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LIST OF SYMBOLS (HYDRAULICS)

Dimension

A = surfaame area of cross section m*-

Al = surface area of flow-carrving part of cross section m?

B = surface (storage) width m

B, = width of flow-carrying part of cross section ml

€ = Chézy constant m°/s

o = celerity m/s

D = ﬁipe diameter m

Fr = FrOuae number -

8y = component of g in the x-direction m/s?

g = gravitational constant m/s?

H = energy level

h = water depth m

h, = critical depth m

W = equilibrium (normal) depth m

I = energy gradient -

ib = bed level slope =

K = compressibility N/m?

kS = Nikuradse roughness \f X m

n = Mannings coefficient [ € E?F‘ -

B = yetted perimeter \ﬁ*\\k J) m
\‘.\ o J’/ 2

P ) = nressure N\ CHEE» N/m

Q = discharge S~ m®/s

q = discharge /m width m?/s

R = hydraulic radius, radius of bend m

r = radial coordinate m

U,v,W = velocities in x,y,z direction m/s

ul = velocity fluctuation _ m/s

T = time averaged velocity m/s

U = depth-averaged velocity m/s

a, = r.m.s. value of u' m/s

ut = shear velocity m/s

X,Y,2 = coordinate-in flow, lateral and vertical direction m

Zy 02, = vertical_coordinate of bed and water surface m

a' . = coefficient due to non-uniformity of velocities -

9 = thickness of viscous sublayer m

e = eddy viscosity m?/s

n = dynamic viscosity Ns/m’

K = von Karman constant =

2

Nile



Lo

Darcy - Weisbach friction factor
kinematiec viscosity

loss coefficient

density

surface tension

m?/s

kg /m?
N/m'
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INTRODUCTION

Rivers form complicated svstems, involving the motion of water and
sediments and their mutual interaction. Flowing water transports
sediment, the transport causes changes in the river bed and banks
which influences the water motion again. The time scales of the two
motions are different. Flood waves in rivers have time scales in
the order of days whereas changes in a river bed take place over
periods of years. In many cases the two processes can be separated
therefore to study their specific properties, but to

predict river bed changes the two phenomena have to be considered

together.

Prediction of river behaviour is important in view of the many uses
of rivers: flood control, navigation, waterpower, water supply,
sand and gravel supply etc. Each use has some influence on river

behaviour which has to be predicted.

Rivers have a great variety in size with the Amazone River in Brasil

as the largest by far. The cross section at Obidos, 800 km from the
.mouth shows a width of 2300 m, a maximum depth of 60 m and the

maximum discharge measured here in 1953 was 280,000 m3/s with velocities
in the order of 2.0 m/s. The world champion in sediment tramsport is

the Hwang Ho or Yellow River, tranmsporting 2,000,000,000 tons of

sediment per year.

The purpose of this course is to review those aspects of hydraulics
and sediment transport which are necessarv in the analysis of alluvial
river systems. The course has four parts:

1. Basic hydraulics

2. Sediment transport

3. Rivers

4. Modelling.
This part discusses some aspects of hvdraulics such as steady and
unsteady flow, uniform and nonuniform flow and the flow over and in
structures. The course presents onlv an introduction. For more inform-—

ation reference is made to handbooks and literature.
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2, PROPERTIES OF WATER. FLOW TYPES

Some of the r&levant properties of water are:

Property symbol | dimension remarks
density p (kg/m*)

s ; : 2 AU
dynamic viscosity n (kg/m.s) or (N.s/m”) [T =n =7
kinematic viscosity v (m?/s) v =n/p
surface tension o} (kg/s?) or (N/m)
compressibility K (kg/m.s?) or N/m?

l ;
The following S.I. units are used: )
mass (kg) (kilogram)
fength (m) basic units in the Pnster)
time (s) Bl (second)
force (kgm/s?) or (N) (Newton)
energy (kgm?/s?) or (Nm) or (J) (Joule)
power (kgmzlsa) or (Nm/s) or (J/s) or (W) (Watt)
pressure, stress (kg/msz) or (N/m?) or Pa (Pascal)
2.1. Density (kg/m?)
The density of fresh water varies with temperature T:
T 0 4 12 16 21 32 (°c)
P 999 .87 1000.0 999.5 999.0 998.0 995.0 (kg/m3)

The variation of the density may be neglected in sediment transport

calculations and river hydraulics.

Density differences, caused by salinity, are important in estuaries.



kg/m?
p fresh water 1000
0 sea water 1026

2.2. Gravitational acceleration g (m/s?)

Depends on latitude a:

equator (a = 0%) g = 9.780 m/s?
poles (a = 900) g = 9.832 m/s? at mean sea level
Nethérlands (a = 52°) = 9.813 m/s?

2.3. Pressure P (N/m?)

2.4.

Pressure (p) is isotropic (independent of direction) in fluids at
rest (Pascal's law).

The pressure is hydrostatic in this condition:

3 . .
9z g

In fluids with a free surface (p relative to the atmospheric pressure):

p = pg (h-2z)

Compressibility K (N/m?)

The liquid bulk modulus of elasticity is defined by:

K = -dp ' dp = pressure change
dv/v .

volume change

Compressibility can be neglected‘in free surface flows.

(not in pipe flow: water hammer).

K =2.10° N/m® for water at 0°c.



2.5. Viscosity

Dvnamic_viscosity (Ns/m*)

- Defined as the factor of proportionality in:

which is wvalid for laminar flow.

-1
3U/3z = velocity gradient (s ) T = shear stress (N/m?)

n = constant for a Newtonian fluid.

n =0 in an "ideal" fluid.

Kinematic viscosity (m?/s)

Defined by v = n/p

n and v are a function of temperature. The influence of temperature is

significant.

T 0 5 10 15 20 25 30 35 40 °c)

v |1.79 1.52 1.31 1.14 1.01 0.90 0.80 0.72 0.65 (107% m?/s)

2.6. Surface tension 0 (N/m)

For the surface water/air: ¢ = 0.074 N/m at atmospheric pressure.

The variation with temperature can be neglected.

Effect: capillary rise.

For a tube with diameter D; filled with water. i

Contact angle a = 0.

_ 4o _ 4.0.074 _ 3.107°
pgD o*> D0 "
D=1lmm— z = 30 m D=0.lmm — z = 300 mm

FLOW TYPES
2.7. Laminar - turbulent flow”

Reynolds observed that a coloured fluid was not laterally dispersed in

pipe flow for sufficiently low velocities. Increasing the velocity gave



AH

a rather sudden transition to a condition with very intensive mixing.
The first condition is called laminar flow, the second turbulent flow.
Transition occurs roughly at a (Revnolds)number based on average

velocity, pipe diameter and viscosity:
- Re = 22 = 2000
: v
For an open channel with depth h transition occurs roughly at

Re = = 600

Clgl

In river engineering practice only turbulent flows are of importance.
(take h = 1 m U=1m/s v = 10"%n?/s or Re = 10%).

" The velocity in a point in a turbulent fluid fluctuates with time:

_ Z
U(t) = U + u'(t) %

/T U(e) dt
o

If T is sufficiently large:

—
U=

H| -

- ﬁ

The intensity of the turbulence is characterised by the root-mean square

(r.m.s.) value:
| 2 T2 } o - .

or the relative turbulence intensity:

H
[}
o

r varies from a few percent to 30 - 40 % in very turbulent conditions.

Steady -.unsteady flow

Steady flow T independent of time.

Unsteady flow TT dependent of time (flood waves, tides, water hammer).



u

2.9. Uniform - non-uniform flow

Unif®m flow: independent of coordinate in flow direction. Examples

of non-uniform flow: flow in expansions, back-water curves.

= > -

—_— T




A

HYDROSTATICS

. Law of Pascal. Hvdrostatic pressure distribution

It can be shown that pressure is isotropic (independent of direction)
in a fluid at rest (law of Pascal).

For a two-dimension situation it can be demonstrated as follows:
< Vo

L)

VS
¥ a'x

R x

Neglecting the weight of the element (second-order effect) the following

equations are valid:

Horizontal equilibrium:

pdA cos a = p;dz = pl(dA cos 0)
or p = PJ
Vertical equilibrium:

pdA sin a = ppdx = py(dA sin a)

orp=rp

Therefore the pressure is isotropic: p = p; = p,
 The proof can be easily extended to a three-dimensional element. Pascal'r

law also holds to a sufficient degree of approximation for a moving fluid

if pressure gradients are large in comparison to shear stress gradients.

The pressure decreases linearly with the vertically upward direction:

op _ _
3z - " P8 (3.1)

For free-surface flows, taking the atmospheric pressure as a reference
L] E

level: p = pg(h-z).

This equation also holds in flowing fluids if the streamlines are not

curved in the vertical plane and vertical acceleérations may be neglected.



3.2. Pressure on a wall

The pressure at each depth is given by:

L“}

p = og(h-z) (3.2)
Y, The force on an element dA (unit width)
is equal to:
dz
dF = pdA = Dg(h-z)sin =
Integration gives:
h
_ - dz _ l 2 1
¥ -O/Dg(h z)s'.i.n a 2 pgh sin a
The action point of this force is at 1/3 of the depth:
Zp = % h
The horizontal component of this force is equal to:
Fe = F sin a = 5 pgh® (N/m') (3.3)
This force is independent of a and even independent of the shape of the
wall (consider the horizontal equilibrium of ABCD.
2 \\c; v
= = AR
7t —=
; R/ A —
——1q tszl//
’-___-__—-—-—
e
/L e A"
~— {q a —— = B 7 e e S e T e —————

The resultant force.on a wall due to a small water-level difference Ah
is equal to R = pghAh (N/m") (3.4)

with an action point at mid depth.



3.3. Buovancy

An object in a fluid experiences an upward force due to the pressure

differences on its surface.

The net vertical force on a cylinder with

cross section dA is equal to:
dF = dF,-dF, = pgz|dA - pgz,dA
= pgdA (zl—zz)

Integration over the surface of the object

gives:

)

F =/pgdA(z -z,) = pg/dA(z -z,) = pg.volume
1 2 172
A A
(3.5)

The net vertical force is equal to the weight of the displaced volume
(law of Archimedes).
It can be shown that the action line of this force runs through the

centre of gravity of the volume. The object will sink or float depending

on:
GZF G = weight of the object.

or

2P

Dobject water
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Is Pa larger or smaller than Py
p = pressure

Draw the pressure distribution

over the vertical inside and

outside the reservoir

(sections I and II).

Compute Py ~ Pg
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functioning of a water reservoir
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The motion of water can be described by considering continuity and the

“equations of motion. In some cases also the energy equation can be

useful. In many cases equations can be simplified by averaging over
depth and/or width. This is expecially useful in river problems,

where in many cases only depth-averaged or profile-averaged quantities

4, BASIC EQUATIONS
4.1. Introducticn

are of importance.
4.2. Continuity

Considering the mass balance for a unit volume, assuming constant

density, leads to the continuity equation:

3U , 3V, oW _
= Tyt (4.1)

This equation is also valid in turbulent flow. In that case the velocities

denote time-averaged values.

Integration of (4.1) over the

depth leads to the equation:

dzy

2 - 3 -
Akl (huU) + 3 (hV) = 0 (4.2)

in which U and V are the depth-
averaged velocities. Averaging

over the width gives:

9A | 9Q _
_a_t+_a_£_0 (4.3)
in which A = cross section Q = discharge.

In words: a change in discharge has to be stored by a change in depth.
Differentiating the first term gives:

2y, 30 _

BaT+ -a—x— (4.“)
in which B = the width at the water surface (the storage width). For a

truly two-dimensional flow Eq. (4.4) reduces to:



dzy |, %= 5 (4.5)

q = discharge / unit width.

Equations of motion

The equations of motion are based on Newton's second law:

-

> -+ dU
= = - — 4.
F=ma=n T (4.6)
The forces acting are : - pressure gradients

- shear stress gradients

gravity

M

- wind etec.

== - - . . -
dU is the total differential. Consider the component in the x-direction:

_ U 3u au 3u _
du = ——at.dt + H.dx +* a—y.dy + —az-dz U= U(X,Y,Z,t>
du _ 3U , au U . 3U
oF T - TwHY Ve )
dx _
(a—E =0 etc.).

The pressure gradients give forces per unit volume of the form:

3 3 3
9x ’ 3y ’ az

Viscous shear stresses give contribution of the form:

2

ey etc. but these can be neglected in general for turbulent flows.

The equation of motion (as given by Euler) become:

U U 3u 33U _ 1 9p
VTV VT ot (-8
v v 3V W _ 193,

Ut VetV oyt Yy (4.9)
W oW W W 1 3o ‘

3t bg}-{—+V-a—y—+W-a~z—- E'a—z-“‘ gz . (4.10)

gy is the component of g in the x direction.



Time-averaging the equations (4.13) and (4.14) leads to:

3 3 = 7 m— o 82y 1 5'xz
— + — U° + — (U.V) + — (U.W) + - - — = =10
gt oX oy ( ) d ( ) g ax 0 dz
Vo3 SR 3z 1 3Ty
o e — J.V) + =< 1« + — (V.W) + — - - =
ot ax (r\') ay dz ( ) & ay p oz 0
in which 1t = - W+ U Eif
Xz pu 9z
—_— av
T = = pv'w + U 5}:

yz

(The viscous shear stresses have been shown,to demonstrate that the
terms resulting from averaging (UV) etc. have the character of a
shear stress. They are called turbulent shear stresses or Reynold's
stresses. In fact, they are not shear stresses, but represent the

effect of the transport of momentum by the turbulence. Gradients of

12 2

u'“, u'v' and v'

To solve the equations(4.15) and (4.16) also boundary conditions have

can be neglected in general).

to be given. At the free surface T__ =T
Xz yz
stress) and at the bottom also a shear stress has to be specified as

will be discussed later.

For river problems averaging over the depth is generally applied.

This leads to:

3 = d =2 3 = = 9z 1

L 9. 1. i L =

T: (h.U) + % (c:IhU )+ 3y (uZhU.V) + gh s - Teb 0
3 = 3 = = 3 =2 dzyy 1 _
ETS (h.V) + = (Gth.V) + —ay (CLBhV ) + gh 'a—y—- + a Tyb =0

U and V indicate the depth-averaged velocities.

Teb is the component of the bed shear stress in the x-direction.

@, , 3 Tepresent the effect of the non-uniformity in the velocities
2 4

with depth, for example:

1 v
&, = o s Udz
I h.02 z/b

To obtain cross-sectional averages, a second integration is carried
out over the width. The result is (with .some approximation, see for

example Jansen 1979):

(4.15)
(4.16)
(4.17)
(4.18)

= 0 (assuming no wind shear

(4.19)

'Jr
(4.20)

(4.21)



2 -
31Q_+8A%.+P.—.b=0 (4.77

3
3 X A % 0

where Q is the discharge and A is the cross-sectional area.

o' expresses the non-uniformity of the velocity distribution, P is
the wetted perimeter and Ty
a' can be computed if the velocity distribution is known. It is more

the average bed shearstress.

convenient for complicated cross sections to define a conveying cross

section Al with almost uniform velocity so that ol = 1.0.

VR i

L 3 L
T 4

Because the rest of the cross section does not contribute to the
momentum transport, A may be replaced by AC in Ea. 4.22. Neglecting
variations of Ac and a! with x, the second term in Eq. (4.22), using

the continuity equation (4.3), becomes:

3 (@ .20 3 _Q 3 __20 3 _0° ., 3 344
3x A A " 9x A2 % Ac " 3t AL2C 3x
c c &) Are
so that Eq. (4.23) becomes:
3 _ 120 3 ot LBey 2h 8zp , PTp
TR W L S AR A (4.23)

where z, =z, - h 1is the bottom level in the conveying cross section.
In a wide cross section with uniform depth h, Eqg. (4.22) reduces to:

—+0 U—+g—+—2=10 (4.24)
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Energy equation

(Bernoulli's equation)

The equation of motion (4.11) also holds along a stream line s

N
. - oU i T
in steady flow (3? = 0) neglecting friction.

Because s is a stream line there 1is

only a flow velocity in the flow
direction s, therefore (4.11) reduces
to:
oU 1 3p
3s  p 9s s (423
This may be integrated to give:
B
% u? + % + gz = constant (along a stream line)
v
or 2 +z+-—=H the Bernoulli equation. (4.26)
g 2g
%g = pressure head H = energy level
z = position head %E + z = piezometric level
u? ;
75 - velocity head
This equation can of course also be derived by considering conservation
> -
of energy (no friction). Friction can be neglected in strongly
accelerating (with distance or time) flows. .

Applications:

Al Law of Torricelli.

2

Lg

a
1Y

gives:

If a constant level is maintained in a
vessel with atmospheric pressure both at
the surface and the discharge point, neglect-

ing friction the Bernoulli equation (4.26)



A2

2

For a wide vessel o, = 0. Py =Dy =P, z, =z, = L
7 12
or L = %é— or U, = V2gL
The discharge is Q@ = A, . U, = A, vV2gL (4.27)

Another application is the Pitot tube, used to measure velocities.

Rapidly varied flow

If flow is accelerated over a short distance, friction can be neglected
in general. If also a uniform velocity distribution is assumed, then

4.26 holds for all flow lines or:

H=h + LI constant
2g
with q = U.h this gives:
2
H=h+ -9 (4.28)
2gh?

For a given H and q this is a third-order equation in h, which gives two
positive roots for h in certain conditions.
The minimum value of H for a given g is
found from dH/dh = 0 ‘which gives

h = hC = 2/3H . hc is the critical depth

/ at which for a given q water is transported
r with minimum H. For h > h_ the flow is
i subcritical or tranquil, for h < h_ super-
Vd ¢
critical or shooting.
For h = 2/3H it follows that Ei - H or Y o= 1 (Froud ber)
78 = 3 ok roude number

The transition of subcritical and supercritical flow occurs at a Froude
number of 1.

For flow over a step 2 situations may occur:

End - /f -

=

S {(n‘r<'c a/




4.

5.,

In both cases H has to be reduced with the increase in position head z

to obtain the downstream water depths.

The suberitical case gives a decrease in water level, the supercritical

casé an increase.

Momentum equation

\U

+—t

Newton's equation can be used in the form:

Fdt = d(ml)

and applied to a control volume. Consider steadv flow in a fixed

coordinate system (Euler) and take for the control volume a stream

tube (a tube bounded by stream lines so that no fluid passes the

boundary) .

m is the mass flow considered or m

through the flow tube.

“.,0

<>

= p.0dt in which Q is the discharge

Taking the equation in the x-direction:

T
| y
s & e
| N =
e e e s e e 1J "

i
]

DQ'UI

2
1

[}

1 2
D.Z . TFDI s

Application: The hydraulic jump

~F dt = pQdt. dU

pQdt (UZ-UI)

For 3 jet with velocity a Ul acting

on a plate, the resulting force on

0).:

the plate is equal to (U2

A transition from supercritical to suberitical flow generally gives a

hydraulic jump. Application of momentum balance gives: (the forces are

(4.29)



-haﬁ-_ AT = =l - & & = —T—

here the hydrostatic pressure forces:

b omon 2 I o 2
5 osh, and 7 _gh2 )3
1 R —
‘:,2- L‘E,hl - 5‘ :ghz = OqUz pQU]
Substitution of U, = q/h2 and U, = q/hl and multiplication with

2h]h2/og gives:
29
h]hz(hl-hz)(h]+hzlk= X (h,-h,)

The solution hl = h,. is trivial (no motion)

2
therefore:
: 2
h,* + hjh, - oy =0
oo Ly 2, pa?/gh =L 8q°_ _
or h, s h t //4 h ? + 29 /gh = 7 h, { T + 1 1

(the negative root has no physical relevance).

A solution is possible for h2 > hl or

q_ 5] Fry = U 5y
or or T
ghy* /Bh,

Substitution of the Fr, number gives:

A -]

|3

Z

o 5

Application of Bernoulli and momentum equation

/é | P ¢$0// I

T ———___\

—_— = — .

(4.30)

£
Vi

r nov //f- £y

ARG + =4
o —— —_—
Ac:—:/f».z_;-. - 4y é O/Ir-/r-_,z""
-__—__'-_-
r

A'“hv-"/

1.._“

&/—P’—
T o=~ s
/C/‘/‘--. /f'-;/ ’//“ w, / — \4\‘5\

T —— ol —_ - pa— —_ —_ — -~

and Bernoulli's equation can be applied:

6

From (D' to (2) we have an acceleration zdne, so friction is neglected



4.

6.

L7

2 2

U _ Uz~

By ¢ Ry g By By e
U ug*
0 + hl + 2g = ;;:_7+ h2 - ?_g

= I =1
q Llhl L2h2

2 2
q = + 9

Byt h2.2g © % By h,?.2g

from which h2 can be computed for given hI and q.

From () to () , a deceleration zdne, there is a strong energy

" dissipation by turbulent shear stresses, so Bernoulli's equation can

not be used, only the momentum equation is wvalid. b

2 _ 1 2 _ _
7Ry * B)° =5 P8 by = pally = eby

I

| 2 q? q
h, + 2 -« = h == = P =
pg ( 2. E) 2 Pg 3 p h3 P h2

—

|

q-and h2 are known, so that h, can be computed.

3
Section (@) has been taken just downstream of the step and it has been

assumed that the pressure distribution is hydrostatic there. Of course
the pressure also acts on the back side of the step, so in the momentum

equation (h2 + e) is used to compute the pressure forces.

Correction factors for momentum and kinetic energy v

In par. 4.3 and 4.4 it has been assumed that the distribution of the
velocity was uniform. For non-uniform flow a correction factor a' has

to be used in the momentum flux term:

A
. _ JUutda

o 2
oA

Boussinesq coefficient
Because integration of the Bernoulli equation over a cross section

leads to a term with u? (the transport of kinetic energy), a correction

factor a has to be introduced

A
_ Julda

o= L
L

Coriolis coefficient

Generally o > o



In the formula of the critical depth:

2
or he = E/gg

also the correction @ has to be used for a non-uniform velocityv

distribution:



4.7 Problems

g = 10 @/s?

The basin, filled up to a depth

of 2 m with water (at rest) is

accelerated with an acceleration

of 3 M/s? in a horizontal direction.

a) What will be the waterdepths at sides A and B?
b) What will be the horizontal pressure forces on sides A and B?

c) Show that the resultant force is equal to mass X acceleration for the

water.
4.2 Water flows from a vessel
-~ .
Pt = 100 K- without energy losses. How large
1= 208 ke is 50
_% .
If the vessel is mounted on
F
fom| —u frictionless wheels, how large

ﬁ: O.a/-—-" . .
%/’é is the force F to keep it in
Vg

Q position?
e

4.3 A channel is narrowed. The

[ = L waterdepths are given.
- , = p
W"f= .97 Aozd S - Compute the discharge Q
T— &, “e assuming that energy losses
ks ’ R can be neglected
e e ed. ro
Lo , B .
B =l 6 &yz0 Ji~
T T 0 7 7 e TSI
- - ra s
4.4

Same question as 4.3. Now
with a rise in the bed

level of 0,3 m.




4.13

-

No energy losses

The flow in section 2 is critical. Compute Q, h, and U

1 3°

Constant channel width. No energy losses.

h2 = 0,9 m. Compute q, h], UI' h3, U3.
. G @
P") —_— — — — —_— —_— —— — —
- —_.;;d./l .
A/Ia:"o_apo—- _%—-) 4{4‘0.69—-
e——— . — ) a.}'.:fm
/225~
4’ |
I\ A
i P
V. AT S2 %03~
1 ' e
N — M

No energy .losses between sections 1 and 3.

Compute Q, U3, h3, h&' energy loss between 3 and 4.
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Water flows from a culvert with h =

h2 = 2 m.

Q=2.7 m¥/s.

a) Compute hl’ just downstream from the outlet.

b) How large must a be? (critical flow in section 3).

A\

___ _ % 3,

< Z,

—]
qo‘. '.Jan {;

- g — Paiaman - B 4’.-1 4:”— e
o s < v -i.'\l.. = Pl X

z 870 &' 5 2w L { 4
L = ] . [,

Q=1.2 m¥/s
Compute

Neglect energy losses between sections 2 and 3.

Fl

1.8 my, B =0.45 m in a basin with

;{(-.

h2, h3, h4 and the energy loss between sections 3 and 4.



S UNIFORM FLOW IN OPEN CHANNELS AND PIPES

5.1. Equation of motion for steady uniform open channel flow

; 3 _ 9 _ _
For a steady uniform flow (5? =10, B 0,V 0),

-

the depth-averaged equations of motion (4.24) reduces to:

Ble Tp
— =
& 3x * ph -
or Tb = pghl (sin I = I for small I) (5:1)

in which I is the slope of the bed (and of water surface and energy

line). Similarly it can be shown from the full equations of motion
(4.15) that:

h=z

T(z) = pg (h-z) I = T} - (5.2)

(the linear shear-stress distribution).

B The shear-stress is equal to:
:3 . du

= - ' ' —_—
T(z) Puw’ + U =

viscous shear stress
turbulent shear stress

The viscous shear stress is only important in laminar flow and in a thin

layer close to a smooth wall in turbulent flow.

5.2. Velocity distribution

The difficulty is now the relation between shear stress and velocity
distribution which is necessary to predict this distribution.

For laminar flow the relation is:

du(z)
3z

T(z) = n.



which leads to the parabolic velocity distribution:

I

\

39

U(z) = (h? - (h - 2)%) (5.3)

(g%
<

H

and a mean velocity U= %r . h?

<

'GI

Laminar flow only occurs for Re = < 600.

Vv

For turbulent flow Prandtl gave the following empirical mixing-length
expression:

7(z) = -pu'w' = pl? (3U(z)/3z)2 2 = mixing length (5.4)

Near the bed 1(z) = Ty s the bed shear stress:

Tb = Qgh I . _”'\‘

and £ = Kz

K = kappa, von Kirmin's constant = 0.4 (from measurements)

This leads to the logarithmic velocity distribution:
K’l v ghl. ln(z/zo)

Y gh I = shear velocity = v 1, /p

U(z)

I

Define i
and take: k = 0.4
then: U(z) = 2.5 u® In (z/zo) (5.5)

z, = the point where U = 0 according to the logarithmic profile.
U(z) is equalato the mean velocity at z = 0.4 h (in fact at z = % h)
2.5 u* 1n (0.4 h/z)
5.75 u* log (0.4 h/z_) (ln > log gives factor 2.303)

OX.'I_J

01'[_]

Although the logarithmic velocity distribution was derived for the area

near the bed, it appears from measurements that the logarithmic velocity
profile is a good approximation for the full depth of the flow due to a

simultaneous decrease in shear stress and mixing-length with z.

Values of z are found from experiments on smooth and rough boundaries.

For smooth boundaries a viscous sublayer exists in which viscous effects
predominate. The approximate thickness of this layer is § = 10 v/u® (see
below) and"z0 = 0.01 § = 0.1 v/u®. For boundaries with uniform roughness

Nikuradse has found:

z. = 0.08 k
o s

in which ks was the size of the sand grains used as roughness. This k_1is
s

used as a standard roughness for other types of roughness.



= 1
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Smooth boundary Rough boundary
z = 0.01 & zo = 0.03 ks
U(z) = 5.75 u* log (1002/8) U(z) = 5.75 u™ 1og(33 2z/k)
U = 5.75 u* log(40 h/8) 0 = 5.75 u* log(12 h/k)
- _—
N
= ® 12h
U= 5.75u" log (W)
or U= (5.75V/g) vh T . log (——*lgh—-)
- EINgS - : k_ + 0.3
or U= 18/ 1 log (———lgh-—) (White - Colebrook) (5.6)
: ks + 0.36
which is the well-known Chézy equation:
U=chI (5.7)

A bed is defined as hydraulically smooth for ks < 0.18 or u" ks/v < L

hydraulically rough for ks > 66 or u" ks/v > 60.

The value of u® is related to the velocity distribution by:

Kol 3
" 5.75 " 3 (logz)

but this method gives generally inaccurate results.

Viscous sublayer §

In the viscous sublayer viscosity predominates. The velocity distribution

therefore follows from T(z) =n 3 U(z)/3z
2
T(2) = Tb = pghl = pux
. K
oy U(z) _uz
x v
u

Intersection with the logarithmic velocity distribution gives a '"theoretical"
value for &:
g = 11.6 v/u*
In‘ﬂqqt there is a transition zone from the linear to the logarithmic
prcffie extending from:
z = (5 to 30)v/ux
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/1.6 v/

Turbulence

Turbulence is a random fluctuating velocity field which interacts with
and derives its energy from the mean flow field. A turbulent velocity
field can only be described by statistical quantities such as r.m.s.
values, amplitude distribution, correlations and spectra. The amplitudes

are generally normally distributed so that the root-mean-square deviation

- gives a good idea of the fluctuations. Ou = (U _'ﬁ)z where U = the

instantaneous velocity and T the time-averaged value.

A turbulent field has a diffusive character. Gradients of momentum and
scalar quantities are rapidly diminished by this diffusive action.

The analogy of turbulent motion with the movements of molecules leads
to the analogy given by Boussinesq and the introduction of a eddy-

viscosity concept for the apparent turbulent shear stress -p u'w

o e T

-pu'w' = p €0 9U/9z (u', w' are velocity fluctuations in horizontal

and vertical direction)

so that the total shear stress becomes:

T=T1.§H'-D u"w|=o (U+E).a_U.
m’ 2z

B * eddy viscosity.

The logarithmic velocity distribution:

U(z)/ux = %

In (z/z
(2/2)
and the linear shear stress distribution:

T(z) = 1(b) (h - 2z)/h

give the following distribution for Em(z):

o

(o



c (z) = x u'z(l - z/h)
m

The average value of £ (z) (averaging over the denth) is therefore:

5.4, Resistance laws

The relation for C derived from the White-Colebrook expression :

1 2R _ TR
C =18 log (m) Re = T (5.8)
is given in the figure below:
2 R
- <3 o & -_
3 P 8 8§ 8 3 3 2 B ¢ = .

e { i —
| L1+ ‘1
— >

=1 i 4—‘+“’
—
Re = r.mf i ™ HYDRAULICALLY
ROUGH
2000 -
Re s 500x 107 =

e
L =]
i |

I =

1000

Res 200x107 —— —

Res 1002108 — —

Rer 50x108 — 200

100
Re= 20x10° —
Res 104107 —— 30 = —_———
s -1 I
— ! .
f m) Re s Sl o ey et s s s
20 | HYDRAULICALLY
SMOOTH
Res  2x107.— —m-==-_-e_—__—_f_-_-:—,'_?_'_"__:',':_-_’
Row 12107 o - o ol o e i e e e e e e e e S
5 . { f bt —— e ] —
Re « 500 - __—___._____.__.____.71_-—-
! i !
| | I i v
" ! —— - i
— - |
Chézy coefficient for open channels (mi/s)
Roughness value ks &

D.

For uniform sediment ks
For graded sediment k5 = 065 to DQO'

o :
s {42 0 l)hripnle

For ripples k

Errors in ks give the following errors in C:



kactual |

2
w
2

k .
estimated

C <y,
est—-act

For an arbitrary cross section with surface area A and wetted perimeter P,

.the equilibrium condition leads to:

{5.9)

|

Tp = pg 5 I = pgRI R =

l .-Ulb

in which R is the hydraulic radius. For irregular cross sections also
h has to be replaced by R in Eq. 5.8. For a rectangular cross section

=1 . :
with width b: R = bh.(b + 2h) . For composite cross sections as occur

in rivers: | _j

W

e
N
*

- z

X

f

A

1

!

4

1\\(!
TN AN

| PP e B SR P - o

4 Y

it is better to-apply(5.7) to the various parts and to add the computed

ps

discharges:

¥ _ 3

q = /2 h.Oay =¥T. /* c.h l24y (5.10)
¥
1

A disadvantage of the C value is that it is not dimensionless.

A better coefficient is the Darcy-Weisbach friction factor:

(see Par. 5.5 on pipe flow)

The logarithmic expression for C may be approximated for

R/kS = 10 to 1000 by:

=125 (5—)‘/6 (Sreiokler) s (5.12)
S

which gives an expression that is equivalent to the Manning equation:

= 1.49 ) R2/311/2

U= (ft-s units !) (5.13)

« P== B (m-s units) (5.14)
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For values of Manning's n see Ven Te Chow (1959). Values range from

0.01 for very smooth channels to 0.1 for very rough vegetated channels.

Flow in circular pipes

From the balance between wall shear stress and forces (pressure and

gravity) it follows that:

T = ogl 7 (5.15)
-

I = gradient of piezometric level. f]

This corresponds to R = » = Iiﬂ_ﬂi = & r
i esponds to R = 7 D 4
The shear stress distribution is linear:
2r

T(E) = T, 5

For laminar flow'the velocity distribution is parabolic:
_ Bl 2 _ 2 :

U(r) 160 (D 41*) {(5.18)
Integration gives:

7= 8L p2 (Poiseuille's law) (5.17)

2v
For turbulent flow the logarithmic distribution (5.5) holds with sufficient
accuracy. From this fact a relation between U and I can be given.

A T
I=%. 7 (5.18)

with as a useful design relation the White-Colebrook formula based on
o

their and Nikuradse's experiments:

k

1 s 2.51 _u
AT 721 (3975t Ren). Re =3 (5.19)
The rough wall case corresponds to :
\/B 14.8 R i
=——g= i it [
C X 17.7 log ks R Z (5.20)

This shows that the use of the hydraulic radius concent gives some minor

modifications in the coefficients for various cross sections.



5.6 Problems
2 =6 Lo/ 3
g =10 /s V=10 " m‘/s o = 1000 ¥&/m
5. =
4 A channel has a wall roughness of ks = 2 mm
’ . [aEm B=h=0,5n Slope T = 10>
‘ : F Compute Q.
hr 03—~ e
Vet i

w

5

.2 A pipe with a diameter of 0.3 m and a length L of 3000 m, and a
A-value of 0.02 has to transport a discharge of Q = 0.2 m?/s.

What is the necessary pressure difference over the pipe section?

.3 Given: a wide open channel has the following characteristics:

depth h=2m roughness ks = 1 mm

107>

Question: compute U. (Is the bed rough/smooth/transition?)

slope I
same for ks = 0.05 mm and ks = 5 mm.

.4 Given: wide open channel:
depth h=1.2m ks = 0.5 om
3
discharge/m' q = 0.8 @ /s.m

Question: compute slope I. Is the bed smooth/rough/transition?

.5 Given: wide open channel:
k =5 mm
s P
I 2.10
3
q 1.6 0 /s.m

Question: compute depth h.

5

.6 Given: measurements in a wide open channel gave the following velocity

profile:
U (z) = 0.148 log alz, (U in ™/s, z in m.)
Questions: 1) compute Ut
2) compute ks if the velocity at z = 0.1 m was equal to

0,.35 Bfs.
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Col

STEADY NON-UNIFORM FLOW

an

“ Introduction

The flow 1s steady so %? =0

There are two classes of problems:

- gradually varied flow: draw-down and backwater-curves;
bedfriction important but assumed equal to that in uniform flow.

- rapidly varied flow: flow through outlets, over dams;

friction generally not important.

6.2. Gradually varied flow
2.1. General

For small bed slopes ib and uniform flow Chézy's equation can be applied:
U= c/hl I =i (6.1)

h is used here, because the considerations are limited to wide open

channels so R = h.

The bed shear stress T, may be given therefore as:

-2
T, = pghl = £EQ (6.2)
CZ

For a given discharge q (m?/s.m) the equilibrium depth follows from:

q = U.h
2 1
or h=h = g /3 (6::3)
» c%i
b
Of importance is also the critical denth hc where:
= U
Fr = };g—h- 1
q2 1/3
or h = hC = E— (neglecting a) (6.4)
Critical uniform flow occurs for hn & hC or for a bed slone ibc
i =&
be Cp_ (6.5)
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The equation of momentum (4.24) becomes now:

= 3p . dh gl .
Bee "L ¥R Fagie 0 S, (6.6)
L ° o M\I
dz ; dh |
—_—W = = e
because e Lb+ % i

a' has been taken equal to 1.

The continuity equation was:

dg _ g péh, 40 ,
dx 0 0 dx ol dx (6.7)
. du ; -
Elimination of F 3 from (6.6) and (6.7) gives:
I—E (_iE= i — _ﬁ (6
& gh |ax &% 7B
I
dh g 1 e i B
—_— 3 c"h 1 (6-9)
or S i — h
L0
gh

or with the substitution of hn and hc; (6.3) and (6.4):

dh B = gt
S R W | the equation of B&langer (6.10)
dx B3 = 3 -

C

(6.10) gives dh

= = for h = hc’ this is not correct, because equation

(6.8) shows that %% is undefined in that case.

-

Draw-down and backwater curves

Eq. (6.10) can be solved if q, C and i, and a boundary condition are

b
given.

Important: For subcritical flow (Fr < 1) we need a boundary condition

at the downstream side, so the computation is in the upstream direction.
For supercritical flow (Fr > 1) a boundary condition at the upstream

side is needed; the computation is carried out downstream.

The profiles of the water surface depend on:

bed slope: horizontal slope ipb =0 type H
mild slope 0 < iy < ipe type M
critical slope Iy = ipe tvpe C
steen slope i > ibc tvne S

negative slope ip <0 type N



and the depth range

For a classification

zone |
zdne 2
zdne 3

h > h
n

h > h

C

h between h_ and h
c n

h < h
n
6.1

see Fig.

&

h < h
¢

(taken from Ven Te Chow)
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Classification of flow profiles of gradually varied fow.




Some examples are given in Fig. 6.2 (taken from Ven Te Chow)

dy/our+ (el

— V1] worizontgl

e —_— e

e s P e Py A »”
T R AT 7z 7
Horizontal slope

/:" . £.2Z. Examples of flow profiles,

The most frequent curves in river problems are:

The backwater curve upstream of a dam.

At the dam h is given and h > hy, b > hy, so g%

h decreases in the upstream direction.

is positive:

M,: the draw-down curve, for example above a transition from a

mild slope to a somewhat greater mild slope.

supercritical flow downstream of a weir.

The transition of M; to M, or M, gives a hydraulic jump.

g



1 E:ha
' dh T T g0

Eq. (6.10) can be written as:

- - - 3 a3 i
Suppose h = n.hn and B = | (hc/hn) = | c
‘ h h d
Then dx = — . dn - 8. =% . —S
1p 1y 1-n
h
so x = IE [ﬁ - B Jf T%Dﬁg-] + constant

The function of Bresse is defined by:

d 2
Br(n) = T:%T = é—ln [ 3 el

This function is given in the table below. The constant is omitted in

(6.15) because the solution is used in the form:

—y =D -n.) - g B
X, =% = o (ﬂz n, g (Br(ﬂz) = r(ﬂl))

TH:TTT J - éi arc cotg [

2n+1
3

|

(6.
(6.

(6.

(6.

(6.

11)

IZ)

13)

14)

< 15

16)



n Br(n) n Br(n) ! n Br(n) n Br(n)
|

0 -0,605 0,90 | +0,614 | 1,002 | +1,953 1,18 | +0.509
0,10 -0,505 0,91 | +0,652 1,005 | +1,649 1,20 | +0,479
0,20 -0,404 0,92 | +0,695 1,010 | +1,419 1,25 | +0,420
0,30 -0,302 0,93 | +0,743 1,02 +1,191 1,30 | +0,373
0,40 -0,198 0,94 | +0,798 1,03 +1,060 1,35 | +0,335
0,50 -0,088 0,95 | +0,862 1,04 +0,970 1,40 | +0,304
0,60 +0,032 0,96 | +0,940 1,05 +0,896 1,50 | +0,257
0,65 +0,099 0,97 | +1,040 1,06 +0,838 1,60 | +0,218
0,70 +0,171 0,98 | +1,178 1,07 +0,790 1,70 | +0,190
0,75 +0,252 0,990 | +1,413 1,08 +0,749 1,80 | +0,166
0,80 +0,346 0,995 | +1,645 1,09 +0,712 1,90 | +0,146
0,82 +0,388 0,998 | +1,952 1,10 +0,681 2,00 | +0,132
0,84 +0,435 0,999 | +2,183 1,12 +0,626 2,50 | +0,082
0,86 +0,487 1,000 ® 1,14 +0,580 3,00 | +0,055
0,88 +0,546 1,001 | +2,184 1,16 +0,541 large| +1/2n?

b)

Function of Bresse for a two-dimensional channel.

The table may be used in this way: Compute the value of U in the
boundary point 1. Select a value of the depth in point 2 and compute

Ny Then compute Ax = X, "X The stepsize is unlimited as long as

e
the conditions (q, hp, he, ib) do not change.

Use Eq. (6.9) and'compute (EE) in the boundary point 1I.
dx’ 1 P

Then compute hé in a point 2 at a distance Ax = Xy = X

Compute (g%)z with this hé in point 2 and take the average value
dh 1 ,dh 1 dh

1,277 @& 7 &e

Compute h2 with.this corrected value of dh/dx, and repeat if necessary.
This method can also be used if the conditions change along the river

(for example if the width of the river and therefore g changes).

' The permissible step length depends on the relative changes in h and the

requiredaccuracy. In parts with rapidly changing depth, small sten

sizes have to be chosen.

(9

(o)
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Given: a river with q = 1.8 m%/s C

“any other methods, cften in the form of standard computer programs

are available in the literature. (Also for nocket calculators).

Example

45 mi/s i, = 10

0 with water level 0.5 m above

n

Downstream level control at x

h . Compute the water levels for x # 0.

Step 1. General:
2 11/3
h, = [ Cﬂib } =2.52m h >h,
h = [gi- e = 0.69 m ::et:e iiow o
" 5 = 0. i, tvpe.

In this case only upstream levels (a back-water curve) can be computed.

B=1- (h/hy)?®=0.983=1.0

The boundary condition at x = 0 is hj = R * 0,5m=3.02m

so N, = 3.02/2.52 = 1.20.

For a given nj, Brj, x; and h; can be computed

i ni Byi -xj (km) | h, (m)
0 |™1.20 | 0.479 0 3.02
1 | 1.18 | 0.509 1.26 2.97
2 | 1.16 | 0,541 2.57 2.92
3 | 1.14 | 0.580 4.06 287
4 | 1.12 | 0.626 5.72 2.82
5 | 1.10 | 0.681 7.61 2.77
6 | 1.08 | 0.749 9,83 2.72
7 | 1.06 | 0.838 12.57 2.67
8 | 1.04 | 0.970 16.40 2.62
9 | 1.02 | 1.191 42.13 2.57




Step 3. Numerical method

Eq. (6.11) can be written as:

Y e A

n]—] .

The numerical scheme becomes:

Bha  n’-0.02
i

=T = £ )

1p

Xi#] = ¥ _ .
m—i{f(nﬂ.]) % f(nl)}
(The corrector step is not necessary because f(”i+z) can be computed
directly).
, i n | ni=0.02 = (%14 - oxg) - X
: m L’ km km
0 . 3.02- 1.20 2432 0
: ; I .30
1 Z.97 1.18 250 1=30
] .32
2 2.92 1.16 2473 2.62
1.45 :
3 2.87 1.14 3:01 4.07
1.62
4 2..82 1a12 3.40 5.69
' 1.85 =
S 2.77 1.10 3.94 7.54
i 2.20 = =
6 2572 1.08 = .4,75 9.74
275
7 2.67 1.06 6.11 12.49
' 3.76
8 2.62 1.04 8.80 16.25
6.52
9 257 =02 17.0 22.77
=~ o
R o

For small values of x,

numerical method are small, but the error increases for large x.

the differences between the Bresse and the
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6.3. Rapidly varying flow

3%

In this class of problems, the phenomena are of z limited dimension
so wall friction can be neglected in general. In strongly accelerated
flow Bernoulli's equation can be used (no energy loss) but in
decelerating flows there is a strong influence of Reynolds stresses

which cause a large energy dissipation especially in separated flows.

Sudden expansion. Carnot losses

Conrred valume
Z

- - -

ﬁé?__—_?/ 4

I
g L 2] —~¢

|
e !
o - - - T T T T®

Ly

Between section@and@ the flow decelerates which will give some
increase in pressure. On the control section acts a pressure difference
P,~p, -therefore. The hydrostatic pressure can be neglected in this

case (hydrostatic and equal in both sections).

Continuity equation: Q EIA = U.A, =

®
l 272 4 71 T

. - =3
Momentum equation: Fdt dmU

n
©
2
(=%
[
—
(=1}
I.\,l
(o]
~
i

172 “2

= 6.18
< _ Pg g : 4

_Adding the velocityihead on both sections gives:

{if =1L, )3

AH = H]"Hz £ 2—8 (6-19)

(the Carmot energy loss for a sudden expansion).

Lt custohary to express the head loss in terms of 6]2/23. This gives
a dimensionless loss coefficient:
Us Ay,
= o reeis e — ] - —_—

AR RS EF - b (6.20)

exp

The friction loss in a pipe with a length L and diameter D can also

be expressed as a £ value because:
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the hydraulic gradient varies with D> . (prove this).

Entrance losses. Flow through a culvert

The slope of the energy line is much flatter in the second part because

coke ==
4

TE S T Ede ;$:4u2?7
7] -_— — Dfrg
o ' —
\ —

The part 0-2 is a zdne where strong accelerations occur. Here we can

apply Bernoulli's equation, taking into account the contraction in

the culvert pA.

- 2 2
H H H h J| U2 h rﬁ
= = = + — =} + — =  —
I A R R A 2 7 2g (uA)2

h = piezometric level

(Why is there an increase in water level near F?)

The head loss from 2 to 3 can be computed with the Carnot formula



te

Expressing this in the velocity U3 in the culvert gives:

LH

Between 3 and &4 there is a friction loss:

o 2

At the exit the loss can be approximated by the Carnot formula

& -5=

A .2
(1 _E)

The total loss is equal to H, - HS' If the discharge and one of the

1

water levels is given (h0 or h5) then the other levels can be computed.

The entrance loss can be reduced by streamlining the entrance, while

03‘/28

the exit loss can be reduced by a gradual increase in profile (diffusor,

widening angle < 10°).

For information on local losses see for example Lencastre (1969) or

Miller (1978).

Broad-crested weir

For low discharges flow is subcritical. Because the weir is long, the

stream lines are almost straight and the pressure is hydrostatic.

Between section 0 and ! Bernoulli's equation can be applied or:

Between | and 2 there is some water level rise which in certain cases
can be computed with the Carnot formula. It is usual however to take

into account this effect by introducing a discharge coefficient m,

taking h, instead of hw

(6.22)
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¢ = m.h, v 2g(H -h,) (6.23)
An average value for m = 1.1, for smooth dams m = 1.3, for very

rough dams m = 0.9.

If the downstream water level is decreased, keeping Ho constant, then

the discharge increases untill the depth at the dam hw becomes critical:

2
= b, =5 B

In that case the discharge is given by:

= 2 42 3
B m.hc./ 2g(H -h ) = m. 3/ 5g. H /2 . (6.24)
In general m < | because of friction and entrance losses:

0.8 <m< 1.0

If the downstream water level is below the crest of the dam, then the
water level at the end of the dam is lower than hcl (Explain: consider

the water-pressure at A)

Z

— o —

The brink depth h, is equal to = 0.6 h

br c

6.3.3. Short-crested weir

The flow above the crest of the weir has curved streamlines. This gives

a deviation of the hydrostatic pnressure distribution.
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In a flow with a curvature r a pressure gradient:

[}

or & B _ U (6.25)
r on pg gr

gl
|
=

is needed. (Compare the force needed to keep an object in a circular
motion. For a more extensive discussion see one of the handbooks.).
This means that in curved flow the pressure decreases in the direction
of the centre of curvature. The pressure distribution in section A is
not hydrostatic therefore, but less than hydrostatic. This means that
higher velocities than in the long-crested are nossible and that the
discharge coefficient m will be larger (maximum value .35 for T/H =

8.7 e L.0u)s

Flow in river bends

Due to the flow
curvature there exists a

water surface gradient in

the direction of r:

N

T = (6.26)

The velocity varies with
denth, but the surface
slope depends mainly on

the mean velocity U.

; d ) 4 This means that the

lateral pressure gradient

is too small for surface

water particles (U5 > )

and too large for water
particles near the bed (Ub < U). The surface particles move therefore to
the outer bed (increasing r) whereas the bed particles move towards the
inner bend (decreasing r). The result is a secondary current. This is

lmportant for sediment-transporting rivers because the bed load (particles



moving over the bed) will move inward. The deviation o, depends on the
dimensions of the bend, the velecity distribution in the vertical and
the bed roughness.

As an average:

10h
fy, = 40 (6.27)

(see Rozovskii 1957)

The water surface slope is of the order:
=2
U /gR
This gives a water level difference of the order:

BU’ /gR.

-

For a river with B = 100m R = 1000m U = ] ®/s this gives a

difference of 0.01 m.
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6.5 Problems

A two-dimensional channel has a change in bed slope at point B, 250 m

upstream from a free overfall. C = 40 m*/s q =1 ma/s.m

a = | g = 10 M/s?,

Questions: a) Compute h, and hp assuming critical conditionms in A
b) At what distance x upstream of B (point C) is the

waterdepth 1.02 times the normal depth?

—_—
Y100 €5 = i =

Discharge : q-=-5.36 m3/s.m. g = 9.81 m/s?

a) At which point B is the waterdepth equal to 1.05 times the normal
depth? (compute LB). How large is the depth at point A?

b) What type(s) of backwater curve(s) do you expect? Sketch the water

surface profile.

—n—.__‘ z P
w
i o= 1,25.167% - ‘ =
b, T h
Ci= 60D/ & = 1.09
5 3
Q=1243T /g g =9,8] mg?

» B = 150 m.

In this channel, the bed is raised with z = 0.36 m. Compute the
water depths at A and B. At which point C is the water depth 1.05 m
times the normal depcht

Sketch the water surface; what type(s) of backwater curve(s) do vou

expect?
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< 1 8__ L 220 Y \?\\-
- = = i 4,
-4 I ’ : A
I.b = ],]2510 m = ~
C = 60 m£/s
3
a = 1.09 q=1.87/5.,m,
g = 9.81 @/s?

Compute hA and hB if the channel bed between A and B is lowered with
0.4 m.
For what distance BC is the depth in point C equal to 0.95 times the

normal water depth?

In a river with B = 100 m ib =10
: 3
q=20/s.m' C =50 mi/s
a dam is constructed with B = 40 m  discharge coeff. m = 1.2 D=8m

- Compute the water depth at the dam and the distance upstream where the

water depth 1s equal to |.! times the normal depth.

—T

S ———

2
X | T == o e —_ ___r
T = €
|

e 3 /%:u?r— B
} _‘— T te——a . X;’r

1 1
T =— &
A lﬂ "“i::> :>\\T“=5 7
Given: a two-dimensional flow with hl = 2 m and h2 = 1.375 m.

Questions: a) How large is the discharge per m' width (q) assuming
that there 1s no energy loss between sections | and 2 ?
b) Compute h3
c) How large is the energy loss between sections 2 and 3 ?
d) How large is the pressure (in N/m?) in point A?
e) Is the pressure in B equal to the hydrostatic pressure

or smaller/greater than that value?



UNSTEADY FLOW
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General

The equations of continuity and motion for flow in a river were:

(taking @' = 1.0 3zy,/8, = ah/ax—ib, Ty, = pgl /Cc? , see par. 4.3)

Continuity

Motion =+ U =+ g 2, gip + g =0

3 dimensional

o 2h . 30
Continuity B T + X

1
o

Motion

3Q _ 208 h _0%Bey 30, g0? _
at A - 3t T 8Ac (1 - op3) ¢ T shelp ¢ C?RAc 0

Different approximations are possible depending on the phenomena

concerned.

Steady flow. Rating curve

The rating curve gives the relation between Q and h in uniform steady
flow. For a 2-dimensional river:

0 - h 3/2 (Chézy. C comnstant)

Q- h 5/3

For a river with flood plains, the rating curve will be flatter (a

(Manning. n constant).

smaller increase in ).

Jarm

(7 -

(7.

3)

&)
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7.3. Flood waves

ud .

r

. Kinematic wave

For very "slow" waves, with relatively small increases in discharge
and depth it may be assumed th@t she flow is guasi-steady at any time.

This reduces -the equation of motion to:

/

(A, = Beeh. R = h) -

Introducing 65.5) in (7.3) gives:

3h ., dQ  2h _
B 3t "'a-l_'l' .= =10
or: ﬂ-{-é&ﬁa—h: 0 (7.6)
T3t 2B 9x

This equation represents an undamped wave (the kinematic -wave) which

-1
has a celerity ¢ =B . dQ/dh (in general c = dQ/dA) or:
B & -
c = %~ EE : (e = % U in the 2 dim. case)) (7:7)

(for the Manning equation the coefficient is 5/3)

. Diffusive wave

The kinematic wave approach is only valid under limited conditions.
&
(see Grijsen and Vreugdenhil 1976). A better approximation is obtained

by leaving the term 9%/3x in the equation, still neglecting the time-

dependent terms.

This leads to (2 dimensional):

-2
gh _ v . ol
e T o i RETE (78
oh _ dg _
ac o a ‘ il

q can be eliminated by differentiating (7.8) for constant iy and C

ho. 29 30, 3¢
ox2 cip? 7 3x c2pt 9x (7.10)
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Elimination of ?%‘ gives:

Q.

~ 203 nd - n
& .eh R, df 88 0
at 2q ax< 2 Jx
or 397— k ¢ ? + & iﬂ =0 (7.11)

at gx? ox

; Eht dq _ 3 =

% = = .k = X

with k _55_ and ¢ ah 5 U

For small variations k and c are constant (linear approximation),
(7.11) has the character of a diffusion equation,with a damped wave
with celerity ¢ = 3/2 U as solution.

Comparison of the diffusive wave with the kinematic wave shows that for

the first type:
q = ch>/2 (i, - %h/gx) 172 (7.12)

Following the wave it mav be assumed (approximation !) that:

|
9x ¢ ' 3t (7.13)
which gives Jones' formula (Henderson 1963) :
_ ! dh, }
Q= Qsteady il ZgE TS (T L}

(7.13) is not valid near the peak of the wave, but is a reasonable
approximation. The relation between q and h depends on ahfax L
The discharge for a given h is larger in the rising part of the wave

than in the falling part for the same h.
p i

For "fast" waves the inertia effects are also of importance, so the
full equations lrave to be considered, which reauires a numerical
L9 e :

solution in general (for a more detailed review see Jansen 1979 and
Cunge et al. (1980)).
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4.

Dvnamic’ waves. Translatorv waves

In the dynamic approach for "fast'" waves, the inertia effects are

dominant. Friction effects can be neglected as a first approximation.

Assumptions:

. -2, 2
- friction can be neglected: gU /C°'h = 0

= small Froude number U.30/3x = 0
- wave height n small n=~"h-= hO << h0 or U.3h/3x = 0
- horizontal bed ib =0

The result is:

_ 3U an _
motion: e = 0

%12

S, an .
" —_— 4
continuity: 3t Ny

From these equations it follows that:

3%n a%n 3°U 32U
ez~ & Po ez -0 and 3cz ~ 8o x2 0
3%n 32 :

or m‘ == C2 mrl =0 with ¢ = % Vgho

The solutions in this case (no initial water motion) are waves with
celericy ¢ = t V/ghy. In situations with an initial velocity U, the
celerity becomes c = U, £ VEE;. |

Examples are waves generated by the discharge from shiplocks or the
unsteady releases from power plants. The relation between n and AQ is

given by:

~J
i

@7

(7 -

(7€)

(7.17}

(7.18)

(7.19)
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For larger values of n, the wave becomes steener and can even form

a breaking wave (tidal bore). .

The propagation of a disturbance (with velocity ¢ = Uy * Vgh) is much
faster than that of a flood wave (¢ = 3/2 Us). This not in contradiction:
Adding an amount of water gives waves which propagate as a é&namic

wave but are strongly damped by friction. The added volume (the flood)

can not disappear, it is propagated with ¢ = da/dh.

v .

e .



7.5 Problems
g = 10 B/s?
Tl
W'. L —— —
1 = i =
: Ia.o-u ?
1 _ - v g
i i il /
A channel has the following characteristics:
width 50 m
depth 2 m
)
slope 10
roughness ks = ]0—2 m
Questions:
a) Compute the discharge and average flow velocity for steady flow
b) Comp&te the critical depth hC assuming a = 1.0
c) Compute the celerity of a kinematic type flood wave
d) Compute the celerity of a translatory wave
e) Explain the difference between the two wave types.
72
@ ) 2
' @ = o — = e - - g e 2
by
- Q ~ k.
i (SN 4
e e , 200 ~J
¥ :

A river has a main channel with a width of 20 m and a flood plain with

- a width of 200 m. The average flow velocity for a depth of 2.0 to 2.1 m

ig 1.Z Bhg,
Questions: .
a) How large is in situation | (no water in the flood plain)

ai) the celerity of‘a kinematic type flood wave

as) the celerity of a translatory wave ?
b) How will the celerity of the flood wave change if the water level

1s raised with 0.] m (situation 2)

¢) Explain the difference between flood waves and translatory waves.

a
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