppe	:AV.y	Project ield a)	:P:	otal roduction (T)
Category IV Sl Crops	: Ar : :	ea(ha)	:% of :area :	Cropped 82.7	:AV.y :(T/h	ield a)	:P:	roduction
Category IV Sl Crops no A. Paddy	: Ar : : :	ea(ha) 39440	:% of :area : :	82.7	:AV.y :(T/h :	ield a) 1.10	: P : : :	roduction (T)
Category IV Sl Crops no A. Paddy 1 B. aus 2 T. aman (LYV)	: Ar : : : : :	ea(ha) 39440 9756 27668	:% of :area : :	82.7 20.5 58.0	:AV.y :(T/h : :	ield a) 1.10 1.50	: P : : : :	roduction (T)
Category IV Sl Crops no A. Paddy 1 B. aus 2 T. aman (LYV)	: Ar : : : : : :	ea(ha) 39440 9756 27668 2016	:% of :area : :	82.7	:AV.y :(T/h : :	ield a) 1.10	: P : : : :	roduction (T)
Category IV Sl Crops no A. Paddy 1 B. aus 2 T. aman (LYV) 3 B. aman	: Ar : : : : :	ea(ha) 39440 9756 27668 2016	:% of :area : :	82.7 20.5 58.0 4.2	: AV.y : (T/h : : :	rield a) 1.10 1.50 1.35	: P : : : :	roduction (T) 10732 41502
Category IV Sl Crops no A. Paddy 1 B. aus 2 T.aman (LYV) 3 B. aman B. Rabi Crops 1 Pulse	: Ar : : : : : : :	ea(ha) 39440 9756 27668 2016 8266 2819	:% of :area : : : :	82.7 20.5 58.0 4.2 17.3 5.9	:AV.y :(T/h : : : :	rield a) 1.10 1.50 1.35 0.50	: P: : : : :	roduction (T) 10732 41502 2722 1409
Category IV Sl Crops no A. Paddy 1 B. aus 2 T.aman (LYV) 3 B. aman B. Rabi Crops 1 Pulse 2 W. veg	: Ar : : : : : :	ea(ha) 39440 9756 27668 2016 8266 2819 1338	:% of :area : : : : :	82.7 20.5 58.0 4.2 17.3 5.9 2.8	:AV.y :(T/h : : : :	ield a) 1.10 1.50 1.35 0.50 10.50	: P: : : : : : : :	roduction (T) 10732 41502 2722
Category IV Sl Crops no A. Paddy 1 B. aus 2 T.aman (LYV) 3 B. aman B. Rabi Crops 1 Pulse 2 W. veg 3 Chilli	: Ar : : : : : : :	ea(ha) 39440 9756 27668 2016 8266 2819 1338 955	:% of :area : : : : :	82.7 20.5 58.0 4.2 17.3 5.9 2.8 2.0	: AV.y : (T/h : : : : : : :	rield a) 1.10 1.50 1.35 0.50 10.50 2.10	: P : : : : : : :	roduction (T) 10732 41502 2722 1409
Category IV Sl Crops no A. Paddy 1 B. aus 2 T.aman (LYV) 3 B. aman B. Rabi Crops 1 Pulse 2 W. veg 3 Chilli 4 Wheat	: Ar : : : : : : :	ea(ha) 39440 9756 27668 2016 8266 2819 1338 955 812	:% of :area : : : : :	82.7 20.5 58.0 4.2 17.3 5.9 2.8 2.0 137.0	: AV.y : (T/h : : : : : : :	ield a) 1.10 1.50 1.35 0.50 10.50	: P : : : : : : :	roduction (T) 10732 41502 2722 1409 1409 14049
Category IV Sl Crops no A. Paddy 1 B. aus 2 T.aman (LYV) 3 B. aman B. Rabi Crops 1 Pulse 2 W. veg 3 Chilli 4 Wheat 5 Millet	: Ar : : : : : : :	ea(ha) 39440 9756 27668 2016 8266 2819 1338 955 812 717	:% of :area : : : : : : :	82.7 20.5 58.0 4.2 17.3 5.9 2.8 2.0 137.0 1.5	: AV.y : (T/h : : : : : :	rield a) 1.10 1.50 1.35 0.50 10.50 2.10	: P: : : : : : :	roduction (T) 10732 41502 2722 1409 14049 2006 487 358
Category IV Sl Crops no A. Paddy 1 B. aus 2 T. aman (LYV) 3 B. aman B. Rabi Crops 1 Pulse 2 W. veg 3 Chilli 4 Wheat 5 Millet 6 Oilseeds	: Ar : : : : : : :	ea(ha) 39440 9756 27668 2016 8266 2819 1338 955 812 717 430	:% of :area : : : : :	82.7 20.5 58.0 4.2 17.3 5.9 2.8 2.0 137.0 1.5 0.9	: AV.y : (T/h : : : : : :	ield a) 1.10 1.50 1.35 0.50 10.50 2.10 0.60 0.50 0.55	: P : : : : : : : : : : : : : : : : : :	roduction (T) 10732 41502 2722 1409 1409 14049 2006 487
Category IV Sl Crops no A. Paddy 1 B. aus 2 T.aman (LYV) 3 B. aman B. Rabi Crops 1 Pulse 2 W. veg 3 Chilli 4 Wheat 5 Millet	: Ar : : : : : : :	ea(ha) 39440 9756 27668 2016 8266 2819 1338 955 812 717	:% of :area : : : : :	82.7 20.5 58.0 4.2 17.3 5.9 2.8 2.0 137.0 1.5	: AV.y : (T/h : : : : : :	ield a) 1.10 1.50 1.35 0.50 10.50 2.10 0.60 0.50	: P : : : : : : : : : : : : : : : : : :	roduction (T) 10732 41502 2722 1409 14049 2006 487 358

,ř

.

Category V		Table 19.5			Enclosure- (Page 3 of				
Sl Crops no	:	Area(ha)	:% of :area :		d:Post Proj :AV.yield :(T/ha)	:P	otal roduction (T)	n	
A. Paddy	:	105538	:	84.1	:	:			
1 B. aus	:	12163		9.7	: 1.	15 :	13987	,	
2 T. aus (IIYV)	:	10308		8.2		30 :	23708		
3 T. aman (LYV) 4 B. aman	:	75281		60.0		80 :	135506		
4 D. aman	:	7786	:	6.2	: 1.	40 :	10900		
B. Rabi crops	:	19847	:	15.9	:	:			
1 Pulse	:	5992	:	4.8	: 0.1	55 :	3296		
2 Oilseeds	:	1872	:	1.5		50 :	936		
3 Chilli (Green)	:	2996	:	2.4			6292		
4 W. Veg.	:	3870		3.1		30 :	39861		
5 S. Potato	:	2122		1.7			14642		
6 Cowpea	:	2995	:	2.4		55 :	1647		
Total	:	125385	:	100.0	:	:		;	
ategory VI	Т	able 19.	6	:		=====	===========	==	
Sl Crops	: A:	rea(ha)	:% of (Cropped:	Post Proje	ct:To			
no	:				AV.yield	:Pro	oduction	:	
	:		:		(T/ha)	: (1		:	
A. Paddy	:	53493	:	90.7 :		:		:	
1 B. aus	:	12993	:	22.0 :	1.3	 0 •	16901	-	
2 T. aus (HYV)	:	7940		13.5 :			16891		
3 T. aman (LYV)	:	17880 :		30.3 :	1.9		19850		
4 T. aman (IIYV)	:	12455 :		21.1 :		0:	34866 38610		
5 Boro (IIYV)	:	2255 :	1		3.5	5:	8005	:	
B. Betelleaf	:	625 :		1.0 :	14.90) :		:	
C. Rabi Crops	:	4903 :		8.3 :		:		:	
1 Pulse	:	886 :			0.65		576 :	-	
2 Potato	:	531 :		0.9 :	13.50) :	7168		
	:	413 :		0.7 :	0.65		268 :		
3 Oilseeds									
4 Cowpea	:	650 :		1.1 :	0.65		422 .	5 - I	
4 Cowpea 5 S. Potato	:	591 :			0.65		422 : 5142 :		
4 Cowpea 5 S. Potato 6 W. Veg	:	591 : 295 :		1.0 :	8.70	: .	5142 :	į.	
4 Cowpea 5 S. Potato 6 W. Veg 7 Watermelon	::	591 : 295 : 413 :		1.0 :	8.70 10.70	:	5142 : 3156 :		
4 Cowpea 5 S. Potato 6 W. Veg 7 Watermelon 8 Chilli (Green)	::	591 : 295 : 413 : 473 :		1.0 : 0.5 :	8.70 10.70 12.70	:	5142 : 3156 : 5245 :		
4 Cowpea 5 S. Potato 6 W. Veg 7 Watermelon 8 Chilli (Green) 9 wheat	:::::::::::::::::::::::::::::::::::::::	591 : 295 : 413 : 473 : 473 :		1.0 : 0.5 : 0.7 : 0.8 :	8.70 10.70 12.70 2.30	:	5142 : 3156 : 5245 : 1088 :		
4 Cowpea 5 S. Potato 6 W. Veg 7 Watermelon 8 Chilli (Green) 9 wheat	: : : : : : : : : : : : : : : : : : : :	591 : 295 : 413 : 473 :		1.0 : 0.5 : 0.7 : 0.8 : 0.8 :	8.70 10.70 12.70	:	5142 : 3156 : 5245 :		

,t

Table 19.7

Enclosure-8 (Page 4 of 4)

3840

Category VII : TOTAL AREA OF THE PROJECT

4

9 3

9

S1	Crops		:/	Area(ha)	:% of	Croppe	d:'	Total	:
no			1			:Production			:
			:		:		:	(T)	:
	А.	Paddy	:	394255	:	82.6	:		:
	B. aus		:	69085	:	14.5	:	81068.00	
2	T. aus(IIYV)	:	27310	:	5.8	:	64693.00	
3	T. aman	(LYV)	:	248271	:	52.0	:	64693.00 409613.00 90353.00	
4	T. aman	(IIYV)	:	28835		6.0	:	90353.00	
Э	5 Boro (IIYV)			9646	:	2.0	:	33979.00	
6	B. aman		:	11106				15386.00	
	в.	Jute	:	2212	: 1	0.05	:	69509	2
	с.	Betel Leaf	:	625	:	0.1	:		:
	D.	Rabi Crops	:	80255	:	16.8	:		:
1	Pulse		:	22655	:	4.7	:	12410.00 :	
	Cowpea		:	19484	:	1.9	:	5211.00 :	
3	S. Potato			10460	:	2.2	:	74664.00 :	
4	W. Veg		:	16109	:			169593.00 :	
5	Chilli	(Green)	:	9265	:			19946.00 :	
6	Potato			2569				32991.00 :	
7	Oilseeds	5	:	6305	:	1.3		3484.00	
8	Watermelon			413		1.0	1	3484.00 : 5245.00 :	
9	Wheat			2100		0.4	5	1348.00 :	
.0	Brinjal			178				054 00	
11	Millet			717		0.2		358.00 :	
	 1	Cotal	:	477347	 :	100.0			224

1

