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Executive Summary 

The complex geological formation and hydrodynamics of the rivers of Bangladesh have 

exposed the communities along the riverbanks to one of the most devastating natural disasters 

known as bank erosion. The difficulties in predicting river erosion have hindered the 

effectiveness of various protection measures undertaken to save thousands of people who are 

displaced every year.  Due to the misery caused by riverbank erosion in Bangladesh and the 

need for a riverbank erosion prediction tool, Water Resources Planning Organization 

(WARPO) recognized the importance of carrying a comprehensive research to understand the 

river bank erosion processes and develop a river bank erosion prediction tool. Therefore, an 

agreement has been signed between WARPO, Ministry of Water Resources, Government of 

Bangladesh (GoB) and Bureau of Research, Testing and Consultation (BRTC) represented by 

Dept. of Water Resources Engineering of Bangladesh University of Engineering and 

Technology (BUET) to conduct a collaborative research on river bank erosion with full GoB 

financial support. The objective of the study is to understand the hydro-morphological 

characteristics of a selected reach of the Jamuna river and to develop a bank erosion prediction 

tool based on numerical modeling and deep learning technique.  

Recently published literatures show that Deep Learning (Neural Network) is a promising 

methodology to tackle many challenges. Access to big data sources in the recent years and 

huge leap in parallel computation have allowed deep learning to achieve breakthrough results 

in a vast number of research domains. It has been shown time and time that neural network-

based techniques are able to excel in non-linear problem domains where some sort of 

probabilistic modeling is required. The problem of riverbank erosion prediction is a very non-

linear one and a novel technique to try out is deep learning. 

The Jamuna, being one of the largest braided rivers of the world, is continuously increasing its 

width due to erosion of the banks. The study area of this research encompasses a selective 

reach of approximately 80 km, from downstream of the Bangabandhu Multipurpose Bridge to 

15 km downstream of the confluence of the Jamuna and the Ganges. The historical planforms 

of the Jamuna river during the last 180 years define a sinuous, active migration corridor within 

the wider floodplain. Recent trend of the bank erosion of this river shows that the banks 

continued to erode on both east and west side resulting in widening of the river and causing 

displacement of inhabitants on both banks. 

The approach of this research comprises of data collection and analysis, satellite image 

processing, application of numerical modeling and deep learning. Landsat images of the study 

area for last thirty-two years, historical water level and discharge at eighteen stations for forty 

four years, cross sections data at sixty one locations  and bathymetric data of the study area for 

last four years have been collected from WARPO and BWDB. The full batch of Surface 

Reflectance Landsat images were downloaded using Google’s Earth Engine platform to ensure 

convenience and authenticity. Moreover, pre and post-monsoon bathymetric surveys were 

carried out at a selected part of the study reach. The quality of the analysis was ensured by 

effective and thorough data quality checking schemes.  
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This study comprises of three different analysis and modeling efforts such as a) Hydrological 

and Morphological Analysis, b) Numerical Modeling and c) Deep Learning. At first, analyses 

of historical hydrological data, morphological data and satellite images have been done. The 

hydrological data analyses consist of estimation of maximum, mean and median of historical 

water level and discharge data. Historical trend of bank erosion of the study area has been 

delineated from Landsat images to comprehend bankline shifting. Historical bathymetric data 

has been compared to understand the morphological changes and movement of bar/dunes in 

the study area. An attempt has been made to correlate historical discharge data, morphological 

data and bank line shifting from satellite images. These analyses give an insight of the physical 

processes related to bank erosion for any braided river, in particular the Jamuna river. 

From historical hydrologic data analysis, mean annual discharge was found to be around 17000 

m3/s. Maximum and minimum flood discharge was recorded as 102535 m3/s and 3095 m3/s 

respectively. From annual hydrograph at Bahadurabad station it was found that water level 

varies around 6 m from dry to monsoon season. 

Erosion and deposition were calculated for both banks of Jamuna river using 32 years of 

satellite images to understand the erosion pattern during this period.  From 1988 to 2019, total 

erosion along the Jamuna river left bank was 23800 ha with an average of 770 ha per year. 

Whereas for the right bank of the river total erosion was 11840 ha and 380 ha per year. It was 

evident from the data that erosion rate was higher for left bank of the Jamuna river. From the 

planform analysis it was found that width of the Jamuna river has an increasing trend and it is 

widening at the left bank side. Since the early 1980s, the Jamuna River in this study area 

widened from 14.2 km to 15 km in the 2020 and now the average width is 14.69 km. 

From hydrological and erosion data a correlation between peak discharge and total erosion was 

found, with higher discharge erosion will be higher. It was observed that for peak discharge in 

the year 1996 and 1998, erosion was maximum and erosion was less in case of lower discharge. 

Morphological change was observed for four years with available data collected from 

FRERMIP. The change was also monitored with fine resolution data, specially collected under 

this project for a specific site. Yearly change in river bathymetry was monitored through both 

spatial assessment and assessment along thalweg. spatial change was observed through GIS 

mapping and significant erosion and deposition was observed along the active channels. The 

analysis with thalweg line also indicates the same. Longitudinal profiles show a high spike of 

deposition, always followed by a steep crest erosion and a medium crest deposition is followed 

by medium to low crest erosion. Maximum erosion(-15.07m) occurred along the center profile 

in 2017-2018 and Minimum erosion (-8.06 m) occurred along the right profile in the year 2016-

2017. Maximum deposition was observed as 20.81 m along the left profile in the year 2018-

2019.  

Combination of morphological change analysis and planform change analysis provided a very 

thought-provoking finding. When a sand bar is formed in the middle of a channel it diverts the 

flow towards the riverbank. when these diverted flows hit the riverbank, it exerts impact 

pressure almost perpendicularly and with higher impact the erosion will be higher. The 
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magnitude of the impact may vary with the flow angle. This analysis was made at six erosion 

prone area identified from planform analysis. It was found that due to formation of bar when 

flows were directly diverted towards the bank significant amount of erosion occurred.  

In numerical modeling, bank erosion processes for the study area have been studied using a 

2D hydro-morphological model. The main objective was to develop a 2D morphological model 

for the study area and to predict the morphological changes for a year and compared with the 

observed data. To do so, first a 1D hydraulic model has been developed for a 150 km reach 

starting from Bahadurabad to the confluence of Ganges and Jamuna. This 1D model provides 

the necessary boundary conditions for the 2D model. 2D hydrodynamic model was also 

calibrated and validated using HecRas model results. 2D hydrodynamic model was developed 

to understand the flow characteristics of the model domain. Flow velocity, flow direction, and 

water depth was examined to get a better understanding of the situation. Using well calibrated 

2D hydrodynamic model, 2D morphologic model was developed. Morphological model was 

developed to reproduce the morphological scenario of Jamuna river.  

Morphological modeling of such active river like Jamuna was very challenging. Moreover, 

there was limitation on fine resolution data, computational power etc. The best available 

bathymetry data have a resolution of 500 m but in Jamuna river within 500 m the river bed 

may change several times. Again, there is constraints on model capacity, for morphological 

modeling SRH 2D can handle about thirty thousand to forty thousand. To accommodate this 

model cell size was coarse. Including all these uncertainties it was very difficult to replicate 

the real scenario.  

Model may predict erosion or deposition correctly but the extent of erosion and deposition was 

not obtained. This may be due to very coarse resolution data and mesh grid size. Although the 

model cannot predict the bed form change accurately for this grid size it could give some 

indication of bank erosion. To assess the probability of bank erosion bed shear stress along the 

bank was observed. It was found from the simulation that at the places where erosion took 

place in the year 2019, shear stress is higher and where the bank remained almost at the same 

position shear stress is relatively lower. In erosion prone areas, erosion took place in 2019 and 

from model result it can be found that shear stress is relatively higher in those areas. Similarly, 

in areas, where there was little to no erosion and bed shear stress along the bank are relatively 

lower.  

In the final part of this study, deep learning modeling technique has been applied to predict 

future banks using historical satellite images. Total thirty-two years of satellite images from 

1988 to 2020 have been used in this modeling. Model architecture of neural network consists 

of six convolution layers, one LSTM layer and two fully connected layers. This trained and 

validated model has been used to predict river banks for the year of 2018, 2019 and 2020 and 

the predicted river banks have been compared with the actual river banks respectively.  

The banklines predicted by the Deep Learning Technique for different years have been 

compared with corresponding actual bankline. A number of erosion prone regions have been 

selected to closely compare the model results. The regions of erosion have been selected based 
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on visual inspection with a general principle of having erosion of more than 100-150 m as the 

average error in prediction is around 3 to 4 pixels equivalent to 90 to 120 meters. In 2019-

2020, the model can predict 4 erosion areas more or less accurately in the left bank. However, 

in the right bank the model predicts erosion in 3 locations but cannot predict only at one 

location. In 2018-2019, the model can predict erosion in all five locations in the left bank and 

failed to predict the erosion at one location in the right bank. In 2017-2018 the model predicts 

erosion in 4 locations along left bank but failed to predict in two locations and in the right 

bank, the model predicts erosion in 3 locations and could not predict at one location. It is to be 

noted that the bankline prediction by CEGIS model marked in 2018-2019 has also been 

compared.  

A summary of the model performance in predicting number of erosion prone areas is provided. 

Out of 24 erosion locations during 2017 to 2020, the model could predict erosion in 79% of 

the locations. Although the model generally underpredicted the magnitude of the erosion, the 

prediction of location in the erosion prone area is very satisfactory.  

After developing the model using deep learning technique, a predictive tool has been 

developed using python script and PyQt5 library. The software will enable users to easily apply 

the full deep learning pipeline explained in this research by accessing the underlying 

Application Programming Interface (API) through an intuitive Graphical User Interface (GUI). 

This will help people easily get reliable prediction results of future bank erosion events by 

following some easy to use steps. The software has four different pages for using different 

features of the deep learning modeling approach. A training workshop has been conducted on 

the use of the prediction tool to develop the capacity of WARPO in predicting bank erosion 

and suggesting effective bank protection measures. Furthermore, the prediction tool has been 

handed over to WARPO after the training session. A national workshop has been arranged on 

May 19, 2021 to disseminate the outcomes of this research. All the participants, including the 

chief guest, appreciated the research outcomes and requested to develop prediction tool for 

other rivers, especially for the part of lower Meghna estuary.  

Defining bank lines was found to be a hard problem given the versatile nature of river 

planform. But identifying prominent features like bars, vegetation, waterbody is an easier task 

and consensus can be reached. Future work can look into predicting all of these prominent 

features as a semantic segmentation mask. This is a promising avenue as a lot of recent deep 

learning works deal with semantic segmentation problems. Prediction tool can be also be 

developed for other rivers. 

In addition to the research carried out by the research team, two workshops (Inception and 

final), two field visits, three training workshops (on SRH2D, on QGIS and on Prediction Tool) 

have been conducted as a part of capacity building of WARPO. Four research team members 

from WARPO were also engaged throughout the project period. Their inputs in this research 

are highly appreciated. BWDB supported the project by providing various bathymetric data 

which are also acknowledged. Last but not the least, we appreciate WARPO and Ministry of 

Water Resources, Government of Bangladesh, for funding this research.   
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Chapter 1:  Introduction 

 Background 

Riverbank erosion (Figure 1-1 and Figure 1-2) is a major problem in Bangladesh. It is one of 

the devastating recurrent natural hazards that costs loss of large areas of floodplain and 

displacement of huge population. The rivers of Bangladesh lie in an active delta which is a part 

of the Ganges, Brahmaputra, and Meghna basins. These rivers are meandering and braided and 

become very active during flood season. These rivers bring huge amounts of sediments during 

high monsoon flow. High flow in the monsoon causes flood as well as bank erosion. The flat 

delta lands of Bangladesh offer little resistance to the hydraulic forces of the rivers, particularly 

during the periods of high flow. It is estimated that about 5% of the total floodplain of 

Bangladesh is directly affected by river erosion (Rahman, 2010). It has been estimated that 

tens of thousands of people are displaced annually by river erosion in Bangladesh, possibly up 

to 100,000 (Rahman, 2010; Faruque, 2007). 

Bangladesh Government pays attention to prevent bank erosion and ensuring the safety of the 

people. National Water Policy, 1999 (NWPo, 1999) in its directives 4.2q gives instruction to 

undertake survey and investigation of the problem of riverbank erosion, and develop and 

implement master plans for river training and erosion control works for preservation of scarce 

land and prevention of landlessness and pauperization. In compliance with the NWPo (1999), 

National Water Management Plan (NWMP, 1999) presents some programs to take preventive 

work at selected locations of the major rivers.  

 

Figure 1.1 Bank Erosion in Jamuna River 

Water Resources Planning Organization (WARPO) is mandated to give clearance to water 

resources projects according to Bangladesh Water Act, 2013. However, WARPO have already 

been providing clearance to projects taken by BWDB on pilot basis since 2007. FRERMIP 
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(2014-2018) is one the most important projects undertaken by BWDB for the improvement of 

bank erosion scenario. This is the part of master plan of stabilizing the river Jamuna and the 

Padma. As per the draft plan, the width of the Jamuna River could be reduced to 7.5 kilometers 

by 2030 from 11.6 kilometers estimated in 2015, which will help reclaim 87,000 hectares of 

land (Dhaka tribune, December, 2016) The intensity of bank erosion varies widely from river 

to river as it depends on several factors like river flow, water level, flow velocity, sediment 

transportation, bank material, river planform etc.   

Center for Environmental and Geographic Information Services (CEGIS) has been making 

yearly prediction of bank erosions and morphological changes of the Ganges and Brahmaputra 

rivers using time-series satellite images, GIS and RS techniques. However, their prediction is 

mostly based on empirical equations and analysis of good quality long time series images 

(CEGIS, 2017). Numerical modeling has been using to predict the time-evolution of the 

braided pattern in time (Jagers, 2003) and temporal developments of selected bars/islands of 

the Jamuna River (Shapma, 2018). Recent trends on various literatures shows that Deep 

Learning (Neural Network) is a promising methodology to tackle many challenging tasks such 

as object recognition, machine translation, sequence to sequence prediction, weather 

Figure 1.2 Erosion and Accretion along three major rivers.( Source: CEGIS) 
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forecasting. Hasan (2018) demonstrated that missing portion of LANDSAT images could be 

reproduced with significant amount of accuracy by two previous years’ data. There is immense 

scope for research by posing river bank erosion as a spatiotemporal sequence prediction 

problem and use deep learning techniques to predict future scenarios from historical satellite 

images along with other relevant types of data.   

Considering the misery caused by river bank erosion in Bangladesh and the need for a river 

bank erosion prediction tool WARPO realized the importance of carrying a comprehensive 

research to develop a river bank erosion prediction tool. As such WARPO requested Dept. of 

Water Resources Engineering (DWRE) of Bangladesh University of Engineering and 

Technology (BUET) to conduct a study to understand river bank erosion process and develop 

a prediction tool (Appendix A-1). DWRE realized the importance of this study and gladly 

agreed to conduct a study on river bank erosion. Therefore, a collaborative research project has 

been initiated with the active participation of dept. of DWRE and WARPO with the full 

financial support from Government of Bangladesh (GoB). An agreement has been signed 

between WARPO, Ministry of Water Resources, Government of Bangladesh and Bureau of 

Research, Testing and Consultation (BRTC) represented by the DWRE, BUET to conduct the 

study.  

In this research, a comprehensive study will be carried out to understand river bank erosion 

processes of rivers of Bangladesh using numerical modeling and deep learning techniques of 

satellite images. As a pilot basis, the research would concentrate on a selected reach of the 

Jamuna river. The study area consists of an 80 km reach of the Jamuna river. The upstream 

boundary is located just downstream of the Bangabandhu bridge and ended approximately 15 

km downstream of the confluence of the Jamuna and the Ganges. It is clear that riverbank 

erosion causes tremendous miseries every year to thousands of people living along the banks 

of the selected reach. Based the outcome of this study, a bank erosion prediction tool for the 

study area will be developed. This tool will be an asset for WARPO in predicting future river 

bank erosion for the selected river.  

 Research Objective 

The goal of the aforesaid research is to understand river hydrodynamics and morphological 

processes including river bank erosion and finally to develop a riverbank erosion prediction 

tool for the selected study area.  

The following specific objectives have been set to achieve the goal of this research: 

• To collect all necessary secondary data including satellite images, historical 

hydrological data and bathymetric data from different sources 

• To conduct hydrographic survey in a selective region of the study area to obtain high 

resolution bathymetry data. 

• To analyze the historical trend of river bank erosion in the study area using satellite 

images  
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• To apply deep learning techniques to predict bank erosion rate for the study area.  

• To analyze measured bathymetric data of different years to understand the 

morphological characteristics of the study area 

• To develop a 2D hydrodynamic model to understand the flow hydraulics in the study 

area 

• To develop a 2D morphological model to understand the general morphodynamics and 

bank erosion processes for the study area. 

• To develop a tool to predict riverbank erosion for the selective study area combining 

deep learning and numerical model results.  

• To arrange workshops to disseminate research progress and findings. 

• To provide technical support to WARPO professionals on river bank erosion process, 

modeling and prediction.  

 Research Team Composition 

As mentioned before this is a collaborative research project with the participation of 

department of WRE and WARPO. WRE team consists of one Principal Investigator, one Co-

Principal Investigator and two Research Assistants. WARPO team consists of four members. 

Team composition is shown in Table 1-1 

Table 1-1 Research Team Composition 

Team Designation Name 

BUET TEAM 

Principal Investigator Prof. Dr. Md. Mostafa Ali 

Co-Principal Investigator Prof. Dr. Hasan Zobeyer 

Research Assistant A.S.M Julker Naem 

Research Assistant Kazi Antor Hasan 

 

WARPO 

TEAM 

Senior Scientific  

Officer (Navigation) 

Kazi Saidur Rahman 

Scientific Officer (Water) Alamin Kabir 

Scientific Officer (Ground Water) Jamal Haidar 

Scientific Officer (Soil) Shuvro Bhoumic 
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 Organization of the Report 

Chapter 1 includes background of the research, objectives and organization of the report. This 

chapter describes why this research is necessary. The research team composition is also 

described in this chapter. 

Chapter 2 includes literature review which describes the process of braiding and different bank 

erosion mechanisms. Important factors of bank erosion along with previous works on the 

research problem are presented here. A brief introduction to the machine learning techniques 

and previous studies on sequence to sequence modeling are also discussed. 

Chapter 3 comprises of the extent of the study area and its hydrological and morphological 

characteristics followed by methodology of the research and data required along with source 

in Chapter 4. 

Chapter 5 comprises of the 1D and 2D numerical modeling and result analysis. Chapter six 

includes deep learning modeling approach and result. The Chapter 7 provides a description on 

the use of the prediction tool developed in this study. Chapter 8 describes the activities related 

to capacity building of WARPO officials.  

Chapter 9 provides concluding remarks on the finding of this study followed by references and 

Appendices.  
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Chapter 2:  River Bank Erosion: Theory and Literature 

 Introduction 

The Jamuna is one of the world’s largest braided rivers. Braided rivers consist of a network of 

wide and shallow channels flowing around braid bars or islands. These bars reposition 

themselves along with the channel bed. Bank erosion phenomena is part of bathymetry change, 

as the process of bank erosion begins with toe scour. The largest rivers may have bank line 

shifts of hundreds of meters per year (Baki and Gan, 2012). 

Braided rivers in general have been extensively researched in the past concerning various 

subjects (Bristow and Best, 1993). Research into braided river morphodynamics has been 

largely focused on scale experiments of gravel-bed rivers. General behavior and planform 

changes of sand bed braided rivers were studied (Coleman, 1969; Bristow, 1987; Thorne et al., 

1993; Sarker et al., 2014) as well as development (Ashworth et al., 2000) and flow patterns 

around braid-bars (McLellan, et al., 1990) and bankline shifts (Takagi et al., 2007; Baki and 

Gan, 2012).  

 Overview of River Morphology 

Erosion and deposition in a braided river cause the river to extend its extent over a large time 

period. Several factors influence these processes. Eroded material moves downstream and 

eventually deposited causing the changes in the planform of the river bed. Thus, these 

processes are to be known to understand the river morphology. 

2.2.1  Riverbank erosion and deposition process 

Erosion: 

Vanoni, 1975 distinguished between geological (or natural) erosion and accelerated (or human-

induced) erosion, viewing the latter as a mainly local phenomenon. Valdiya (1998) had shown 

that geological erosion through mountain ranges, such as the Himalayas, continues to produce 

immense volumes of sediment. It is often difficult to determine whether an observed erosional 

process is natural or whether it results wholly or partly from human influences. For example, 

gullying and landslides that appear natural may have been triggered or aggravated by 

overgrazing, significant land use modifications such as urbanization, infiltration of irrigation 

water, or deforestation. However, some sources accelerate the erosion rate. Among which- 

agricultural activities, forest activities, urbanization, dams and river regulation, warfare and 

population migrations are significant (Garcia, 2007) 

Deposition: 

Geologic deposition occurs because of natural processes of tectonic uplift, volcanic eruptions, 

earthquakes, climate warming, glacial movements, and so on. On the other hand, human-

induced deposition resulting from various human activities usually results in relatively rapid 
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changes in river morphology and sedimentation. Products of erosion may be transported and 

deposited over a wide range of distances from their source. Where there are long distances to 

the ultimate sink of the oceans, only a minor fraction of the source load may arrive there. 

Causes of sediment deposition can be characterized as upland river deposits, intermediate and 

lowland river deposits, sedimentation due to mining activities, deposits in lakes and reservoirs 

(Garcia, 2007). 

2.2.2  Sediment Transport 

There are two common ways of classifying the sediment load. The first divides the sediment 

load according to the mechanism for transport into bed load and suspended load. The second 

classifies the load based on particle size into wash load and bed sediment load. The suspended 

load, as the term denotes, moves in suspension and is that part of the load which is not bed 

load. Wash load is fine sediment moving in suspension which makes up a very small part, 

usually a few percent, of the sediment on the bed. Wash load is commonly taken as the silt and 

clay fraction of the bed sediment, i.e., that fraction with grain sizes finer than 0.062 mm. The 

bed sediment load consists of particles that are coarser than the wash load. 

Bagnold (1956) defined the bed load transport as which is in contact of bed and has negligible 

gravity effect, whereas the suspended load transport is defined as in which the excess weight 

of the particles is supported by random successions of upward impulses imported by turbulent 

eddies.  But Einstein (1965) defined bed load transport as the transport of sediment particles 

in a thin layer about two particle diameters thick just above the bed by sliding, rolling, and 

making jumps with a longitudinal distance of a few particle diameters. The bed load layer is 

considered to be a layer in which mixing due to turbulence is so small that it cannot directly 

influence the sediment particles, and therefore suspension of particles is impossible in the bed 

load layer. Further, Einstein (1965) assumed that the average distance traveled by any bed load 

particle (as a series of successive movements) is a constant distance of about 100 particle 

diameters, independent of the flow condition, transport rate, and bed composition. In Einstein’s 

(1965) view, saltating particles belong to the suspension mode of transport, because the jump 

heights and lengths of saltating particles are greater than a few grain diameters. On the other 

hand, Bagnold (1956, 1973) regards saltation as the main mechanism responsible for bed load 

transport. 

Bed Load Transport 

Bed load particles roll, slide, or saltate along the bed thus essentially tangential to the bed. In 

general, 𝑞𝑏 is a function of boundary shear stress 𝜏𝑏and other sediment parameters; that is,   

𝑞𝑏 = 𝑢𝑏𝐶𝑏𝛿𝑏 (2-1) 

 

in which 𝑞𝑏 is the volumetric bed load transport rate (m2/s), 𝐶𝑏 is the volumetric sediment 

concentration (i.e. volume of sediment/ volume of water-sediment mixture), 𝑢𝑏 is particle 

velocity (m/s), and 𝛿𝑏 is the thickness of the bed load layer (m).  
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The bed load transport rate can also be defined as the product of the number of moving particles 

per unit area, the particle volume and the particle velocity (García 2000), 

 𝑞𝑏 = 𝑁𝑏𝑉𝑏𝑢𝑏 

 

(2-2) 

in which 𝑁𝑏 is the number of particles per unit bed area(m-2), 𝑉𝑏 is the particle volume (m3), 

and 𝑢𝑏 is the particle velocity (m/s). 

Erosion-Deposition in a Bed 

The interaction between bed sediment and the water column through erosion and deposition 

has been developed so that the sediment mass conservation can be formulated. 

                                               (1 − 𝜆𝑝)
𝜕𝜂

𝜕𝑡
= −

𝜕𝑞𝑏𝑠

𝜕𝑠
−

𝜕𝑞𝑏𝑛

𝜕𝜂
− 𝑉𝑠(𝐶𝑏

̅̅ ̅ − 𝐸𝑠)                     (2-3) 

Where 𝜆𝑝 is the porosity of the bed material, 𝐶𝑏
̅̅ ̅ is a near-bed value of the volumetric sediment 

concentration, 𝜂 is bed elevation with respect to the datum, s denotes the streamwise direction 

and n denotes the lateral direction in a two-dimensional case; then two components, qSs and 

qSn result, 𝑉𝑠 is sediment fall velocity. 

The basic form of Eq. (2-3), without the suspended sediment component, was first proposed 

for the case of a one-dimensional flow interacting with a sediment covered bed by Felix Exner 

(1925). 

Bed Load Transport Formulae 

A large number of bed load relations can be expressed in general dimensionless form. 

Meyer-Peter and Muller (1948): 

 𝑞∗ = 8(𝜏∗ − 𝜏𝑐
∗)3/2 (2-4) 

where 𝜏𝑐
∗ is 0.047. This formula is empirical in nature; it has been verified with data for uniform 

coarse sand and gravel. Even though it was developed for alpine streams in Switzerland, it 

enjoys wide use in coastal sediment transport (Soulsby, 1997). 

Einstein (1950): 

 𝑞∗ = 𝑞∗(𝜏∗) (2-5) 

 

1 −
1

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
(

0.413
𝜏∗ )−2

−(
0.413

𝜏∗ )−2

=
43.5 𝑞∗

1 + 43.5 𝑞∗
 

 

(2-6) 
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This relation constitutes the first attempt to derive a bed load function. Note that this relation 

contains no critical shear stress. It has been used for uniform sand and gravel. Gomez and 

Church (1989) recommend its use for cases where the local bed load transport rate needs to be 

calculated. Yang and Wan (1991) found that it could predict sediment transport rates in large 

rivers but not in small rivers and flumes. 

Egluend Hanson (1967):  

Engelund-Hansen’s (1967) equation is based on the energy balance method. The equation 

can be written as: 

q
t =

0.05u5

(s−1)2g0.5d50c3

 

 

Where, 

s= Bed slope 

u= Average velocity 

d= Mean particle diameter 

Yalin (1963): 

 
𝑞∗ = 0.635𝑠(𝜏∗)

1
2[1 −

ln(1 + 𝑎2𝑠)

𝑎2𝑠
] 

 

 

(2-7) 

Where, 

 𝑎2 = 2.4(1 + 𝑅).4(𝜏𝑐
∗)1/2 

 

(2-8) 

 
𝑠 =

𝜏∗ − 𝜏𝑐
∗

𝜏𝑐
∗

 
 

(2-9) 

𝜏𝑐
∗ is evaluated from the Shields curve. Two constants in this formula have been evaluated with 

the aid of data quoted by Einstein (1950), pertaining to 0.8 mm and 28.6 mm material. Wiberg 

and Smith (1985, 1989) were able to reproduce Yalin’s relation, with their saltation-based bed 

load transport model. 

2.2.3  Bed Forms 

The major influence of sediment wave is related to changes in bed configuration following 

changes in water temperature (Southard 1989). Large bed forms, such as megadunes, can make 
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navigation difficult by increasing shoaling rates and endangering the stability of pipelines and 

tunnels (Kennedy and Odgaard 1991; Nemeth et al. 2002). 

The ripples, dunes, and antidunes are the classic bed forms of erodible-bed, open-channel flow, 

which are the product of flow and sediment transport, and profoundly influence flow and 

sediment transport. In fact, all of the bed load equations are strictly invalid in the presence of 

bed forms. The adjustment necessary to render them valid (i.e., removal of form drag). Figure 

2-1 illustrates the schematics of different bedforms. 

Dunes 

 Dunes are well-developed and tend to have wave heights scaling up to about one-sixth of the 

depth. 

 ∆

𝐻
≤

1

6
 

 

(2-10) 

Where, wave height, ∆ that scale with the flow depth H. Dunes  migrate downstream. They are 

approximately triangular in shape and usually possess a slip face, beyond which the flow is 

separated for a certain length. A dune progresses forward as bed load accretes on the slip face. 

Generally, very little bed load is able to pass beyond the face without depositing on it, whereas 

most of the suspended load is not directly affected by it. Dunes are characteristic of subcritical 

flow. 

The celerity of dunes is a small fraction of the mean flow velocity. For the case of large sand 

bed rivers, Fedele (1995) obtained an empirical relation to estimate the velocity of dunes in the 

Paraná and Paraguay Rivers in South America. Vionnet et al (1998) have also proposed a 

methodology to compute sediment transport from dune celeritiy and amplitude based on 

kinematic-wave theory. More recently, Serra and Vionnet (2006) extended the analysis to 

account for the transport of smaller dunes superimposed on larger ones. 
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Figure 2.1 Schematic of different bedforms.(F= Froude number; d =sediment size) 

( Source: Sedimentation Engineering, ASCE) 

 

 

 

Antidunes  

Antidunes are distinguished from dunes by the fact that the water surface undulations are 

nearly in phase with those of the bed. They are associated with supercritical flow. Antidunes 

may migrate either upstream or downstream. Upstream-migrating antidunes are usually rather 

symmetrical in shape and lack a slip face. Downstream-migrating antidunes are rather rarer; 

these have a well-defined slip face and look rather like dunes. The distinguishing feature is the 

water surface undulations, which are very pronounced in the case of antidunes. The potential-

flow criterion dividing upstream-migrating antidunes from downstream-migrating antidunes is 

(Kennedy, 1963). Values lower than the equation 2-11 are associated with upstreammigrating 

antidunes. 

 
𝐹𝑟2 =

1

𝑘tanh (𝑘)
 

(2-11) 
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Ripples 

Ripples are dune-like features that occur most of the time in the presence of a viscous sublayer. 

The existence of a viscous sublayer does not imply that the flow is either laminar or turbulent. 

Rather, when the flow is turbulent, the existence of a well-defined viscous sublayer implies 

flow in the turbulent smooth regime rather than the turbulent rough regime. Ripples look very 

much like dunes in that they migrate downstream and have a pronounced slip face. They 

generally are much more three-dimensional in structure than dunes, however, and have little 

effect on the water surface. 

Alternate Bars 

Alternate bars are bed forms most commonly found in straight alluvial channels (Bridge 2003). 

Their geometry is three-dimensional. Navigation conditions and streambank stability can be 

affected by alternate bars. When alternate bars are present, pools develop on alternate sides of 

the channel and the floor meanders from pool to pool. Under these conditions, the flow might 

start to attack the stream banks, eventually causing bank erosion and leading to the initiation 

of stream meandering (Blondeaux and Seminara 1985; Rhoads and Welford 1991). The pools 

formed by alternate bars also provide habitat and play an important role in stream ecology. 

Progression of Bed Forms 

Various bed forms are associated with various flow regimes. In the case of a sand-bed stream 

with a characteristic size less than about 0.5 mm, a clear progression is evident as flow velocity 

increases. The bed is assumed to be initially flat. At very low imposed velocity U, the bed 

remains flat because no sediment is moved. As the velocity exceeds the critical value, ripples 

are formed. At higher values, dunes form and coexist with ripples. For even higher velocities, 

well-developed dunes form in the absence of ripples. At some point, the velocity reaches a 

value near the short-wave critical value. Near this point, the dunes are often suddenly and 

dramatically washed out. This results in a flatbed known as an upper-regime (supercritical) flat 

bed. Further increases in velocity lead to the formation of antidunes, and finally to the chute 

and pool pattern. The last of these is characterized by a series of hydraulic jumps. 

Relationship in bedform of resistance: 

For equilibrium flows in wide straight channels, the relation for bed resistance can be expressed 

in the form 

 𝜏𝑏 = 𝜌𝐶𝑓 𝑈2 (2-12) 

where 𝐶𝑓 is bed friction coefficient. If the bed were rigid and the flow rough, 𝐶𝑓 would vary 

only weakly with the flow. As a result, the relation between 𝜏𝑏 and U is approximately 

parabolic for a flat rough bed. Figure 2-2 illustrates variation of bed shear stress and Weisbach 

friction factor. 
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2.2.4  Bank erosion and bed scour 

The major problem of braided river is bank erosion. The main objective of this research hence 

is to predict erosion prone area. Stream bank erosion is a natural geomorphic process occurring 

in all channels. It is one of the important mechanisms by which a channel adjusts its size, shape 

and slope to convey the discharge and sediment supplied to it from the upstream watershed. 

Most existing numerical models do not consider bank erosion explicitly and therefore, have 

limited use for studying the geomorphic response of a channel. 

Stream bank erosion is also a dominant source of sediment supply in many river systems, 

leading to sediment management problems. It contributed about 37% in the River Ouse, 

Yorkshire, UK (Walling et. al., 1999), 50% in the Midwestern streams, USA (Wilkin and 

Hebel, 1982), 78% in the Gowrie Creek, Murray Darling Basin, Australia (Howard et. al., 

1998), 80% in the loess area of Midwest United States (Simon et. al., 1996), and up to 92% 

(including channel scour) in Gelbaek stream, Denmark (Kronvang et. al., 1997). An increase 

in sediment supply due to accelerated bank erosion can be a major cause of non-point source 

pollution within river systems (Technical Report No. SRH-2010-22). 

Bank erosion occurs by a wide variety of processes. Broadly, they can be divided into two 

groups (Watson and Basher, 2006). Figure 2-3 illustrates the whole divisional classification of 

bank erosion. 

Figure 2.2 Variations of bed shear stress b and Darcy Weisbach friction factor 

 with mean velocity U in flow over a finesand bed (after Raudkivi, 1990). 
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In cohesive bank, the main erosion process is undercutting by the flow, which destabilizes the 

upper part of the bank. Failed material deposits at the toe and is eventually washed away. Banks 

may collapse due to water saturation, especially after a water level drop in the channel (Jagers, 

2003). Uddin and Rahman (2011) found that in a bend in the Jamuna River, near-bank shear 

stresses were six times higher than the critical stress. All of this leads to rapid erosion. 

Subsurface flow is known to play a part in riverbank erosion. It usually follows bank recharge 

by high flow or rainfall. Due to the presence of a less permeable layer the outflowing water 

concentrates. If the gradient is sufficient, entrainment of particles and possibly larger scale 

erosion occurs (Hagerty, 1991). Bank erosion due to seepage is documented by Karmaker and 

Dutta (2013) in the Brahmaputra River. 

In the Jamuna River, eroding banks cause bank erosion of up to 500 m or even 1000 m per 

year in extreme conditions (Klaassen and Masselink, 1992). The average erosion rates were 

found to be around 200 m per year by Baki and Gan (2012). Sharper bends were found to cause 

faster erosion. Influence of vegetation is negligible, as its roots do not penetrate deep enough 

to have an effect on the undercutting process (Klaassen and Masselink, 1992). Erosion is not 

limited to extreme events and is common even during the dry season and in smaller channels 

(Sarker et al., 2014). 

Important Factors Associated with Bank Erosion 

Knighton (1998) provided a detailed discussion on factors influencing bank erosion processes. 

Some important factors are: 

 

Figure 2.3 Processes of Bank Erosion 
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i) Flow Properties: Important Properties are magnitude, frequency and duration of 

flow discharge, magnitude and distribution of stream velocity and shear stress, and 

level of turbulence. 

ii) Channel Geometry: Including channel width, depth, slope of channel, and stream 

curvature (concave, convex, straight). 

iii) Bank Geometry: characterized by height, slope, length, profile, and shape. Bank 

height and slope are critical parameters when assessing stream bank erosion 

potential, particularly when dealing with cohesive bank material. 

iv) Bank Material: Bank properties include size, gradation, cohesiveness and 

stratification of bank materials. 

v) Bank soil moisture condition: includes moisture content, seepage, pore water 

pressure and piping. 

vi) Vegetation: includes type, percentage of cover, age, root depth, and exposed roots. 

vii) Storm Frequency: characterized by rainfall intensity and duration, and is related to 

the pore-water pressure, seepage flow, and piping failure. 

2.2.5  2D Hydrodynamics and Morphological Model 

Numerical modeling has been using to predict the time-evolution of the braided pattern in time 

(Jagers, 2003) and temporal developments of selected bars/islands of the Jamuna River 

(Shapma, 2018). One of the objectives of this study is to apply 2D morphological model to 

simulate morphological behavior and to understand the morphological processes for the study 

area. Therefore, 2D hydrodynamic and morphological model will be developed for the study 

area using a well-known 2D hydraulics model, e.g., SRH-2D. SRH-2D model is a 2D depth 

averaged hydrodynamic and morphological model developed by United States Bureau of 

Reclamation (USBR). SRH-2D model is a finite volume-based model and can handle flexible 

mesh. It can also solve 2D hydraulics and morphological change with any hydraulic structures 

such as Bridge, Culvert and Levee. 2D model will be developed using recent hydrologic and 

bathymetric data. Once the model is calibrated, the model will be used to predict future 

morphological changes. 

The following 2D Saint-Venant eq. (2-13 to 2-15) is being solved in numerical modeling using 

SRH-2D model. 

𝛿ℎ

𝛿𝑡
+

𝛿𝑞𝑠

𝛿𝑥
+

𝛿𝑞𝑦

𝛿𝑦
= 0 

(2-13) 

𝛿𝑞𝑥

𝛿𝑡
+

𝛿𝑢𝑞𝑥

𝛿𝑥
+

𝛿𝑣𝑞𝑥

𝛿𝑦
+

𝑔

2

𝛿ℎ2

𝛿𝑥
= 𝑔ℎ(𝑆𝑏𝑥 − 𝑆𝑓𝑥) +

1

𝜌

𝛿ℎ𝜏𝑥𝑥

𝛿𝑥
+

1

𝜌

𝛿ℎ𝜏𝑥𝑦

𝛿𝑦
 (2-14) 

𝛿𝑞𝑦

𝛿𝑡
+

𝛿𝑢𝑞𝑦

𝛿𝑥
+

𝛿𝑣𝑞𝑦

𝛿𝑦
+

𝑔

2

𝛿ℎ2

𝛿𝑦
= 𝑔ℎ(𝑆𝑏𝑦 − 𝑆𝑓𝑦) +

1

𝜌

𝛿ℎ𝜏𝑦𝑥

𝛿𝑥
+

1

𝜌

𝛿ℎ𝜏𝑦𝑦

𝛿𝑦
 (2-15) 
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After solving for h (depth), q (discharge) is solved thus having bed elevation (z) and local 

velocity (v). 

 The Machine Learning Perspective 

The goal of predicting riverbank line shifting, is to predict the future planform of the reach 

over a specific period of time. Very few previous studies have examined this crucial and 

challenging water resources prediction problem from the machine learning perspective. In 

this project, riverbank line shifting is formulated as a spatiotemporal sequence forecasting 

problem in which both the input and the predicted output are spatiotemporal sequences. 

The technical issues of mathematical modeling may be addressed by viewing the problem 

from this perspective. However, such learning problems, regardless of their exact applications, 

are nontrivial in the first place, due to the high dimensionality of the spatiotemporal sequences; 

especially when multi-step predictions have to be made, unless the spatiotemporal structure 

of the data is captured well by the prediction model. Moreover, building an effective 

prediction model for the river planform satellite data is even more challenging due to the 

chaotic nature of braided rivers. 

2.3.1  Machine Learning 

The science of Machine Learning (ML) involves enabling computers to learn from data, 

without being explicitly programmed. Data is used to train the system to perform a specific 

task. The model, which uses some form of mathematical optimization and statistical methods, 

recognizes the patterns and intricacies within the data. This can be then used to automate tasks 

or guide decision making, simply based on data and the mathematical model.  

Machine learning is being increasingly used in our day-to-day lives. For example, all email 

service providers today use ML to filter out spam emails. Similarly, the online shopping 

recommendations provided to us by ecommerce websites is based on ML. The field of machine 

learning is developing at a fast pace. Researchers have been developing algorithms and new 

methodologies and also simultaneously applying these techniques to new application areas 

such as medical diagnosis (Kourou et al., 2015; Foster et al., 2014) and climate change 

(Lakshmanan et al., 2015)). The evolution of intelligent systems is definitely beneficial 

because it makes processes more efficient, and at the same time, requiring minimal human 

intervention. 

Machine learning is a field that is focused on the construction of algorithms that make 

predictions based on data. A machine learning task aims to identify (to learn) a function f : X 

→ Y that maps the input domain X (of data) onto output domain Y (of possible predictions) 

(Bekkerman et al., 2012). Functions f are chosen from different function classes, dependent on 

the type of learning algorithm that is being used. Mitchell (1997) defines "learning" as follows: 

"A computer program is said to learn from experience E with respect to some class of tasks T 

and performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E" (Mitchell, T., 1997). The performance measure P tells us quantitatively how 

well a certain machine learning algorithm is performing. For a classification task, the accuracy 
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of the system is usually chosen as the performance measure, where accuracy is defined as the 

proportion for which the system correctly produces the output. Experience E that machine 

learning algorithms undergo are datasets. These datasets contain a set of examples that are used 

to train and test these algorithms. 

2.3.2  Solving Machine Learning Tasks 

A wide variety of tasks exist that could be solved with machine learning. Two popular machine 

learning tasks are regression analysis and classification. In regression analysis, the relationship 

amongst variables is approximated, for the successful prediction of a value given some input. 

This task is solved by outputting a function f : Rn → R that fits the data. Regression analysis 

can be used for example to forecast future stock prices in the trading world. In classification, 

the machine is asked to determine the category n that a certain input belongs to. The task can 

be solved by outputting a function f : Rn → {1, ..., n}. A popular classification problem is object 

recognition for intelligent systems. Classification can be used for example to classify objects 

in a warehouse to determine the correct destination of each object, with current state-of-the-art 

object recognition making use of deep learning algorithms (Krizhevsky et al., 2012). 

2.3.3  Deep Learning 

Artificial Neural Networks (ANN) are an important class of machine learning models, used 

for both supervised and unsupervised tasks. The distinction among deep learning, machine 

learning and artificial intelligence is shown in Figure 2-4. The structure and functioning of 

ANNs are loosely inspired by biological neural networks. The brain consists of a large number 

of interconnected neurons, which ANNs try to mimic. ANNs consist of multiple layers of 

simple processing units known as nodes, which are connected by edges with weights (Gurney, 

2014). An analogy between biological and artificial neuron is depicted in Figure 2-5.  
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Figure 2.4 Distinction between AI, ML and DL 

 

 

Figure 2.5 Analogy of biological neuron (left) and its mathematical model (right) 

 

Over the last decade, there has been an increasing interest in neural network architectures 

consisting of many layers. Along with the availability of massive amounts of data and powerful 

hardware for computation, such model architectures were able to outperform humans in a 

number of cognitive tasks (Schmidhuber, 2015; Najafabadi et al., 2015). This led to the 

creation of a sub-field of machine learning known as deep learning (LeCun et al., 2015).  

The most basic version of an ANN model is a feed-forward neural network (Figure 2-6). 

However, there exist other architectures such as Recurrent Neural Network (RNN) (Williams 

and Zipser, 1989; Elman, 1990) and Convolutional Neural Network (CNN) (LeCun et al., 
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1995). RNNs perform particularly well on sequential data such as in natural language 

processing (where sentences are considered as sequences of words). Hence, the focus of this 

project will be on RNNs.  

2.3.4  Introduction to Neural Networks 

In order to understand the computational model of artificial neural networks, one needs to 

begin from its building block, known as the perceptron (Rosenblatt, 1958). Inspired from the 

brain's neurons, a perceptron is a simple computational model that takes in one or more inputs 

and provides a single value as output. This is illustrated in Figure 2-7. Based on this output and 

a pre-defined threshold, the perceptron acts as a binary classifier, i.e., if the output value is 

greater than the threshold, the input is assigned to class 1, else it is assigned to class 0. 

Let x1, x2, x3 be the inputs to the perceptron model. w1, w2, w3 are the series of model weights 

corresponding to each input variable. This simple model consists of two operations: 

• The first step is to multiply each input with its weight, followed by a summation. To 

this result, we also add the bias term b so that the model has a flexibility for location 

shift. 

• Next, we assign a class label (either 0 or 1), based on a binary activation function which 

requires a pre-defined threshold (refer Figure 2-7). 

Figure 2.6 Feed Forward Neural Netrork  
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The result is the predicted value of output y corresponding to the given set of inputs. In order 

for the predicted output to be close to the desired output (ground truth), we would need to make 

adjustments to the weights w1, w2, w3 and bias term b. 

Typical activation functions include: logistic sigmoid (𝜎), tanh, and rectified linear units 

(ReLU). The functions are defined by equations, 2-13, 2-14, and 2-15 respectively. For 

regression problems which require predicting continuous values, linear activation is used. 

Linear activation applies the identity function shown in equation 2-16. 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
                                                                  2 − 13 

 

𝑡𝑎𝑛ℎ(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
                                                             2 − 14 

 

𝑅𝑒𝐿𝑈(𝑧) = max(0, 𝑧)                                                             2 − 15 

𝑎(𝑧) = 𝑧                                                                       2 − 16 

 

2.3.5  Backpropagation 

Although artificial neural networks have been around since the 1960s, it was not until the late 

1980s that an efficient training procedure for ANNs was discovered. There existed no 

Figure 2.7 Perceptron Model 
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structured methodology to adjust the model weights, other than by trial and error. Researchers 

like Rumelhart et al. (1986) and Werbos (1990) contributed to the development of the method 

known as backpropagation of errors, which made it possible to estimate the weights in an ANN 

model. Backpropagation makes use of the chain rule of differentiation, and computes the 

gradients in an iterative manner. 

In order to develop an intuition of backpropagation, it is necessary to understand how an 

optimization method known as Gradient Descent works. In neural networks, the predicted 

output is compared to the actual output based on a pre-defined loss function. Common 

examples of loss functions are mean squared error (MSE) and negative log-likelihood (NLL). 

The objective is to adjust the model weights in a way that minimizes the loss. It is 

mathematically guaranteed that moving in the direction of the gradient of the loss function 

(derivative with respect to the model weights), results in loss minimization.  

2.3.6  Gradient Descent 

A pass over training data is called an epoch and after every epoch the parameters move closer 

to their optimum values which minimizes the loss function. If the dataset size is large, 

calculating the loss and gradient over the entire dataset may be too slow and computationally 

infeasible. Thus, in practice, a variant of gradient descent called stochastic gradient descent 

(SGD) is commonly used. In SGD data is divided into subsets called batches, and the 

parameters are updated after calculating the loss function over one batch. Other popular 

variants are: RMSprop, AdaGrad, Adam (Ruder, 2016). In some of these variants, an additional 

parameter called decay is used to decrease the learning rate gradually as parameters approach 

the optimum values. 

Assume ℒ(𝜔) to be the loss function, with w being the model weights. First, the weights are 

randomly initialized, followed by an iterative update rule as shown in Equation 2-17, 

𝜔 ← 𝜔 −  𝜂 . ∇𝑤 ℒ(𝜔)                                                           2 − 17 

Where, 𝜂 is a hyperparameter (set by the user) known as the learning rate, which corresponds 

to the step size towards the local minima in each iteration and ∇ refers to the gradient operator. 

While a low learning rate results in the training process to progress slowly, a high learning rate 

may cause the training to diverge from the minima. Because of this trade-off, the learning rate 

needs to be set carefully. We stop the iteration process either when we reach the pre-defined 

maximum number of iterations (known as epochs) or when the change in model weights 

between iterations is smaller than a specified threshold 𝜖. Readers are referred to Bishop (2006) 

for further details on backpropagation and Gradient Descent. 

2.3.7  Training Problems and Hyperparameters 

An often-encountered problem in training NNs is overfitting. Overfitting occurs when the 

model tries to fit the noise in training data and is often the result of using a more complex 

model than required. In the presence of overfitting, model performs well on training data but 

poorly on new data. There are several ways to prevent overfitting. In early-stopping a small 
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subset of training data is used as a validation set. After every epoch the value of the loss 

function on the training set is compared to the value on the validation set. If the loss on the 

validation set starts increasing even though the loss on the training set is decreasing, it is an 

indication of overfitting, and the model training can be stopped. Another method commonly 

used in deep learning is dropout. In dropout, a fixed percentage of NN connections are removed 

randomly in each training epoch. 

It is important to note that network parameters (weights and biases) are learned by the training 

algorithm. On the other hand, parameters like learning rate, dropout, training batch size, decay, 

etc. are parameters of the learning algorithm and need to be set to appropriate values by the 

user. These latter parameters are collectively termed as hyper-parameters.  

2.3.8  Deep Neural Networks 

A vital component of traditional machine learning pipelines is feature engineering (Domingos, 

2012) Conventional machine learning algorithms require carefully designed features and do 

not perform well with raw data. However, feature engineering is not straightforward and 

requires considerable domain expertise. One of the primary reasons for the success of deep 

learning models is the ability to automatically learn high level representations relevant for the 

task at hand. Deep neural networks (DNNs) are NNs with multiple hidden layers stacked 

together. Each layer is a non-linear module, which receives the output of its previous layer. 

Progressively more complex/abstract features are learned from bottom to top layer. Thus a 

DNN is similar to a processing pipeline where each layer does part of the task and hands its 

output to the next layer. 

Deep learning techniques have given state-of-the-art results in a variety of domains from 

computer vision to language translation (Goodfellow et al., 2016). This success has been 

facilitated by many different factors: availability of large labeled datasets, advances made in 

computer engineering, distributed systems, and computational power including GPUs. 

 

2.3.9  Convolutional Neural Networks: 

Although multi-layer neural network (MLNN) is able to approximate any function, it is not 

suitable when dealing with visual information, i.e. images. Firstly, the full-connectivity of the 

network leads to slow learning as the number of weights rapidly increases with the higher 

dimensionality of visual input. Secondly, the spatial organization of the visual input is not 

utilized in MLNN, since every pair of neurons between two layers has their own weight. For 

example, learning to recognize an object in one location wouldn’t transfer to the same object 

presented in a different location because separate weights would be involved in these 

calculations. Such drawbacks led to invention of CNN architecture, which exploits the spatial 

dimension properties of visual input whilst reducing the number of parameters to train. 

The design of CNN was inspired by the structure of mammalian visual cortex where visual 

information received through the eyes is processed by neurons in the brain organized in 
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hierarchical way. When visual stimuli reach the receptive field of a neuron it may be activated 

depending on its neuronal tuning. Neurons in the earlier visual areas have simpler tuning and 

smaller size of receptive field. Therefore, the most primitive visual forms such as corners or 

edges are recognized in the primary visual cortex areas and more complex forms (feature 

groups, objects, object descriptions) - in the collateral areas (see Figure 2-8). 

 

Figure 2.8 Visual information processing in hierarchical way 

In Figure 2-8 a schematic of a hierarchical sequence of categorical representations of 

processing a face input stimulus is detailed. Representations are distributed at each level 

(multiple neural detectors active). At the lowest level, there are elementary feature detectors 

(oriented edges). Next, these are combined into junctions of lines, followed by more complex 

visual features. Individual faces are recognized at the next level (even here multiple face units 

are active in graded proportion to how similar people look). Finally, at the highest level are 

important functional “semantic” categories that serve as a good basis for actions that one might 

take - being able to develop such high level categories is critical for intelligent behavior 

(O’Reilly et al., 2012). 

Convolutional neural networks are currently one of the most prominent algorithms for deep 

learning with image data. Whereas for traditional machine learning relevant features have to 

be extracted manually, deep learning uses raw images as input to learn certain features. CNNs 

consist of an input- and output layer, and several hidden layers between the input and output. 

Examples of in between layers are convolutional layers, max-pooling layers and fully 

connected layers. 

2.3.10  Recurrent Neural Networks 

One of shortcomings of feed forward neural networks such as the one illustrated in Figure 2-6 

is that it assumes that all input data are independent of each other. As a result, it fails to capture 

the notion of sequential order which is present in some types of data. Consider the task of 

predicting the next character in a word. If an incomplete word such as `neura' is given, one can 

guess that the next character in the sequence would be `l ' and the word is `neural '. However, 

if the order of the previous characters was jumbled (such as `renau') and provided 

independently, it would be very difficult to identify the final character. This is where RNNs 

are found to be extremely useful. One of the earliest versions of the recurrent neural network 

was proposed by Elman (1990). The input to an RNN is provided in a sequential manner, and 
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the network makes use of the inputs in the previous timesteps in order to make a decision at 

the current timestep. 

A recurrent neural network can be depicted as a network with loops (see Figure 2-9), through 

which information is transferred between timesteps of the network. By unrolling the network, 

we realize that the information at each timestep passes through multiple copies of the same 

network (Olah, 2015). 

 

The notation in Figure 2-9, adapted from (Britz, 2015) is described below: 

• 𝑥𝑡 corresponds to the input at each timestep 𝑡  

• 𝑦𝑡 refers to the output at each timestep 𝑡   

• ℎ𝑡 is called the hidden state at each timestep 𝑡, and is calculated using the input at the 

current timestep 𝑥𝑡 and the hidden state from the previous timestep ℎ𝑡−1 , i.e., 

ℎ𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊ℎ𝑡−1)                                                  2 − 18                                                    

Where 𝑓 corresponds to some non-linear activation function such as tanh or ReLU. In 

RNN literature, ℎ𝑡 is also referred to as the memory because in theory, it is assumed to 

capture information from all previous timesteps. However, this does not hold true in 

practice since the RNN memory fails to remember information beyond few previous 

timesteps.  

• 𝑈, 𝑉 and 𝑊 are weight matrices. From the unrolled RNN figure, one can note that these 

weights are shared across all timesteps of the RNN. Doing this reduces the model 

complexity by reducing the number of parameters that need to be optimized. Moreover, 

we aim to perform the same operation across timesteps, just with different inputs. 

Training of RNNs is done via an extension of the backpropagation algorithm, known as 

backpropagation through time (BPTT). As discussed earlier, RNNs perform well on sequential 

Figure 2.9 Unrolling of a recurrent neural network (RNN) 
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data and have been extensively used for tasks such as language modelling (Mikolov et al., 

2010), text generation (Graves, 2013) and speech recognition (Graves et al., 2013). 

2.3.11  Convolutional LSTM 

In order to understand the details of ConvLSTM blocks and how they differ from the traditional 

LSTM blocks a little bit of theory has been introduced here.  

The major drawback of FC-LSTM in handling spatiotemporal data is its usage of full 

connections in input-to-state and state-to-state transitions in which no spatial information is 

encoded. To overcome this problem, a distinguishing feature of ConvLSTM design is that all 

the inputs 𝑋1, . . . . , 𝑋𝑡,  cell outputs 𝐶1, . . . . , 𝐶𝑡, hidden states 𝐻1, . . . . , 𝐻𝑡, and gates  𝑖𝑡 

(input gate), 𝑓𝑡 (forget gate), 𝑜𝑡(output gate) of the ConvLSTM are 3D tensors whose last two 

dimensions are spatial dimensions (rows and columns). To get a better picture of the inputs 

and states, we may imagine them as vectors standing on a spatial grid. The ConvLSTM 

determines the future state of a certain cell in the grid by the inputs and past states of its local 

neighbors.  

 

Figure 2.10 Convolutional LSTM operations 

This can easily be achieved by using a convolution operator in the state-to-state and input-to-

state transitions (see Fig. 2-10). The key equations of ConvLSTM are shown below, where ‘*’ 

denotes the convolution operator and ‘⨀’, denotes the Hadamard product: 
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𝑖𝑡 =  𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 + 𝑊ℎ𝑖 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑖 ⨀  𝐶𝑡−1 + 𝑏𝑖)                             4.5 

𝑓𝑡 =  𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 + 𝑊ℎ𝑓 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑓⨀ 𝐶𝑡−1 + 𝑏𝑓)                             4.6 

𝐶𝑡 =  𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑡⨀𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ∗ 𝑋𝑡 + 𝑊ℎ𝑐 ∗ 𝐻𝑡−1 + 𝑏𝑐)                         4.7 

𝑜𝑡 =  𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑜⨀ 𝐶𝑡 + 𝑏𝑜)                               4.8 

𝐻𝑡 =  𝑜𝑡⨀tanh (𝐶𝑡)                                                       4.9 

If we view the states as the hidden representations of moving objects, a ConvLSTM with a 

larger transitional kernel should be able to capture faster motions while one with a smaller 

kernel can capture slower motions.  

To ensure that the states have the same number of rows and same number of columns as the 

inputs, padding is needed before applying the convolution operation. Here, padding of the 

hidden states on the boundary points can be viewed as using the state of the outside world for 

calculation. Usually, before the first input comes, all the states of the LSTM were initialized 

to zero which corresponds to “total ignorance” of the future. Similarly, if zero-padding (which 

is used in this paper) is performed on the hidden states, actually the state of the outside world 

is being set to zero and no prior knowledge about the outside is being assumed. By padding on 

the states, the boundary points can be treated differently, which is helpful in many cases.  

2.3.12  Advantages and Challenges 

The main issue of NN implementation is deriving the correct hidden layer size. When the 

amount of neurons is not determined properly, the derived system does not generalize well to 

unseen instances. On the other hand, when too much nodes are used, overfitting may occur and 

the desired optimum may not be found at all. Deriving the right quantity of neurons is discussed 

in a study by Kon et al., 2000. The main advantage of using artificial neural networks is its 

capability to process data with high dimensional features such as images. Drawbacks of 

artificial neural networks are high computing costs that consume large amounts of processing 

power and physical memory usage, and difficult comprehensibility for average machine 

learning users (Kotsiantis et al., 2007) (Baharudin et al., 2010). 

 

 Previous Studies on River Bank Erosion 

To properly understand the bank erosion process and bed form of this large braided Jamuna 

river and develop a proper methodology to apprehend the situation of the study are and its 

physical process different relevant reports were collected from various sources and reviewed. 

A brief summary of some relevant reports and papers are described below. 
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2.4.1  Studies using Image Analysis 

Studies on the river morphology of major rivers using remotely sensed images are such as that 

of Kummu et al. (2008) for the Mekong River using SPOT5 images, the accretion/erosion of 

the Yellow River by Chu et al. (2006) using Landsat images, and the estimation of suspended 

sediment of the Lower Yangtze River by Wang and Lu (2010) using Terra MODIS. Since the 

1960s, many studies have already been carried out, particularly with regard to morphological 

processes in the Jamuna River. By comparing Bangladesh survey maps and aerial photographs 

from the 1950s with a 1989 SPOT image, Thorne et al. (1993) detected the riverbank migration 

of the Jamuna River. Similarly, by comparing Landsat-MSS for 1973-1987 with Landsat-TM 

images for 1990-1992, ISPAN (1993) estimated the short-term bank migration of the Jamuna 

River. ISPAN (1993) and Thorne et al. (1993) found that the right bank of Jamuna was more 

prone to erosion than the left bank where both erosion and accretion together produced 

relatively low net movements. In the early 21st century, using satellite images, EGIS (1999, 

2002), and Khan and Islam (2003) studied the geomorphological characteristics of 

Brahmaputra-Jamuna. Sarker and Thorne (2006) examined the morphological response of 

major river systems of Bangladesh due to the Assam earthquake. Sarker et al. (2003) 

investigated the dynamics and chars of major river systems of Bangladesh and their socio-

economic aspects. 

Takagi et al. (2007) analyzed the spatial and temporal changes in the channels of Brahmaputra. 

Their results suggested that Jamuna River widened at a relatively high rate of about 150 m/y 

during 1970-1980 and then decreased to about 50 m/y during 1980-1990. Even though river 

bank erosion is one of the foremost natural disasters responsible for poverty in Bangladesh 

because of the enormous destruction of resources and displacement of large numbers of the 

population (Khan and Islam, 2003).  

Given the widespread and persistent bank erosion that causes serious problems along the 

Jamuna River of vital importance to Bangladesh Baki and Gan (2012) focused on Landsat MSS 

and TM images spanned over 30 years (1973-2003). Khan et.al. (2014) studied on river bank 

erosion of Jamuna River by using GIS and Remote Sensing Technology. Hossain et al. (2013) 

assessed morphological changes of Ganges River. Afrose et.al (2012) analyzed morphological 

changes of Teesta River. 

Sarkar et al. (2014) has used all the sources to chronicle the morphological evolution of the 

Jamuna River since the avulsion that created it about 200 years ago. It established temporal 

trends and spatial patterns in the changes that have characterized process–response 

mechanisms in this fluvial system since then. Process–response mechanisms and their relation 

to various drivers of morphological change in the Brahmaputra–Jamuna River have been 

recognized. Finally, the analyses developed were combined with existing, conceptual and 

empirical process–response models for the Jamuna to predict possible future morphological 

adjustments. 
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2.4.2  Studies using Computational Model 

Many studies have been conducted to understand and predict the river morphology including 

bank erosion process using computational model.  

Several studies consider bed deformation and bankline shifting. Notably, Kovacs and Parker 

(1994), Nagata et al. (1996), Shimizu et al. (1996), and Duan et al. (1997) developed numerical 

models to analyze temporal changes in channel forms due to bank erosion. The model proposed 

by Kovacs and Parker, however, assumes constant hydraulic and geometric conditions in the 

streamwise direction. All the models have been applied only to few cases of laboratory channel 

processes. Darby and Thorne (1996) and Darby et al. (1996) developed a numerical model of 

bank erosion that introduces rotational slip and planar failure of the bank, and applied the 

model to the morphological behavior of a natural river. However, the 2D plan form variation 

caused by bank erosion cannot be predicted, which is an important factor in anticipating 

disasters consequent to riverbank shifting. Nagata et al. (2000) developed a numerical model 

that calculates 2D bed deformation and plan form variations. The model has been applied 

successfully to examine the morphological behavior of laboratory channels with meandering 

and straight plan forms. Using the model, the development of meandering is explained in terms 

of the relation between sediment transport and the flow field near the bank. 

An increased awareness that braided river dynamics which cannot be described by the 

development of the channel structure independently has emerged (Ashmore, 2000; Murray and 

Paola, 1997; Furbish, 2003). However, progress in developing physical and computational 

models as a base to study the dynamic behaviour of braided rivers, as well as the coupled 

behaviour between flow and topographic characteristics, also raises the demand for appropriate 

model evaluation tools that capture these multiple aspects of braided river morpho-dynamics. 

Present quantitative methods for model evaluation concentrate mainly on static flow or 

planform properties, but the evaluation of topography and dynamics is, at present, primarily 

restricted to qualitative assessment (Sapozhnikov et al., 1998; Murray and Paola, 1997, 1998; 

Paola, 2000; Thomas and Nicholas, 2002; Jagers, 2003). Essentially the problem is to find 

quantitative criteria that characterize braided rivers and allow modelers to assess the extent to 

which model output reproduces the morphology, dynamics and response to external forcing, 

of ‘real’ braiding. 

Nicholas et al. (2013) attempted the numerical simulation of bar and island morphodynamics 

in anabranching rivers. Their study can be considered as a first attempt to assess physics-based 

morphodynamic modeling of large rivers over centennial time scales is feasible or not, and 

whether it can contribute to the understanding of bar and island morphodynamics. They use 

2D HSTAR model to simulate the river. They concluded that the model results were sensitive 

to the parameterization of the processes and to the representation of bed roughness.  

Schuurman et al. (2013) tried to determine the capability of a widely used physics-based model 

to produce key characteristics of braided sand-bed rivers such as bar and channel dimensions, 

braiding intensity and shape of bars, and the channel network. They used Delft 3D software to 

simulate the river and concluded that the morphological model results are very sensitive to the 
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constitutive relation for bed slope effects and also to the type and parameter values of the 

constitutive relations for flow resistance and sediment transport. Also, multiple mechanisms 

for bifurcation initiation, bifurcation closure, bar migration, and bar growth occurring in the 

model are comparable to observations in nature and flume experiments. 

Shampa and Ali (2015) focusing on bar dynamics of a sand-bed braided river Jamuna used 2D 

depth average Delft 3D model. Special emphasis was given on braided bar. Khan and Ali, 

(2017) focused on hydraulic erosion of river bank is one of the key factors controlling the bank 

erosion rates. In their study hydraulic bank erosion rate has been quantified with the help of 

analytical formulae and 2-dimensional numerical model. A 2-dimensional morphological 

model was developed for the selected reach of Jamuna River using the modeling platform 

MIKE 21C. 

2.4.3  Studies on Laboratory Experiments 

Several investigators have done noteworthy work on dune geometry and its resistance to flow 

by conducting laboratory experiment. Early important works on dune geometry were done by 

Yalin (1964), Ranja Raju and Soni (1976) and Allen (1998) who developed relations for dune 

height as a function of bed shear stress and other variables according to experimental and field 

data. Van Rijn (1984) analyzed data from several numbers of flumes and some field data and 

developed a relation for relative dune height and length as a function of flow depth, particle 

diameter and a transport stage parameter (function of grain and critical shear stress). 

Flume studies of confluence scour (Ashmore and Parker, 1983), sediment transport rates 

(Ashmore, 1988; Hoey and Sutherland, 1991; Warburton and Davies, 1994) and sediment 

sorting (Ashworth et al., 1992) in braided rivers and flume studies of depositional structures 

by braided rivers (Ashworth et al., 1994) have contributed significantly on braiding process.  

Ashmore (1991) describes eleven flume experiments with varying slopes and discharges in 

which the processes leading to braiding were studied. The streams were generic models of 

gravel-bed braided streams. Each of the experiments started from a straight trapezoidal 

channel. 

Observations in physical models of braided channels (Ashmore, 1991a, 2001; Bertoldi et al., 

2006) suggest that at any given time, only a subset of the total channels are actually 

transporting bed material and actively forming the braided pattern and river morphology, i.e., 

BIA is always less than BIT and the remaining channels convey water and wash load, but no 

bed load. The implication is that the braided channel network observed at a given time forms 

progressively over time by shifting of a few active channels rather than by simultaneous 

development of all channels. 

2.4.4  Specific Studies on the morphodynamics of the Jamuna River 

Several studies have been conducted to understand the morphodynamic of the rive Jamuna and 

predict bank erosion. Some of these are briefly described in the following section.  
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Akhtar et al. (2011): 

The work explored relations between stream power, braiding intensities and bank erosion in 

certain stretches of the Brahmaputra River. Objective was to enable quantitative assessment of 

spatio-temporal behavior of channel braiding process of the Brahmaputra River by using the 

Plan Form Index and corresponding estimation of stream power to establish a behavioral 

pattern of variability of potential energy expenditure. The braiding index was compared for 

discrete years to understand the morphological behavior. Subsequently, a real time estimation 

of stream power for certain stretches of Brahmaputra River was done in order to analyze its 

variability in braiding intensity and bank erosion. The dynamic behavior of the channel pattern 

of the Brahmaputra River System in Assam valley of India was presented for over a time span 

of 18 years. The procedure addressed the selection of input parameters from digital satellite 

images, comprising scenes for the years 1990, 1997 and 2007 with specific dates, from Dhubri 

near Indo-Bangladesh Border to Upper Assam. Deployment of GIS technique had been made 

to extract the required parameters to derive Plan Form Indices for the entire study reach. Stream 

power estimation was done for corresponding latest floods and for corresponding dates of 

image scenes. The study indicated that due to consistent aggradation of riverbed inducing 

temporal declination of stream power, there was an occurrence of wide spread braiding. This 

in turn incurs substantial yearly land loss due to bank erosion, caused by flow concentrations 

due to temporal evolution of multiple channels in the Brahmaputra River. 

The study identified three to four major geological channel control points present along the 

Brahmaputra River in Assam flood plains. These control points were located in the vicinity of 

Jogighopa near Goalpara, Pandu near Guwahati, Tezpur and Bessemora in Majuli. These 

channel control points usually have well defined and stable hydrographical profiles. The 

variability of stream power with bank erosion and braiding processes was investigated and a 

distinct behavioural pattern between these processes was observed. For example, with a low 

stream power, braiding appears to intensify which in turn may indicate a higher possibility of 

bank erosion. 

Baki and Gan (2012): 

In this study, using thirteen selected images of Landsat MSS and TM acquired from 1973 to 

2003, the riverbank migration patterns and island dynamics of Jamuna river resulted from 

accretion/erosion processes for 30 years were investigated. For short-term analysis, the 

migration rate from one Landsat image to the next is estimated. For long-term analysis, the 

migration rates are based on the difference between the 1973 (Figure 2-11) , and subsequent 

images. For the short-term (long-term) analysis, the average erosion and accretion rates are 
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227 and 271 m/y (90 and 104 m/y) on the left bank, and 187 and 148 m/y (75 and 50 m/y) on 

the right bank of Jamuna, respectively. 

Because of human interventions and the averaging effect of erosion and accretion, the long-

term migration rate was lower than that of the short-term migration rate on both banks. The 

short-term rate of accretion (erosion) on the left (right) bank follows the general pattern of river 

bank migration, while the accretion (erosion) of the right (left) bank does not follow such a 

pattern. On the other hand, the long-term erosion and accretion processes for both banks partly 

follow the general pattern of river bank migrations. From one flood to another, large islands 

tend to be more stable with little changes, but smaller islands underwent more changes.  

Sarker et al. (2014): 

This paper has drawn on all the image sources to chronicle the morphological evolution of the 

Jamuna River since the avulsion that created it about 200 years ago. It established temporal 

trends and spatial patterns in the changes that have characterized process–response 

mechanisms in this fluvial system since then. The historical migration of the river westward 

has produced significant contrasts between left and right (west) bank material properties; 

elucidate the relationships between discharge, fluvial processes, anabranch instability and 

Figure 2.11 Low-flow bank erosion and accretion of the Jamuna river, (a) between 1987 

and 1973, and (b) between 2003 and 1973.(Baki and Gan,2012) 
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floodplain erosion rates, and; identify causal links between drivers and morphological 

responses at a variety of time and space scales. Process–response mechanisms and their 

relation to various drivers of morphological change in the Brahmaputra–Jamuna River have 

been recognized and fluvial processes in this large, braided river assessed using available 

temporal, spatial and hydro-morphological data. Different process–response models and 

relations have been developed using the available data, information and knowledge, while 

recognizing its limitations. 

Finally, the analyses developed were combined with existing, conceptual and empirical 

process–response models for the Jamuna to predict possible future morphological adjustments 

in ways helpful in identifying appropriate strategies for climate change adaptation in 

Bangladesh. The enhanced knowledge gained from these historical and contemporary 

investigations may also be useful in assessing the impacts of natural and anthropogenic drivers 

on other large, braided rivers. 

Shampa (2018):       

In this research, some prevailing physical processes which may affect the growth of bar after 

its emergence have been examined. An attempt to identify the relationships between the bars 

and their adjacent channels has been made. For this, a two-dimensional-depth-averaged 

morphodynamic model, Delft3D was used to study the interaction between the braided bar and 

adjacent channel during a flood in a compound bar dominated area at a large sand-bed braided 

River-Brahmaputra–Jamuna. River has been analyzed using satellite imagery and numerical 

modeling. the dry season satellite image of the years 2011 and 2012 have been analyzed to 

identify the major morphological process occurred. Then, a 2D numerical model was 

developed using the hydrodynamic boundary condition of the year 2011 for the lower reach of 

the river. The numerical simulation was quite successful to capture the effect of one 

monsoon/wet season on the main anabranching system of the braided river but in case of chute 

channel prediction, a further modification was needed. peak discharge time remains active up 

to the next monsoon season. During the monsoon period, the general tendency of sedimentation 

pattern in the channel is ‘erosion’ (average 2.58 m) and in the bar is ‘deposition’ (average 2.0 

m). the percentage of flow sharing decreased with the increased flow angle. It can be explained 

by the lab experiments done by Federici and Paola (2003). 

Khan and Ali (2016): 

In this study hydraulic bank erosion rate has been quantified with the help of analytical 

formulae and 2-dimensional numerical model. A 2-dimensional morphological model was 

developed for the selected reach of Jamuna River using the modeling platform MIKE 21C. The 

erosion rates were used to calculate bank shear stress. Since primary discharge data was not 

available at different reaches model simulated discharge for different hydrologic events were 

utilized to correlate it with bank shear stress. The erosion rates thus obtained was compared to 

that revealed by satellite imagery. Utilizing the outcomes of scenario simulations, a 

relationship between τa and discharge was established for five erosion prone reaches. The 
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relationship thus obtained was used to calculate the bank erosion rate from the discharge after 

the passage of hydrological event 2013. The 2-D model setup includes the generation of 

computational grids, the preparation of the bathymetry, boundary conditions and selection of 

calibration parameters. 

CEGIS (2017): 

Since 2004, predictions for morphological changes have been conducted for the Jamuna river 

followed by the Ganges and the Padma river. Evaluation of such predictions have shown a 

good match with the occurrences. 

Predictions have been made for the locations having less erodible bank materials. Since it was 

difficult to estimate small amount of erosion (1 to 50 m) with reliable accuracy using satellite 

image of 15m ×15m resolution. If the predicted erosion is less than 100m, it was not 

incorporated in the report. No predictions had been made for the areas where there are bank 

protection structures along the riverbank. 

In 2016, the land eroded along the Jamuna was 1468 ha. The Brahmaputra flood embankment 

is one of the important features that provides protection against floods along the right bank of 

the Jamuna river. Jamuna right and left banks were predicted to be eroded in 611 ha. and 1289 

ha. respectively for 50 % probability. The actual erosion for those banks were 529ha. and 1422 

ha. respectively, which was a pretty close prediction. 

Erosion prediction had been done for both banks of Jamuna river for 2017. There were 20 

vulnerable locations (10 along the left bank and 10 along the right bank), the lateral extension 

was more than 100m. Among these, four are in Kurigram, four in Gaibandha, one in kurigram 

and Gaibandha district, two in Bogra, five in Sirajganj, one in Jamalpur, two in Tangail and 

one in Pabna and Sirajganj district. Apart from these, Predictions of erosion along the river 

Ganges and the Padma had also been made in this report. 

2.4.5  Studies using Deep Learning 

A prediction task of future riverbank conditions is a joint task comprising two separate 

meteorological processes: (1) understanding visual clues for riverbank transition from 

spatiotemporal riverbank observations, and (2) image restoration from low-dimensional 

encoded information into high-dimensional visual situations through time.  

Jagers (2003), in his Ph.D. thesis modeled planform changes of braided rivers. He carried out 

his study with Jamuna River in Bangladesh. A multi-layer perceptron network was trained to 

predict bank erosion based on a limited amount of geometrical information: the location 

(distance and direction) relative to the nearest channel, the local width of the nearest channel, 

and the fraction of water in the neighborhood. Based on these data the neural network was able 

to learn a number of simple rules, such as: erosion is more likely along wide channels. 

Furthermore, the output of an appropriately trained network could be used as an indication of 

the probability that erosion would occur. One of the major disadvantages of that approach was 
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that the neural network was a black box approach: the empirical knowledge represented by the 

network could not be extended easily. 

Recently, several studies focused on weather events prediction using either observation or 

simulation data. Shi et al., 2015 and Kim et al., 2017 predicted future precipitation from 

historical multichannel radar reflectivity images with a convolutional long short-term memory 

(ConvLSTM) network (Hochreiter et al., 1997) based on recurrent neural network (RNN) 

(Elman, 1993) and convolutional neural networks (CNNs). In Shi et al., 2015 and Kim et al,. 

2017, they found that by extending the fully connected LSTM (FC-LSTM) to have 

convolutional structures in both the input-to-state and state-to-state transitions, the 

convolutional LSTM (ConvLSTM) network captured spatiotemporal correlations better and 

consistently outperformed FC-LSTM and the state-of-the art operational ROVER algorithm 

for precipitation nowcasting.  

Racah et al., 2016 suggested a 3D convolutional autoencoder (AE) model for extreme weather 

events detection using 27-years CAM-5 simulation model results. They presented a 

multichannel spatiotemporal CNN architecture for semi-supervised bounding box prediction 

and exploratory data analysis. They demonstrated that their approach was able to leverage 

temporal information and unlabeled data to improve the localization of extreme weather 

events. Hong et al., 2017 surveyed multiple CNNs for predicting the coordinates of a typhoon 

eye from a single satellite image. They proposed the use of multi-layer neural networks for 

understanding complex atmospheric dynamics based on multichannel satellite images. The 

capability of their model was evaluated by using a linear regression task for single typhoon 

coordinates prediction. A specific combination of models and different activation policies 

enabled them to obtain an interesting prediction result in the northeastern hemisphere (ENH). 

Kim et al. suggested a tropical cyclone detection system based on GCM reanalysis data using 

5-layer CNNs. These works depend on historical visual datasets for predicting weather events.  

However, it is not confirmed if unseen weather events can be predicted for specific occasions 

without observation data such as an observation failure and future events prediction. For the 

issue of missing/lost data, several studies on deep neural memory networks have been 

conducted for predicting undiscovered data.Based on the LSTM-RNN, Srivastava et al., 2015 

surveyed an unsupervised video representation on a fully-connected LSTM (fcLSTM) network 

with flatten data. They explored different design choices such as whether the decoder LSTMs 

should condition on the generated output. They analyzed the outputs of the model qualitatively 

to see how well the model could extrapolate the learned video representation into the future 

and into the past. They tried to visualize and interpret the learned features. They stress tested 

the model by running it on longer time scales and on out-of-domain data. They showed that 

the representations helped improve classification accuracy, especially when there were only a 

few training examples. 

Accordingly, Patraucean et al., 2015 used intermediate differentiable memory on a temporal 

video auto-encoder network, and trained extensive optical flow transition differences through 

time between encoding and decoding steps. By minimizing the reconstruction error between 
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the predicted next frame and the corresponding ground truth next frame, they trained the whole 

system to extract features useful for motion estimation without any supervision effort. They 

presented one direct application of the proposed framework in weakly-supervised semantic 

segmentation of videos through label propagation using optical flow.  

Chen et al., 2016 considered a 3D biomedical image as the spatial data continuum and adopted 

a bi-directional LSTM structure for understanding 3D contexts beyond correlated 2D slices. 

They proposed a DL framework for 3D image segmentation, based on a combination of a fully 

convolutional network (FCN) and a recurrent neural network (RNN), which were responsible 

for exploiting the intra-slice and inter-slice contexts, respectively. 

With the advantages of a memory network, several research studies also discovered the 

effectiveness of structural separation into discrete encoder and decoder units for both 

sequenced input and output. Cho et al., 2014suggested an RNN encoder–decoder architecture 

associated with two separated RNNs as an encoder and divaricated decoder parts. The encoder 

and decoder of the proposed model were jointly trained to maximize the conditional probability 

of a target sequence given a source sequence. 

Accordingly, Sutskever et al., 2014 employed the structure of Cho et al., 2014 and an adopting 

LSTM cell on the overall topology, entitled sequence-to-sequence (Seq2Seq). Next, 

Chorowski et al., 2015 introduced an external memory in Seq2Seq called attention memory, 

as well as which is similar to a differentiable memory, which was used in a convolutional 

attention-based Seq2Seq 2017. For image restoration issues, Mao et al., 2016 introduced the 

residual connectivity of the results of convolutional processes into the deconvolutional step for 

maximizing plausible image reconstruction. Enriched with abundant visual clues from deep 

convolutional filters, symmetric skip connections (SkipConx) helped achieve high 

performance as a denoising application, and as a conventional image autoencoder.  

In conclusion, few surveys have been conducted on image reconstruction for remote sensing 

imagery, particularly on a satellite image dataset. Therefore, the initial structure of learning 

changes through time, with minimal available parameters, was studied. In other words, it was 

studied how changes in satellite images can be represented as fundamental structures of a 

memory network. 

In their work, Hong et al.  studied how a Seq2Seq-based convolutional autoencoder can predict 

unseen weather situations by referencing historical weather observation datasets. Further, they 

found that adding symmetric skip connection from the convolutional encoder to the 

deconvolutional decoder in the Seq2Seq autoencoder provided more reliable image prediction 

compared to bare LSTM or primitive convolutional LSTM connectivity. 

In fields close to water such as remote sensing, DL is growing to be the preferred method of 

choice, proving it a crucial tool in discovering information from raw images (L. Zhang et al., 

2016). Since CNNs excel in extracting information from geometric shapes, textures, and spatial 

patterns, they easily outperform earlier methods that only utilize spectral signatures or 

handcrafted features (Makantasis et al., 2015). Main RS applications (X. X. Zhu et al., 2017) 
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include using CNN to classify or segment images (assigning classes to each pixel on an image 

for what they are, e.g., land use classes, crops types) (Geng et al., 2015), object recognition 

(finding targets from a series of images) (Wagner, 2016), object localization (Long et al., 

2017), and terrain attribute extraction, e.g., sea ice concentration (L. Wang et al., 2016). 

Remote sensing applications often started with standard CNN and RNN designs, and then 

made incremental modifications for efficiency and accuracy gains (Long et al., 2017; Mou et 

al., 2017; X. X. Zhu et al., 2017). In global change analysis, DL models show advantages in 

estimating crop yield (Kuwata & Shibasaki, 2015; You et al., 2017). Pryzant et al. (2017) forgo 

the conventional spectral features method in favor of a combined CNN-LSTM model to 

estimate outbreaks of wheat fungus in Ethiopia. Their LSTM is stacked on CNN-extracted 

feature representations to incorporate both spatial structural and temporal change. In addition, 

CNN is used for overall interpretation of images such as scene classification (for an image, 

recognize a theme from a list of possible themes) (Marmanis et al., 2016; Nogueira et al., 

2017), change detection (Puzhao Zhang et al., 2016), and object detection, e.g., vehicles (X. 

Chen et al., 2014). Such high-level tasks were difficult to achieve using earlier machine 

learning techniques. 
 
In disaster detection and categorization studies, researchers have started to employ DL to detect 

wildfires (Lee et al., 2017; Sharma et al., 2017; Q. Zhang et al., 2016) and landslides from 

remote sensing images (Ying Liu & Wu, 2016). Liu and Wu (2016) applied preprocessing 

steps including discrete wavelet transformation and noise corruption and trained an SDAE to 

identify landslides on the transformed image. They argued that the transformation is necessary 

because the resolution of remote sensing images is too low. However, they did not directly 

show results to support the claim.  
 
Furthermore, the remote-sensing community has exploited transfer learning and data 

augmentation and has adapted available architectures to suit their data quantity. For example, 

publicly available trained networks such as GoogLeNet (Szegedy et al., 2015) can be 

transferred for scene classification for satellite images (Hu et al., 2015; Marmanis et al., 2016; 

Nogueira et al., 2017). Transfer learning works because the hidden layers that have been 

trained to distill shape information are also effective even when ported to remotely sensed 

scenes. Transfer learning also means that certain expertise obtained from training on existing 

datasets can be modularized, packaged, and assembled. Data augmentation (Ding et al., 2016; 

Morgan, 2015) means increasing the training data by 22 making perturbations to data that 

should not have mattered, such as rotation, translation, interpolation, elastic distortions, and 

affine transformations, etc.  
 

In climate science, the number of applications of deep learning in climate modeling starts to 

rise quickly, with applications focusing on (1) identification of extreme climate events and (2) 

addressing the resolution challenge. In a study carried out at the Lawrence Berkeley National 

Lab, Liu et al. (2016) trained a CNN with two convolutional layers to detect extreme events 

using thousands of images of tropical cyclones, weather fronts, and atmospheric rivers. This 

new system achieves 89%-99% accuracy in detecting extreme events and is useful for 

benchmarking climate models. A significant amount of attention has been paid to using deep 

learning for precipitation forecasting, (e.g., Hernández et al., 2016; Shi et al., 2017; Pengcheng 

Zhang et al., 2017).  
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The model resolution has been a central challenge for climate modeling. For dynamic 

modeling, researchers trained dynamic convolutional layers, i.e., filters with weights that are 

dynamically updated using inputs during forward runs, in short-range weather predictions 

(Klein et al., 2015). Vandal et al. (2017) proposed a generalized stacked superresolution CNN 

framework for statistical downscaling of climate variables. Superresolution means a network 

produces an output image with a higher resolution than the input. They argued that a single 

trained model can downscale spatial heterogeneous regions, and the DL method showed 

advantages over others. In a recent self-archived paper, authors have employed an MLP to 

learn fine-resolution dynamics such as convective heating, moistening and cloud-radiative 

transfer feedbacks from high-resolution simulations, to replace existing multiple 

parameterization schemes (Gentine et al., 2018). Moreover, the climate modeling community 

is putting together large datasets to enable big data deep learning on large scales (Racah et al., 

2017). 
 
In an interesting application, authors have employed GAN to model urban expansion, which 

is relevant to water consumption (Albert et al., 2018). Trained on images of 30,000 cities, GAN 

was able to reproduce realistic concentrations and spreads of urban masses in the absence of 

externally-imposed constraints, e.g., rules that say cities cannot be built on water. GAN learned 

these rules by itself. 
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Chapter 3:  Approach and Methodology 

 Introduction 

To understand the overall hydraulics and morphology of the Jamuna river a two-dimensional 

numerical model and deep learning approach were adapted. For numerical modeling SRH-2D 

model was used which was already mentioned in the previous chapter. For these, significant 

amount of data will be collected.  

 Data Collection 

Two types of data were collected through this research. Secondary data were collected from 

different sources including (WARPO, BWDB, USGS). Bangladesh Water Development Board 

(BWDB) has water level, discharge and several cross-section measuring stations on different 

rivers. Historical LANDSAT imagery was collected from USGS website and Google earth 

engine. 

3.2.1  Satellite Images 

LANDSAT images were necessary to analyze the shift of the main river course with respect 

of time. Erosion and Depositional area will be identified primarily based on this image 

analysis. For this purpose, initially LANDSAT-1 to LANDSAT-7 imagery for the years 1970 

to present has been collected for free of cost from United States Geological Survey (USGS) 

and Google Earth Engine website. These images are of 30×30 m resolution. These images 

were used to identify the movement of the banklines and the sandbar over the years. The most 

important part of the images was that they were used in the deep learning techniques.  

3.2.2  Water Level Discharge and Cross-section Data 

Water level, discharge and cross-section measuring stations are used to collect respective data. 

The following figure 4.1 illustrates the stations on the study area. Water level data for the 

station have already been collected. Cross section data have been collected. These data will be 

used to calibrate and validate the 2D hydrodynamic and morphological model. Figure 3-1 

shows the water level and discharge station and figure 3-2 shows the cross section measuring 

station for 1D model development and analysis. A list of water level, discharge and cross-

section measuring stations are presented in Appendix A-2.  
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Figure 3.1 Water Level and Discharge Measuring Station and their IDs 

 

3.2.3  Bathymetric Data 

One of the most important part of this study was to observe the change pattern of the 

bathymetry. Therefore, the bathymetric data of the Jamuna river was collected in FRERMIP 

project on the year 2016, 2017, 2018 and 2019. These data were used in building up the 

numerical model. This data was of finer resolution which were able to capture the submarine 

fan and their movement over these years. 

The following Figure 3-3 represents the raw bathymetry data of selected reach of the river in 

2017. The bathymetry of 2016 to 2019 have also been collected. The analysis of these data 

were helpful in understanding the morphological change of Jamuna river. 
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3.2.4  Primary Data 

Hydrographic survey was conducted in a selected region to obtain high resolution bathymetry 

data in the pre and post-monsoon of 2019. A reputed survey company was employed in this 

regard. Primarily, from the field visit made, location for primary data collection is shown in 

Figure 3-4. The survey area is approximately 3 km wide and 6 km long.  

 Hydrological and morphological data analysis 

Historical hydrological data (i.e., water level, discharges) has been analyzed to understand the 

variation of these data. Maximum, minimum or median water level, discharge was derived 

from those collected data for different time period. Correlation of these hydrological data with 

the bed level changes and the bank changes for different periods has been looked at. Before 

proceeding to analyze the water level, discharge, cross-section and bathymetric data, quality 

check of the collected data was done. 

Figure 3.2 Cross section Measuring Station and their IDs 
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Figure 3.3 Bathymetric Data of the Jamuna river (2017) 

Figure 3.4 Selected area of Primary Data Collection 
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Changes at different cross-sections and longitudinal profiles have been studied using the 

bathymetric data from FRERMIP project. In addition, changes in bathymetry of the primary 

data, which are high resolution data, has been done to understand the morphological changes.  

This analysis was made to understand the general river dynamics of the study area. Correlation 

of these changes with hydrologic data or planform changes has been made to understand the 

morphological behavior of the study area. 

River bank lines have been delineated using the historical LANDSAT satellite images with the 

help of GIS software, QGIS. All banklines have been superimposed to understand the changes 

of banks and to identify erosion prone area. Correlation of these changes with hydrologic data 

and bathymetric changes has been made to understand the morphological behavior of the study 

area. 

Results of hydrological and morphological analysis are given in Chapter 4. 

 Development of 2D Hydrodynamic and Morphological Model 

For developing 2D hydrodynamic and morphological model a depth average SRH-2D model 

were used. The extent of this model started from just downstream of the Bangbandhu 

Multipurpose Bridge to 15 km upstream of the confluence of the river Jamuna and Ganges. 

The bathymetric data collected from FRERMIP project of the year 2018 and 2019 were used 

in developing this model. To get boundary conditions for 2D model, a 1D hydrodynamic model 

also has been developed stretching from Bahadurabad station to the confluence of the Ganges 

and Jamuna.  

After simulating the hydrodynamic part, it was calibrated using the historical water level data. 

Then the morphological model was developed and calibrated and validated using the historical 

cross section data. 2D model will give an insight of the capabilities of numerical models to 

predict morphological process in braided river. Process of model development and Results of 

Mathematical modeling are presented in Chapter 5.  

 Deep Learning Model 

In the preliminary investigation into machine learning approach to solve river bank erosion 

prediction problem, it was found that some specific neural network configuration will yield the 

desirable learning and corresponding results. The past works, mentioned in section 2.4.5 on 

sequence to sequence learning architectures, were used as inspiration to build the layers and 

fine tune the neural network. For deep learning approach, methodology starts with all the 

relevant data source identification and collection required to complete the study.  

3.5.1  Data Source 

The preferred way to download satellite images was chosen to be through the use of Google 

Earth Engine, as it had the ability for batch downloading and desired modifications with region 

selection capabilities. An account was requested for sign up from the 

https://earthengine.google.com/ site. It took about 3-4 days to get the access to the services 
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required for downloading images. A brief introduction to google earth engine is presented 

below. 

Google earth engine 

Google Earth Engine is a cloud computing platform for processing satellite imagery and other 

geospatial and observation data. It provides access to a large database of satellite imagery and 

the computational power needed to analyze those images. Google Earth Engine allows 

observation of dynamic changes in agriculture, natural resources, and climate using geospatial 

data from the Landsat satellite program, which passes over the same places on the Earth every 

sixteen days. Google Earth Engine has become a platform that makes Landsat and Sentinel-2 

data easily accessible to researchers in collaboration with the Google Cloud Storage. The 

Google Earth Engine provides a data catalog along with computers for analysis; this allows 

scientists to collaborate using data, algorithms, and visualizations. The platform uses Python 

and Javascript application programming interfaces for making requests to the servers.  

Initial applications of the engine have included mapping the forests of Mexico, identifying 

water in the Congo basin, and detecting deforestation in the Amazon rainforest. Using the 

Google Earth Engine to track global forest loss or gain, the University of Maryland reported 

an overall loss in global forest cover. The Carnegie Institute for Science’s CLASlite system 

and Imazon’s Sisteme de Alerta de Deforesation (SAD) are two institutions that partnered with 

Google in the development of Google Earth Engine. Both organizations use the program to 

build maps of forests that measure environmental disturbances. Additionally, Google Earth 

Engine has been expanded to further applications. These range from: Tiger Habitat Monitoring, 

Malaria Risk Mapping and Global Surface Water. These previous studies confirm Google 

Earth Engine as an authentic and contemporary source for satellite images. After downloading 

satellite images, the image properties and metadata were observed for future referencing.  

 

Image Properties 

Our initial investigation into image properties tells us that each image is composed of a total 

of 1500 ×2500=3750000 pixels. Each of these pixels represents a value between 0 and 255.  

The image properties in .tiff format were: 

- Dimensions: 1500 ×2500 

- Width: 1500 pixels 

- Height: 2500 pixels 

- Horizontal resolution: 96 dpi 

- Vertical resolution: 96 dpi 

- Compression: LZW 
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A total of 267 images from Landsat 5 (8 days’ interval), 225 images from Landsat 5 (32 days’ 

interval), 295 images from Landsat 7 (8 days’ interval), 182 images from Landsat 7 (32 days’ 

interval), 64 images from Landsat 8 (8 days’ interval), 49 images from Landsat 8 (32 days’ 

interval) will be downloaded. So, a total of 1082 images will be download. 

3.5.2  Data Preprocessing  

After data collection follows data preprocessing. It involves all the necessary transformations 

which is required for converting raw data into model ready format so that we can start training 

the model. We will be looking into the satellite images from various point of preprocessing. In 

each stage all the metadata regarding the transformations as well as image properties before 

and after will be kept for future referencing and paper publishing. The tools used for data 

preprocessing will be discussed first. 

Tensorflow Deep Learning Framework 

TensorFlow is an open-source software library for dataflow programming across a range of 

tasks. It is a symbolic math library, and is also used for machine learning applications such as 

neural networks. It is used for both research and production at Google, often replacing its 

closed-source predecessor, DistBelief. TensorFlow was developed by the Google Brain team 

for internal Google use. It was released under the Apache 2.0 open source license on November 

9, 2015. 

Python Programming Language 

Python is an interpreted high-level programming language for general-purpose programming. 

Created by Guido van Rossum and first released in 1991, Python has a design philosophy that 

emphasizes code readability, notably using significant whitespace. It provides constructs that 

enable clear programming on both small and large scales. Python features a dynamic type 

system and automatic memory management. It supports multiple programming paradigms, 

including object-oriented, imperative, functional and procedural, and has a large and 

comprehensive standard library. Python interpreters are available for many operating systems. 

CPython, the reference implementation of Python, is open source software and has a 

community-based development model, as do nearly all of Python's other implementations. 

Python and CPython are managed by the non-profit Python Software Foundation. 

Numpy Library 

NumPy is a library for the Python programming language, adding support for large, multi-

dimensional arrays and matrices, along with a large collection of high-level mathematical 

functions to operate on these arrays. The ancestor of NumPy, Numeric, was originally created 

by Jim Hugunin with contributions from several other developers. In 2005, Travis Oliphant 

created NumPy by incorporating features of the competing Numarray into Numeric, with 

extensive modifications. NumPy is open-source software and has many contributors. 
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Opencv Library 

OpenCV (Open Source Computer Vision) is a library of programming functions mainly aimed 

at real-time computer vision. Originally developed by Intel, it was later supported by Willow 

Garage then Itseez (which was later acquired by Intel). The library is cross-platform and free 

for use under the open-source BSD license. OpenCV supports the deep learning frameworks 

TensorFlow, Torch/PyTorch and Caffe. 

The stages of data preprocessing that we have decided upon from initial investigation is 

discussed in the following sections.  

Data Categorization  

Data preprocessing starts with proper categorization of all the raw data. Due to an instrument 

failure of Landsat 7 satellite, some invalid black pixel regions were generated in the satellite 

images. The corrupted regions are called SLC-off data gaps and we will be addressing this 

problem. The necessary SLC-off data gaps will be inapainted first and then will be used in the 

training data for bank erosion prediction model. All of the original images (1082 images) will 

be filtered and surveyed manually in order to get a reasonable dataset in which there will at 

least be one image representing every month beginning from 17-11-1987 to 04-07-2017. 

Because of excessive cloud covering during June, July, August and September it will most 

likely not be possible to ensure one image per month policy. The prepared final dataset of 

images will be batch converted to JPEG 12 quality images using Adobe Photoshop. The 

resolution and noise level of the converted images will be manually checked in order to ensure 

the quality. Any other JPEG quality format is likely to cause unwanted transformation of the 

images and introduce unnecessary noise.  

There will be about 456 images (.jpg format) in the final filtered dataset after categorization 

and conversion. There will be about 298 completely valid images (images with no invalid or 

overlapping regions). Initial analysis showed there were 98 SLC-off images among the 456 

images. A total of about 456 images dataset, along with the final inpainted images, will be used 

for the bank erosion prediction task.  
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Figure 3.5 Data categorization flow chart 

 

Image cropping  

Most space of the full resolution images contain unnecessary information for our bank erosion 

prediction task. There are a lot of land away from the riverbank lines, which do not provide 

information necessary for bank erosion prediction task. Also, the full resolution images cannot 

be used for training purposes for several reasons. Firstly, the required neural network for full 

resolution images will need to be very complex with a lot of learnable parameters. Secondly, 

the huge network will not fit into the available GPU bandwidth. Thirdly, there will only be 298 

images for training purposes and it is known that neural networks work best when there are a 

lot of training data. So, taking all of these into account it was decided that the images will be 

cropped into 256×256 resolution smaller segments and they will be used for training the 

models. 

 

 

 



 

Methodology 

3-10 

 

Final Report                          WRE, BUET 

Handle Missing Values 

In order to fill the missing values for the case of the full resolution images, the average will be 

taken. For the missing months, the average pixel value of the closest months, which will have 

all valid pixels, will be taken. If it was not possible to get the average from the closest images, 

then the closest image will be used for that month. In this manner the whole images will be 

generated and filled in for the missing months.  

We also noticed cases of missing segments. This meant that there were images that had black 

invalid pixel regions and also, there were clouded portions of images that had to be fixed. In 

order to deal with these two problems, first the full resolution images will be cropped according 

to previously described manner in order to get rectangles. This way each of the six months will 

have folders for the corresponding segments/reaches. 

Our findings also indicate that unique modification to the LSTM cell of the neural networks, 

will allow us to handle missing values without manual effort or taking the average as discussed 

above. We should be able to incorporate time stamp information into each image so that the 

network knows to which time any particular image belongs to. This incorporation scheme will 

be one of our main focuses in modifying the deep learning model to our specific use case and 

will be experimented with for the best accuracy. 

After, cropping and handling all the missing values, the cropped images will be ready to be fed 

as input for the neural network. The complete data preprocessing steps are depicted in Figure 

3-5. 

3.5.3  Model Architecture 

In this section, the architecture for predicting next year bank erosion conditions using historical 

observation datasets will be discussed. A basic Seq2Seq architecture that consists of two RNNs 

using an encoder-decoder framework will be used. Both the encoder and the decoder will use 

a five-layer convolution operation to extract rich features or restore encoded information for 

deconvolution operations. As convolutional filter weights of the encoder and the decoder can 

be repeatedly utilized, the encoder and the decoder must be able to save and restore their 

parameters within a scope of Seq2Seq memory networks because the model will not be 

restricted to a specific number of input and output sequences. The suggested model will 

therefore be used for flexible input/output configurations. However, a fixed time gap between 

each data instance (e.g., 1-year or 1-month gap per input) is suggested to achieve better 

prediction results. 

To achieve better feature extraction from the spatial data space, convolutional LSTM cells will 

be introduced into both the encoder and the decoder. Further, an auxiliary link in the image 

regeneration step will be implemented—a symmetric skip connection from the convolutional 

encoder into the deconvolutional decoder—for better image restoration.  

The neural network will be designed as a UNet-like architecture with ConvLSTM blocks in 

the middle of the network. The input images will be of 256×256 resolution. ReLU will be used 
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in the encoding stage and LeakyReLU with alpha = 0.2 will be used between all decoding 

layers except for the last decoding layer. For the last decoding layer sigmoid activation will be 

used. No batch normalization layers will be used. The encoder will comprise of five 

convolutional layers with all layers having stride=2. The kernel sizes will be 3, 3, 3, 3 and 3. 

The channel sizes will be 4, 8, 16, 32, 64 and 80. The decoder will include five deconvolutional 

layer. The output channel for convolutional layers in the decoder will be 64, 32, 16, 8 and 1. 

The skip links will feed the decoder stage and concatenate the feature maps channel-wise 

before being considered as input to the next convolution layer. 

 

 

Figure 3.6 Methodology of Deep Learning Technique 
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We will perform model training from three different perspectives. Firstly, only the satellite 

images will be used to make the predictions of future river bank conditions. Then other data 

such as water level, discharge and cross-section data will be incorporated so that the model can 

further integrate the new data to better it’s prediction. Thirdly, the input data per instance of 

training will be experimented with. This means we will first set one year input data to get 

output of one year into the future, then further experiment with 12 months’ images as input 

and predict one or two years into the future. All of these different configurations will allow us 

to base our final result on the best possible output. This will ensure proper investigation into 

the research problem. The steps of deep learning methodology is depicted in Figure 3-6. 

 Development of River Bank Erosion Prediction Tool 

A river bank erosion prediction tool will be developed using the results from deep learning 

algorithm and numerical model. This tool will have the neural network graph along with the 

necessary weights in the backend of the software and in the frontend there will be an intuitively 

understood GUI for the customers to interact with the model.  

Some of the functionalities of the software will include the rapid input capabilities where the 

users will be able to input recent satellite images or call satellite images using the backend 

Planet API. This feature will allow the users to view future bank erosion changes in RGB high 

resolution image format. Another feature will allow the users to input the data from other 

sources so that the prediction could be improved. There will be options to tune the hyper 

parameters of the neural network so that calibration can be performed based on recent ground 

truth data if required. There will also be an option to further train the model based on the new 

data. This training feature will have to be carried out using a GPU. The neural network models 

do not support CPU based computations. The training will allow the model to adjust its 

prediction based on recent data. The ability to use other machine learning models will also be 

incorporated for analysis. The ability to generate graphs based on the output will also help 

users better understand the future scenario of bank erosion. 

 Summary of methodology: 

The research methodology has begun with collection of data from all the secondary sources. 

First of all, quality of check of the collected data will be done to ensure no incorrect data is 

used in this study. After ensuring the quality of the data, those data will be analyzed carefully 

to interpret the hydrology and eventually the morphology of the study area. The study area 

consisting of 60 km reach of the Jamuna river will be extended to Bahadurabad, Hardinge 

Bridge and Mawa in Jamuna, Ganges, Padma reach respectively to develop a preliminary 1D 

hydrodynamic model using HEC-RAS. The result of this model will be used as boundary 

condition in the 2D Hydromorphological using SRH-2D. The LANDSAT images will be used 

to determine erosion and deposition over the year and most importantly these images will be 

used as input in the deep learning model. Images of previous years or months will be given as 

input for each instance of sample and an output image one year into the future of the same 

reach will be generated by the model. This predicted new image will show the new banklines, 
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which will help to identify areas of interest where erosion might occur next year. To improve 

image prediction accuracy of the model, several hydrodynamic parameters will also be 

included as input for the neural network. For this, flow information will be included into the 

deep learning model and later on, local hydrodynamic information such as local velocity will 

also be incorporated. These three scenarios will then be analyzed to reach the highest possible 

accuracy given the data.  

The following flow diagram represents the full methodology in a nutshell. 
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Chapter 4:  Hydrological and Morphological Analysis 

 Introduction 

The Jamuna being one of the largest braided river of the world it continuously increasing its 

width thus erosion on the bank. The study area of this research starts from the downstream of 

the Bangabandhu Multipurpose Bridge to 15 km downstream of the confluence of the river 

Jamuna and Ganges (Figure 4-1). To simulate the bank erosion in this area numerical and deep 

learning model will be developed, thus a general river bank erosion prediction tool will be 

developed.  

The upstream point is located on the Belkuchi Upazila of Sirajganj district on the right bank 

and Gopalpur Upazila, Tangail District on the left bank. The downstream point is situated in 

Harirampur, Manikganj. 

Figure 4.1 Study Area 
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 Data collection 

Both Secondary and primary data were collected through this research (e.g discharge, water 

level, bathymetry, cross section and satellite images). Secondary data were collected from 

different sources including (BWDB, WARPO, USGS). Bangladesh Water Development Board 

(BWDB) has water level, discharge and several cross-section measuring stations on different 

rivers. Historical LANDSAT imagery was collected from USGS website and Google Earth 

Engine. Primary data were collected through field survey at the selected region shown in 

(Figure 3-4). 

Table 4-1 List of collected secondary and primary data for this study 

Type of data Data Source Station/Region Time period 

Secondary 

Water level BWDB/WARPO Selected station 1976-2012 

Discharge BWDB/WARPO Selected station 1976-2012 

Cross section BWDB/WARPO Selected station 1972-2017 

Bathymetry FRERMIP Study area 2016-2018 

Satellite image 

(30x30m) 

USGS/Google earth engine Study area 1988-2019 

Primary Bathymetry Field Survey Survey region 2019 
 

 Hydrological characteristics of the study area 

At Bahadurabad, the mean annual discharge is 20200 m3/s varying from a minimum dry season 

flow 2860 m3/s to 100 000 m3/s in the disastrous 1988 flood (EGIS, 1997; Best, 2007), and a 

record 102,500 m3/s in the 1998 flood (Chowdhury, 2000). The annual hydrograph shows a 

yearly change in water stage of approximately 6 m (FAP24, 1996a; Best, 2007). Flow 

velocities within the main channels are of concern in design considerations and depth-averaged 

velocities may reach over 3.5 m/s (FAP24, 1996c; Best, 2007). The average monthly discharge 

is highest in July and lowest in February. From November to April, discharge is relatively low 

ranging from 5000 to 6000 m3/s. Rapid increase in discharge are noticed during a flood, with 

the maximum increase of about 17,000 m3/s in 24 hours (June 7–8, 1990) and 24,000 m3/s in 

48 hours (June 7–9, 1990) (Sarma, 2005). 

From this study analysis, mean annual discharge was found to be around 17000 m3/s. 

Maximum and minimum flood discharge was recorded as 102535 m3/s and 3095 m3/s 

respectively. 
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Table 4-2 Hydrologic summary of Bahadurabad and Mathura station 
 

 

 Hydrologic data Analysis. 

Hydrological analysis was required to find out the hydrological characteristics (i.e. peak 

discharge, high water level, low water level, time to peak etc.) of the study area. For the study 

area, its upstream and downstream stations were selected as SW46.9L (Bahadurabad transit) 

and SW50.3 Mathura respectively. Both discharge and water level were analyzed for the 

upstream (Bahadurabad) station and only water levels were plotted and analyzed for the 

downstream (Mathura) station in the following sections. Maximum, minimum, and average 

water level discharge were also derived from those collected data. 

Water levels 

The plotted water level hydrograph at Bahadurabad station and Mathura station are shown in 

Figure 4-2 and in Figure 4-4. Figure 4-2 shows historical water level at Bahadurabad station, 

historical maximum water level at this station was around 20.2 m and minimum were around 

11 m. Figure 4-3 and 4-5 shows average stage hydrograph for Bahadurabad and Mathura 

station. 

 

Figure 4.2 Historical Waterlevel at Bahadurabad station 
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Figure 4.3 Average stage hydrograph at Bahadurabad station 

 

 

 

 
Figure 4.4 Histoprical water level hydrograph at Mathura station of Jamuna river 
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Figure 4.5 Stage hydrograph at Mathura station of Jamuna river 

 

Discharge 

Historical measured discharge data of Jamuna River at Bahadurabad station that were collected 

from BWDB and WARPO were analyzed and plotted in Figure 4-6. From this figure, the 

maximum (102535 cumec) and minimum discharges (39100 cumec) was detected for the years 

1998 and 1994 respectively. From historical data it was observed that the Jamuna began rising 

in May-June and increased its flow gradually until the peak in July-August. Figure 4-7 shows 

average discharge hydrograph at Bahadurabad station. 

 

 
Figure 4.6 Historical Flood hydrograph at Bahadurabad station of Jamuna river 
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Figure 4.7 Average flood hydrograph at Bahadurabad station of Jamuna river 

 

 
 

 Morphological Characteristics of the study area 

4.5.1  Dune Shape 

Dunes cover 40–95% of the bed of the Jamuna River at all times (Jagers, 2003). Their height 

averages about 1 m and the average wavelength is about 37 m, the mean lee side angle is 9 

degrees. The mean lee side angle is much smaller than the characteristic angle for general 

dunes which is in the order of 30–45 degrees. Dune migration rates between 1 and 17 m/h have 

been observed in the Jamuna River (Jagers, 2003). Within the category of dunes, sometimes, 

three further subgroups are distinguished, being -from small to large –mega ripples, (normal) 

dunes, and mega dunes or sand waves.  

4.5.2  Material consisting the bank and bed 

Though most of the flood plain sediments along the Jamuna River have been deposited by 

other rivers (before the major diversion early in the 19th century), their composition is similar 

to the sediment transported by the Jamuna River today. It mainly consists of fine sands and a 

generally small percentage of silt/clay which is characteristic for the very young and 

unweathered sedimentary rocks that make up the drainage basin of the Brahmaputra River. For 

this study sediment data was not collected and material size distribution was used as 

FAP24,1996) 

Table 4-3 Grain size (mm) of bed material collected in 1993-1994 (FAP 24, 1996) 
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Jamuna Bahadurabad 0.13 0.16 0.22 0.29 0.34 

Ganges Hardinge Bridge 0.10 0.12 0.15 0.18 0.21 

Padma Baruria 0.10 0.12 0.14 0.18 0.22 

The banks are in general made of 85% sand and 15% silt (diameter less than 0.063 mm) except 

for localized deposits that contain up to 55% silt and 35% clay. The sand fraction consists of 

44% quartz, 18% rock fragments, 18% mica, 12% heavy minerals, and 8% feldspar (FAP, 

1996). The bed material fines in downstream direction from 0.25 mm near the Indian border 

to 0.16 mm at the confluence with the Ganges River which transports a slightly finer load. The 

major part of the downstream fining is probably the result of abrasion of the relatively soft 

mica particles of which a large amount originates from the Teesta River (FAP24, 1996) 

 Planform Analysis 

Planform Analysis along the Jamuna riverbank was performed by using the multispectral 

satellite images (LANDSAT) of dry season in ArcGIS using manual demarcation method. To 

calculate erosion and deposition, first of all 32 years of Jamuna riverbank line was digitized. 

Then bank line of every two consecutive years were compared (i.e. bank line of the year 1988 

and 1989). Here, the bank line of earlier year was considered as a base line. And deviation of 

the later one would define whether it was erosion or deposition. In a scenario, where the line 

of the later year deviated outward from the main channel with respect to the base line it was 

considered as an erosion phenomenon. On the other hand, where the later year’s line deviated 

to the main channel with respect to the base line it was considered as deposition. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Planform Analysis process 
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4.6.1 Definition of River bank 

Geo-referenced images have been used to delineate the banklines of the river. Banklines are 

generally well defined in meandering rivers, but the task is not straightforward with regard to 

very dynamic braided rivers. In delineating banklines for large rivers using satellite images, 

CEGIS followed the criteria developed by EGIS (1997) while carrying out a study on the 

morpho-dynamics of the Brahmaputra-Jamuna River. In brief, the criteria for bank line 

delineation are: the bank line should separate the floodplain from the riverbed; all sand bodies 

except crevasse splays (coarse sediments that are spread over floodplains during floods by 

overtopping the banks) should be considered as part of the riverbed; vegetated char land, 

bounded by flanking channels and the width of which is more than 100 m, should be considered 

as part of the riverbed as well. In this study the same procedure was followed to delineate 

Jamuna river bank lines.  

4.6.2  Limitation Defining River Bank 

Braided river systems exhibit strong unsteadiness in flow field and sediment transport. An 

equilibrium configuration of the system does not seem to exist, rather a recursive process of 

formation and obliteration of bed forms and planimetric structures is always observed. Braided 

systems are subjected by strong n on-linearity. The interactions between free responses of the 

system (due to an inherent instability of free surface turbulent flow over an erodible bed) and 

forced responses (induced by physical constraints, such as curvature, width variations, 

confluences) crucially affect the topographic behavior of the network. 

 

Figure 4.9 Channel migration in braided river-Jamuna 
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It was very challenging to identify river bank at some point of the reach. For an example in the 

left bank near Dhaleshwari river offtake exists two or more minor channels. These channels 

vary in size and changes their path very frequently. Moreover,  in the year 1994 and 1995 the 

secondary  channel changes its course as well as shifts the river bank line ( marked in yellow 

circle).As one very important objective of this study is to predict erosion of river bank it was 

very important to identify single bank line. In this case if the left most, channel was identified 

as river bank in deep learning technique it would give a false indication of river bank line to 

the Ai model. 

 

 

4.6.3  Changes in river spatial characteristics  

The change in average river width over time is shown in Figure 4-10, Though there is a minor 

variation in water level and moderately high variation in discharge for different stations of the 

river, the river exhibits a growing trend in its width. Since the early 1980s, the Jamuna River 

in this study area widened from 14.2 km to 15 km in the 2020 and now the average width is 

14.69 km. Figure 4-10 shows westward migration and width change of Jamuna river with at 

various time line. 

  

4.6.4  Erosion Deposition 

Erosion deposition was calculated for each year but for better visual interpretation Figure 4-11 

and Figure 4-12 shows erosion deposition in five years interval. From 1988 to 2019, total 

erosion along the Jamuna river left bank was 23800 ha with an average of 770 ha per year. 

Figure 4.10 Average width of Jamuna river. 
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Whereas for the right bank of the river total erosion was 11840 ha and 380 ha per year. It was 

evident from the data that erosion rate was higher for left bank of the Jamuna river (Figure 4-

13). Deposition during this period for left bank and right bank were 12920 ha and 7990 ha 

respectively. Maximum erosion of about 2550 ha had occurred in the year 1995-1996 and 

maximum deposition of about 1720 ha had occurred in the year 1988-1989.Figure 4-14 show 

total erosion and deposition of different year along Jamuna riverbank.  
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Figure 4.11Jamuna river erosion deposition during 1990-1995(Left) and 1995-2000(Right) 
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Figure 4.12 Jamuna river erosion deposition during 2000-2005(Left) and 2015-2019(Right) 
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Figure 4.13 Comparison of erosion between right bank and left bank of Jamuna river 

 

 

Figure 4.14 Comparison of deposition between right bank and left bank of Jamuna river 

 

4.6.5 Relation between Erosion and Flood 

An attempt was made find out the relationship between peak discharge and riverbank erosion. 

Simple mathematical relationship has been established by plotting annual peak discharge (in 
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X-axis) and erosion (in Y-axis) in a graph. Future prediction of erosion has been carried out 

through calculation using relationship formulas for each of the rivers. It has been found that 

rate of riverbank erosion varies in decade-scale along the Jamuna. Sometimes variation may 

be naturally induced and/or sometimes it is induced by anthropogenic activities (such as 

installation of bank protection structures). It was observed from the figure that for peak 

discharge in the year 1996 and 1998, erosion was maximum (Figure 4-15). Figure 4-16 and 

Figure 4-17 show correlation between discharge, maximum water level and erosion. 

 

 

Figure 4.15  Relation between discharge and erosion in Jamuna river 
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Figure 4.16 Relation between water level and erosion in Jamuna river 



 

Hydrological and Morphological Analysis 

4-16 

 

Final Report                          WRE, BUET 

 

Figure 4.17 Corelation between Erosion and Discharge 

 

 

 

Figure 4.18 Corelation between Erosion and Water level 
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 Morphological Change Analysis 

The historical migration of the river has produced significant differences between left and right 

bank material properties; to explain the relationships between discharge, fluvial processes, 

anabranch instability and floodplain erosion rates, and; identify causal associations between 

drivers and morphological responses at a variety of time and space scales bed form change was 

observed throughout 2016 to 2019. It was helpful to recognize Process–response mechanisms 

and their relation to various drivers of morphological change in the Brahmaputra–Jamuna 

River. 

4.7.1  Data set 

Bathymetry analysis was made to reveal the nature of bed material movement. The thalweg 

line of the main river shows the main course of flow. Changes of course of the thalweg line 

and its elevation provide information of the main river course over the year of 2016, 2017,2018 

and 2019. Analysis was made with 2016, 2017,2018 and 2019 bathymetry data collected from 

FRERMIP.Data set from 2018 and 2019 are of 500 m resolution whereas resolution varies to 

1 to 3 km for the year 2016 and 2017 Figure 4-19 show the scatter data set along with 

interpolated riverbed for each of the year. From these data the shifting of the thalweg line as 

well as the riverbed change was observed.  

 Figure 4.19 Scatter bathymetry Data Set. 
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4.7.2 Comparison between bed levels 

The data was measured with respect to P WD datum. Bathymetry data was collected during 

the monsoon-post monsoon period of the year 2016,2017,2018 and 2019. Figure 4-20 to 4-22 

show interpolated bathymetry and corresponding year erosion deposition. In the figure4-20 

dark blue potion at  right bank of the year 2016 signifies data scarcity, it can also be seen from 

the erosion deposition on map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Comparison of river bed level 2016-2017 
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Figure 4.21 Comparison of River bed level 2017-2018 
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Figure 4.22 Comparison river bed level 2018-2019 
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4.7.3 Bedform changes along longitudinal profile. 

To assess bedform changes along the length of the river reach 3 long profile was chosen. In 

figure the line in the middle represents thalweg line at 2018 and the lines on the left is the 

thalweg of secondary channel along the right bank and right profile is a thalweg line along the 

secondary channel on the left bank.  

 

Figure 4.23  Selected longitudinal profiles 

Spatial and temporal change of the bathymetry were derived from the collected data. The 

collected bathymetric data of the year 2016, 2017 and 2018 from the FRERMIP project were 

used in analyzing the bathymetric information. Primarily Bathymetry of Jamuna river for 2016, 

2017,2018 and 2019 was compared with in their common. Figure shows 4-24 to 4 -29 shows 

bedform and their changes along the long profiles. Here the center profile is marked in yellow 

and left and right profiles are symbolized by red and brown respectively.  
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Figure 4.24 Longitudinal profile along center profile. 
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Figure 4.25 Longitudinal profile along left profile. 
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Figure 4.26 Longitudinal profile along right profile. 
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Figure 4.27 Erosion deposition along center long profile 
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Figure 4.28  Erosion deposition along left long profile 
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Figure 4.29  Erosion deposition along right long profile 
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Longitudinal profiles (from figure 4-27 to 4-29) show a high spike of deposition is always 

followed by a steep crest erosion and a medium crest deposition is followed medium to low 

crest erosion. In Figure (4-27 to 4-29) negative value signifies bed scour and positive value 

defines deposition. At point around 800 m from upstream channel bed elevation was around -

5m in 2016, in 2017 it gets eroded to -10m, after further erosion in 2018 it become -15m but 

in the year 2019 a huge deposition took place creating a dune, which was followed by an 

erosion. Maximum erosion(-15.07m) occurred along the center profile in 2017-2018 and 

Minimum erosion (-8.06 m) occurred along the right profile in the year 2016-2017. Maximum 

deposition was observed as 20.81 m along the left profile in the year 2018-2019. Table 4-4 

below shows variation of bed levels along three profiles  

Table 4-4 variation of bed levels along three profiles 

Profile Year Maximum 

Erosion 

(m) 

Maximum 

Deposition(m) 

Average 

change 

(m) 

St.Dev 

Center profile 

2016-2017 -11.75 9.53 0.53 2.97 

2017-2018 -15.07 8.03 -0.35 2.39 

2018-2019 -11.06 13.82 -0.46 2.53 

Left profile 

2016-2017 -10.51 9.31 0.20 3.59 

2017-2018 -14.51 9.29 -2.34 3.45 

2018-2019 -8.72 20.81 1.00 3.91 

Right profile 

2016-2017 -8.06 17.97 -0.19 2.68 

2017-2018 -14.34 7.88 -2.01 3.51 

2018-2019 -9.55 12.86 2.38 4.63 
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4.7.4 Bedform changes along Cross-sectional profile. 

Similar to long profile assessment Cross sectional bedform changes were also analyzed. Total 

6 cross sections were taken in this study. Cross section 01,03,04, and 05 are at very erosion 

prone site at left bank, whereas erosion occur at the right bank in cross section 02 and 6. Figure 

below shows the 6 cross sections, Cross section 01 at the top to the cross section 06 at the 

bottom. Figure 27-32 variation of cross section with different year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At Cross section 01( Figure 4-32) in the left bank deposition occur in the year 2017 followed 

by a erosion of around 2 m in 2018.After that in 2019 a huge erosion took place at this point 

as the level drop to around 4.5m from 8m.Similar pattern can be found  in cross section 

03,04,05.On the otherhand  a cross section 02(Figure 4-33)  continous erosion was observed 

throughout these four years.Figure 4-34 to 4-36 shows different cross section profiles. 

 

Figure 4.30 Cross sections in the study area. 
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Figure 4.32 Cross section 02 

Figure 4.31 Cross section 01 
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Figure 4.33 Cross section 03 

Figure 4.34 cross section 04 
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Figure 4.36 Cross section 06 

Figure 4.35 Cross section 05 



 

Research on River Bank Erosion Dynamics using Numerical Modeling and Deep Learning Techniques 

Final Report                                                   4-33                                                   WRE, BUET 

 

 

4.7.5 Erosion prone area analysis 

From Planform analysis it was evident that there are some erosion prone areas along the 

Jamuna river bank. These areas are subjected to continuous erosion. In this study an attempt 

was made to investigate the cause of these severe erosion . Total 6 critical area were identified 

(Figure 4-37) and investigated. It was found that due to formation of bar when flows were 

directly diverted towards the bank significant amount of erosion occurred. In these cases, direct 

shear stress, impact force become very high that the soil cannot withstand the flow. Figure 4-

38 to 4-48 shows different erosion prone area. 

 

 

 

Figure 4.37 Erosion Prone Areas 
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Figure 4.39 Bed level Change in area 01 

Figure 4.38 Planform Change in Area 01  
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Figure 4.41 Planform Change in area 02 

 

 

Figure 4.40 Bed level Change in area 02 
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Figure 4.42 Planform Change in area 03 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.43Bed level Change in area 03 
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Figure 4.45 Planform Change in area 04 

Figure 4.44 Bed level Change in area 04 
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Figure 4.47 Planform Change in area 05 

Figure 4.46 Bed level Change in area 05 
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Figure 4.48 Plan form Change in area 06 

Figure 4.49 Bed level changes in area 06 
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 Analysis with fine resolution bathymetry data  

Bathymetry analysis was also made for the fine resolution survey data collected from field 

survey in the selected survey area (Figure 3-4) to better understand the riverbed formation. 

Figure 4-50 shows the scatter dataset of pre- and post-monsoon 2019. Figure 4-51 shows the 

bed level elevation in pre monsoon and post monsoon and erosion deposition. Three 

longitudinal profiles were analyzed to understand tbed form change along the reach.From 

analysis it was evedent that  the  the post monsoon thalweg line shifted towards right bank  

with respect to pre monsoon thalweg in the upstream of the cross section and towards left bank 

in the downstream of the cross section. Cross section profile in Figure 4-55 also indicates the 

same. 

Figure 4.50 High resolution primary dataset 
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Figure 4.51 Comparison of bathymetry for primary data set 

Longitudinal and cross-sectional profile were also scrutinized for these data set. It was found 

that in pre-monsoon bed profile changes rapidly from around -4 m to -11 m and create a 

depression. This depression was followed by deposition. In the post monsoon the bed profile 

follows almost similar pattern but the depression shifted around 2000 m towards downstream 

Figure (4-53). The left portion from the centerline experienced erosion whereas there was 

deposition in the right portion. 

Six cross sections were evaluated (4-54 to 4-55). From the cross section change in thalweg was 

observed. From cross section 01 to cross section 03 pre-monsoon thalweg line was on the left 

of the post monsoon line as the channel propagated to cross-section 04-06 the post monsoon 

thalweg line shift towards left bank. 
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Figure 4.52 Longitudinal and cross-sectional profiles in primary data set. 
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Figure 4.53 Longitudinal profile in the primary data set. 
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Figure 4.54 Cross sections primary data set. 
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Figure 4.55 Cross sections in primary data set 
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 Conclusion 

In this chapter hydrological and morphological characteristics of Jamuna river was analyzed 

and an attempt was made to find a relation with bank erosion. In this process hydrological 

characteristics (Discharge and Water level) of Bahadurabad and Mathura was assessed. In 

association with that Planform change analysis with 32 years of satellite image, average width 

change analysis and bedform change analysis with four years of bathymetry data was made. 

For better understanding of the morphological behavior a fine resolution bathymetry data was 

also collected under this project.  

From historical hydrologic data it was observed that the water level Jamuna river began rising 

in May-June and increased its flow gradually until the peak in July-August. The average 

monthly discharge is highest in July and lowest in February. From November to April, 

discharge is relatively low (Figure 4-7). From this study analysis, mean annual discharge was 

found to be around 17000 m3/s. Maximum and minimum flood discharge was recorded as 

102535 m3/s and 3095 m3/s respectively. From annual hydrograph at Bahadurabad station it 

was found that water level varies around 6 m from dry to monsoon season (Figure 4-3). 

Erosion and deposition were calculated for both banks of Jamuna river using 32 years of 

satellite images to understand the erosion pattern during this period.  From 1988 to 2019, total 

erosion along the Jamuna river left bank was 23800 ha with an average of 770 ha per year. 

Whereas for the right bank of the river total erosion was 11840 ha and 380 ha per year. It was 

evident from the data that erosion rate was higher for left bank of the Jamuna river (Figure 4-

13). From the planform analysis it was found that width of the Jamuna river has an increasing 

trend and it is widening at the left bank side. Since the early 1980s, the Jamuna River in this 

study area widened from 14.2 km to 15 km in the 2020 and now the average width is 14.69 km 

(Figure 4-10). 

From these hydrological and erosion data a correlation between peak discharge and total 

erosion was found, with higher discharge erosion will be higher. It was observed from the 

figure that for peak discharge in the year 1996 and 1998, erosion was maximum and erosion 

was less in case of lower discharge (Figure 4-15). 

Morphological change was observed for four years with available data collected from 

FRERMIP. The change was also monitored with fine resolution data, specially collected under 

this project for a specific site. Yearly change in river bathymetry was monitored through both 

spatial assessment and assessment along thalweg. spatial change was observed through GIS 

mapping and significant erosion and deposition was observed along the active channels. The 

analysis with thalweg line also indicates the same. Longitudinal profiles (from figure 4-27 to 

4-29) show a high spike of deposition, always followed by a steep crest erosion and a medium 

crest deposition is followed by medium to low crest erosion. Maximum erosion(-15.07m) 

occurred along the center profile in 2017-2018 and Minimum erosion (-8.06 m) occurred along 

the right profile in the year 2016-2017. Maximum deposition was observed as 20.81 m along 
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the left profile in the year 2018-2019. Table 4-4 below shows variation of bed levels along the 

profiles.  

Combination of morphological change analysis and planform change analysis provided a very 

thought-provoking finding. When a sand bar is formed in the middle of a channel it diverts the 

flow towards the riverbank. when these diverted flows hit the riverbank, it exerts impact 

pressure almost perpendicularly and with higher impact the erosion will be higher. The 

magnitude of the impact may vary with the flow angle. This analysis was made at six erosion 

prone area identified from planform analysis. It was found that due to formation of bar when 

flows were directly diverted towards the bank significant amount of erosion occurred.  
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Chapter 5:  Mathematical Modeling and Results 

 1D Hydrodynamic modeling 

5.1.1 Introduction 

Hydrologic Engineering Center's (CEIWR-HEC) River Analysis System (HEC-RAS) is an 

integrated software system, designed for interactive use in a multitasking environment and 

used to perform one-dimensional water surface calculations. This software permits the user to 

perform one-dimensional steady flow, one and two-dimensional unsteady flow calculations, 

sediment transport/mobile bed computations, and water temperature/water quality modeling 

.Four files are compulsory to run a HEC-RAS project.  

5.1.2 Purpose of 1D Hydrodynamic modeling 

There is no discharge and water level measuring station in study area which can be used as 

boundary condition in the 2D model. Therefore, 1D hydrodynamic model was developed to 

find discharge and water level just to the upstream and downstream of the study area 

respectively. For this the study area for 1D hydrodynamic model was extended to Bahadurabad 

in the Jamuna reach, to Mathura just upstream of the confluence of the river Jamuna and 

Ganges. For this a 1D HEC-RAS model will be used. Using this 1D model discharge at the 

downstream of the Bangabandhu Multipurpose Bridge and water level at the confluence of the 

Jamuna and Ganges river will be derived. This data was used in developing 2D Hydrodynamic 

and morphological model as well as to calibrate and validate them. 

5.1.3 1D Hydrodynamic model study area 

The study reach is selected within the district of Gaibandha, Jamalpur, Bogra, Sirajganj and 

Tangail, Pabna, and Manikganj and covers about 150 km reach of the Jamuna River (90km 

upstream and 60km downstream of The Bangabandhu Multi-purpose Bridge). Bahadurabad 

Transit (SW46.9L) is situated at the upstream of the study reach where as Kazipur (SW49A) 

and Sirajganj (SW49) is situated at the right bank of the reach and Mathura (SW50.3) is 

situated at the downstream end of the study reach. The location of the study area is shown in 

Figure 5-1. To avoid complexities inflow and outflow from the intakes and off takes are 

neglected. 
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Figure 5.1 Hydrodynamic model study Area. 
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5.1.4 1D Model data  

Cross section data  

Jamuna river Cross section data were collected from BWDB. The model was developed with 

2016 cross section data. Total 24 cross sections were used to develop Hecras 1D model to 

generate inflow for 2D model. These cross sections were digitized from a morphological map 

(By BWDB). Figure 5-2 shows the cross sections used in this study and 5-3 shows a typical 

cross section of Jamuna river. 

Figure 5.3 A Cross Section Used in Hecras 
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Figure 5.2 Cross section Location 
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Boundary condition 

Boundaries are important as they define the input conditions to the Modelling process within 

the model boundary. For the FLOW, two boundaries have been defined. It consists of two open 

boundaries (Upstream and Downstream boundaries). Normally total discharge is assigned at 

the upstream inflow boundary and water level at downstream boundary. The model of the 

Jamuna River had a total discharge boundary at the upstream Bahadurabad and a water level 

boundary at downstream at Mathura. AS cross section data were available for the year 2016, 

discharge and water level data of the same year was used. Figure 5-4 show inflow discharge 

and water level at downstream boundary. 

 

 

 

Figure 5.4 Hecras Boundary Condition 

 

 

5.1.5 Calibration and Validation 

During model development, many uncertainties exists related to input as model geometry, 

boundary conditions, roughness, eddy viscosity etc. which can have momentous impact on 
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model solutions. Once geometry and boundary conditions have been obtained with reasonable 

accuracy from the field, it is common practice to set them out of preview of the calibration 

process. Validation is a multi-step process of model adjustments and comparisons, leavened 

with careful consideration of both the model and the data. During validation, a new set of 

observed data have been incorporated to justify whether the calibrated parameters produces 

satisfactory result for a new condition 

For hydrodynamic calibration, roughness is the parameter to play with to obtain an adequate 

match with the observed field conditions. For the present study, the water levels at Kazipur 

station were compared with the simulated water levels of the model for the same location. The 

roughness parameter (Manning’s n) was adjusted to get the best result. 

 

Figure 5.5 Calibration at kazipur Station 

 

The computed water surface elevations by the model were validated with observed water 

surface elevations at Sirajganj station for the months of 1 January 2016 to 31 December 2016. 

Good agreement between the observed and simulated water levels indicates satisfactory 

performance of the model. During the calibration and validation process, the model showed 

good agreement with observed data for wet periods. Therefore, the model was capable to 

simulate different conditions and scenarios used in the present study. 
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Figure 5.6 Validation at Sirajganj Station. 
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 2D-Hydrodynamic Modeling 

5.2.1 Introduction 

A 2D hydrodynamic model was setup using the depth average SRH-2D model. The extent of 

this model started from just downstream of the Bangabandhu Multipurpose Bridge to 15 km 

upstream of the confluence of the river Jamuna and Ganges. The bathymetric data collected 

from FRERMIP project of the year 2018 were used in developing this model. Required water 

level and discharge data from collected station were used as boundary condition. For modeling 

paving type mesh was applied and grid size was 175m to keep number of elements with in the 

calculation limit of SRH 2D. Hydrodynamic model was simulated for 12 months with 30 sec 

time intervals. The model results were useful to understand the hydrodynamic characteristics 

of Jamuna river although due to lack of fine resolution data and computational capacity it 

wasn’t possible to replicate the actual scenario. 

5.2.2 Modeling approach 

Data Collected from FRERMIP was used as elevation data, Following the scatter data internal 

channel and island were delineated. Boundary Coverage was added both in upstream and 

downstream. Material coverage was added to define roughness and monitor points to observe 

simulation status. After defining Model controls model was prepared to simulate. To calibrate 

validate the model Manning’s roughness was used. Following figure shows the modeling 

approach of SRH 2D.Figure 5-7 shows SRH 2D modeling approach. 

 

5.2.3Delineation of Model Boundary and parameter. 

Model boundary was delineated in SMS Using satellite image of 2018 as bathymetry 2018 was 

used to define bed level. To keep number of elements within calculation limit of SRH 2D 175m 

spacing was used to redistribute vertices. Then a 2D mesh was created. all mesh parameter is 

given below. (Table 5-1) 

Figure 5.7 SRH 2D Modeling approach 



 

Mathematical Modeling and Results 

5-8 

 

Final Report                          WRE, BUET 

Table 5-1 Mesh information of SRH 2D model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mesh module Information 

Element type Linear 

Number of triangular elements 34288 

Number of quadrilateral elements 0 

Max. element front width 139 

Max. node half band width 143 

Number of elements  34288 

Maximum element Id 34288 

Number of nodes 17549 

Maximum node Id 17549 

Minimum Z value (m) -18.4 

Maximum Z value (m) 10.48 

Figure 5.8 Mesh Generation SRH 2D 

Figure 5.9 mesh elements 

of model 
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5.2.4 Boundary Data Definition  

There was no discharge measuring station near model input boundary so, to generate inlet 

boundary condition discharge 1D Hecras was developed. In the hecras model discharge at 

Bahadurabad Transit was used as inlet boundary condition and water level at Mathura station 

as downstream boundary. As Hecras model was well calibrated and validated discharge at 

model inlet was derived with confidence. Figure below shows Upstream and downstream 

boundary condition for SRH 2D model. Figure 5-10 and 5-11 shows boundary  data of Srh 2d 

model. 

 

Figure 5.10 Discharge Just downstream of jamuan river 

 

Figure 5.11 water level at Mathura station 
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5.2.5 Model Simulation 

Model simulation has been performed for the wet period of 2018 (From May to October) using 

daily time series data of discharge and water level as described in the earlier section done on a 

daily basis. In this simulation, Manning’s n was used 0.025 for river channel 0.03 for flood 

plain. Model result output interval was 24 hours.  

 

5.2.6 Calibration and Validation 

During model development, many uncertainties exists related to input as model geometry, 

boundary conditions, roughness, eddy viscosity etc. which can have momentous impact on 

model solutions. Once geometry and boundary conditions have been obtained with reasonable 

accuracy from the field, it is common practice to set them out of preview of the calibration 

process. Validation is a multi-step process of model adjustments and comparisons, leavened 

with careful consideration of both the model and the data. During validation, a new set of 

observed data have been incorporated to justify whether the calibrated parameters produces 

satisfactory result for a new condition 
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For hydrodynamic calibration, roughness is the parameter to play with to obtain an adequate 

match with the observed field conditions. For the present study, the water levels at HECRAS 

station 27688.92 were compared with the simulated water levels of the model for the same 

location Figure (5-12). The roughness parameter (Manning’s n) was adjusted to get the best 

result. Calibration and validation were made in wet period (may to October). 

Figure 5.12 SRH 2D Calibration and Validation station 
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Figure 5.13 SRH 2D Calibration 

 

Figure 5.14 SRH2D validation 
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5.2.7 Results 

Following figures show water elevation, flow direction, velocity magnitude. Figure 5-15 shows 

velocity contour and flow direction and water depth at the time of peak. Bed shear stress from 

the model shown in figure 5-16. Shear stress is higher in the main channel zone where most of 

the erosion and deposition take place. From the stress value along the model boundary, lateral 

stress on the river bank can be assessed. The higher the stress the higher the possibility of bank 

erosion. From the model velocity maximum velocity was found as 2.57 m/s and velocity is 

higher along the main or active channel and the velocity is relatively lower around the flood 

plain during high flood. The water depth output showing variation of water depth along the 

reach Bed shear stress output showing sheer stress is higher at the bottom of the active channel. 

Shear stress at the model boundary may indicate stress at the toe of the bank. Thus, if the stress 

is high enough it could erode the river bank. 

 

Figure 5.15 Velocity contour and flow direction 
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Figure 5.16 water depth and Bed shear stress at the time of peak. 
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 Morphological Model Development and Simulation  

SRH-2D is a two-dimensional, depth-averaged, hydraulic and sediment transport model for 

river systems under development at the Bureau of Reclamation. The hydraulic flow model, 

documented by Lai (2008; 2010), has been widely used by internal and external users. The 

sediment transport mobile-bed module is used to predict stream-bed vertical changes and has 

been described by Lai and Greimann (2008; 2010) and Lai et al. (2011). The sediment module 

tracks multi-size, non-equilibrium sediment transport for suspended, mixed, or bed load for 

both cohesive and non-cohesive materials. 

5.3.1 Development of Morphological Model 

Morphological model was developed with the mesh generated for 2D hydrodynamic model. 

Input and output boundary conditions were also similar to Hydrodynamic model except 

sediment size gradation, Governing equation, adaptation length, active layer thickness. These 

terms are described below. 

Sediment size gradation 

Along the length of Jamuna river the size and gradation of sediments changes and it varies 

from 0.14 mm to .20mm. In this study D50 was assumed to be 0.185 mm and three size class 

were used in simulation. Each size class is transported and tracked by the model (non-uniform 

representation). Cohesive sediments are lumped into one size class and represented by the size 

class number one. 

Sediment transport equation 

Among seven sediment transport equations available in SRH-2D “Engelund-Hansen" (1967) 

– A total load equation was used in this simulation. This sediment equation is suitable for sandy 

river bed and again size diameter 0.16mm to 0.93 mm. As in Jamuna average sediment particle 

size is about 0.2 mm , Engelund-Hansen(1967) was adopted in modeling.  

For Adaption Coefficient of Suspended Load “Phillips-Sutherland Saltation Length Formula” 

was used. – this defines characteristic length for sediment to adjust from non-equilibrium to 

equilibrium transport conditions and active layer thickness was specified by 10 times of D90. 

5.3.2 Limitations of Sediment Transport Modeling with SRH 2D 

Due to the computational expense of sediment transport modeling, if the ultimate goal of a 

modeling project is to conduct a sediment transport study the number of elements should be 

limited to less than 40,000. For better result it is recommended that the number of elements be 

kept to less than 30,000. When converting an existing hydraulic model into a sediment 

transport model the same limits apply meaning the mesh may require coarsening. For almost 

60 km long study area it was very challenging to keep mesh elements number with in the limit 

of the model. In this process selected mesh size become as long as 175m. Which is very coarse 

resolution to produce satisfactory results for the study needs of this project. On the other hand, 



 

Mathematical Modeling and Results 

5-16 

 

Final Report                          WRE, BUET 

best fine resolution data available was of 500 m interval. In a very active river like Jamuna in 

500 m bed form pattern may change multiple times due to these limitations Model results may 

not match the actual scenario of bedform change over the year. 

 Simulation 

In this study a numerical model was simulated only for the wet period of the year 2018. The 

assumption worked behind this simulation was the major morphological changes are happened 

during the monsoon season. Simulation run period was from May 2018 to October 2018 with 

30sec time step. 

 Result and Discussion 

Morphological modeling of such an active river like Jamuna was very challenging. Moreover, 

there was limitation on fine resolution data, computational power etc. The beat available 

bathymetry data have a resolution of 500 m but in Jamuna river within 500 m the river bed 

may change several times. Including all these uncertainties it was very difficult to replicate the 

real scenario. As such SRH 2D has some limitation modeling morphological process. Figure 

(5-18) showing bathymetry before and after simulation of 2019. Figure 5-17 is showing a 

comparison between simulated and observed bed level at two cross sections. From the plot, it 

was evident that simulation of morphology did not give a good match with the observed data. 

This is due to the uncertainties involved in the process. Moreover, there limitation in sediment 

transport governing equations for these kinds of rivers. However, to address all these 

uncertainties in predicting river bank erosion, deep learning method has been incorporated in 

this study.  

 

Figure 5.17 simulated and observed bed level 
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Figure 5.18 Bathymetry before and after simulation of 2019 
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 Relation between Model result and Planform  

The model results clearly do not agree with observed bedform change. Model may predict 

erosion or deposition correctly, but the extent of erosion and deposition was not obtained. This 

may be due to very coarse resolution data and mesh grid size. Although the model cannot 

predict the bed form change accurately for this grid size it could give some indication of bank 

erosion. To assess the probability of bank erosion bed shear stress along the bank was observed. 

It was found from the simulation that at the places where erosion took place in the year 2019, 

shear stress is higher and where the bank remained almost at the same position shear stress is 

relatively lower there. In erosion prone area 01,02,03 erosion took place in 2019 and from 

model result it can be found that shear stress is relatively higher in those areas. Similarly, in 

area 04,05 and 06 there was little to no erosion and bed shear stress along the bank ass relatively 

lower. (Figure5-19 to 5-24). 
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Figure 5.19 Bank erosion probability in Area 01 

 

Figure 5.20 Bank erosion probability in Area 02 
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.  

Figure 5.21 Bank erosion probability in area 03 

 

Figure 5.22 Bank erosion probability in area 04 
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Figure 5.23 Bank erosion probability in area 05 

 

Figure 5.24 Bank erosion probability in area 06 
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 Morphological modeling with primary data. 

A Morphological model was developed with primary data of 50 m resolution. Due to lack of 

computational capabilities mesh element number was limited to 30000. For this model 50 m 

grid spacing was used. Though this grid size is finer than the large-scale model, it was still not 

fine enough to predict bed form change accurately.  

For this model upstream and downstream boundary condition data were extracted from the 

large-scale mode with course resolution grid. The large scale model was simulated with 2019 

discharge and water level. All other parameters are same as the large model. 

5.9.1 Results and discussion 

Figure 5-25 shows the simulated water depth and velocity in the model domain. Figure 5-26 

shows erosion from observed data and model simulated data. Unlike large scale model a 

similarity can be found between these two maps. These tow map match spatially to some extent 

after a certain distance from upstream. Although there is a matching pattern, extent of erosion 

deposition is not the same for these maps. To quantify the extent of matching with bedform 

change an analysis was made for longitudinal and cross-sectional profiles. Figure showing 

(Figure 5-27 to 5-28) Three longitudinal profile and four cross sectional profiles. It can be seen 

model can predict erosion or deposition at some area but with no precision. This is may be due 

to coarse gird mesh data. These results can be improved with very fine resolution bathymetry 

data as well as with fine mesh grid. 

 

Figure 5.25 Simulated water depth and velocity in the model domain 
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Figure 5-26 Comparison between surveyed and model simulated Bed level. 

 



 

Mathematical Modeling and Results 

5-24 

 

Final Report                          WRE, BUET 

 

Figure 5-27 Change in Bed level along longitudinal profile. 

 

Figure 5-28 Change in Bed level along cross-sectional profile. 
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 Conclusions 

This chapter contains 3 mathematical model results: a) 1D hydrodynamic model, b) 2D 

hydrodynamic model and c) 2D morphological model. 1D hydrodynamic model was 

developed because there was no intermediate gauge station in the study domain. Using the 1D 

model, boundary conditions for 2D hydrodynamic model was extracted. 2D hydrodynamic 

model was also calibrated and validated using HecRas model results. 2D hydrodynamic model 

was developed to understand the flow characteristics of the model domain. Flow velocity, flow 

direction, and water depth was examined to get a better understanding of the situation. Using 

well calibrated 2D hydrodynamic model, 2D morphologic model was developed. 

Morphological model was developed to reproduce the morphological scenario of Jamuna river.  

Morphological modeling of such active river like Jamuna was very challenging. Moreover, 

there was limitation on fine resolution data, computational power etc. The best available 

bathymetry data have a resolution of 500 m but in Jamuna river within 500 m the river bed 

may change several times. Again, there is constraints on model capacity, for morphological 

modeling SRH 2D can handle about thirty thousand to forty thousand. To accommodate this 

model cell size was coarse. Including all these uncertainties it was very difficult to replicate 

the real scenario. As such SRH 2D has some limitation modeling morphological process. 

Model may predict erosion or deposition correctly but the extent of erosion and deposition was 

not obtained. This may be due to very coarse resolution data and mesh grid size. Although the 

model cannot predict the bed form change accurately for this grid size it could give some 

indication of bank erosion. To assess the probability of bank erosion bed shear stress along the 

bank was observed. It was found from the simulation that at the places where erosion took 

place in the year 2019, shear stress is higher and where the bank remained almost at the same 

position shear stress is relatively lower. In erosion prone areas, erosion took place in 2019 and 

from model result it can be found that shear stress is relatively higher in those areas. Similarly, 

in areas, where there was little to no erosion and bed shear stress along the bank are relatively 

lower.  
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Chapter 6:  Deep Learning Modeling and Results 

 Introduction 

For any deep learning task, the mapping from input to output is approximated by the deep 

learning model. So, in order to make accurate predictions using a certain model, it is necessary 

for the input data to inherently have relevant information that would be utilized by the model 

to make predictions. If input data do not have meaningful features that would help in making 

predictions then the unnecessary input data acts as noise and the model tries to map those noise 

information to the output. In summary, the input data needs to be somehow correlated to the 

output. Using domain knowledge, it is usually determined which data has meaningful 

correlations with the output. To tackle the bank erosion prediction problem, freely available 

historical satellite images and the historical trend of bankline locations were considered as data 

with meaningful correlations that influence future bank erosion events. These data were first 

explored and then a deep learning model was developed to verify the effectiveness of deep 

learning modeling approach in predicting future bank erosion regions. 

 

 Data Exploration and Processing 

In order to explore freely available satellite data, all the major satellite image platforms were 

considered. It was found that the Google Earth Engine platform allows users to access all the 

Landsat images through their web-based Earth Engine JavaScript API. So, a script was written 

to visualize, explore and process all the Landsat images taken over the study area. The images 

captured by the Landsat Satellites in January of each year were filtered out and the median of 

those images was computed so that there was one image representing the month of January for 

each year. This filtering process resulted in a collection of 33 images starting from the year 

1988 to 2020. Using Earth Engine, the images were further processed to have a dimension of 

2222 by 745 pixels with six channels named Blue, Green, Red, Near Infrared, Shortwave 

Infrared 1, and Shortwave Infrared 2. These images were saved in individual tiff files. The 

1988 January tiff file visualized using the Blue, Green and Red channels (BGR) in one image 

and visualized using the Near Infrared, Shortwave Infrared 1, and Shortwave Infrared 2 

channels in another image, are given below. 
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Figure 6.1 1988 January Tiff file Visualized in QGIS 
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Figure 6.2 BGR and Infrared Channels visualized in two different images 

Exploring the available historical data, it was evident that multi-channel satellite images had 

valuable features/information correlated to future river bank lines. Factors contributing to bank 

erosion like water body, river bars, and river bank lines etc. were all visually present in the 

satellite images as collections of raw pixel values. These important features or factors which 

influence bank erosion were not prominently visible or represented by each of the channels of 

multichannel satellite images. For example, the first three channels of the satellite data Blue 

Green Red did not draw major distinctions between the green pixel values of vegetation and 
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the green pixel values of water bodies; both features were represented by slightly green pixels. 

Instead it was found that when visualized, the distinction between water body and vegetation 

was much more prominent in the Infrared, Shortwave Infrared 1 and Shortwave Infrared 2 

channels of the satellite images. This was important as it was necessary to draw distinctions 

between the color/pixel values representing two important factors of bank erosion: water body 

and vegetation. This observation and review of past deep learning literature led to the use of 

visual data from all the channels. After data collection and processing, an extensive analysis 

was performed to check for anomalies in images. 

 

6.2.1 Exploratory Data Analysis 

Machine learning models learn from data and so the performance of such models is highly 

dependent on the data that is used to develop the model. So, it’s important to ensure that the 

model is trained on high-quality data with inherent patterns helpful for predicting bank 

erosion.  After collecting image data from Google Earth Engine some analyses were carried 

out to understand the distribution and patterns within the data. This initial investigation on data 

so as to discover patterns, spot anomalies, test hypotheses, and check assumptions with the 

help of summary statistics and graphical representations is known as Exploratory Data 

Analysis (EDA). EDA also helps in making model development decisions like model 

architecture, model size, image down sampling method, etc. To explore the data, satellite 

images of the study area were first looked into. 

 

6.2.2 Image Anomalies 

The 33 images obtained from Google Earth Engine were not all of the same quality. Mainly 

three types of artifacts were noticed in the images. They were data gaps created by Landsat 7 

SLC off failure, data gaps created by clouds and white artifacts created by mild haze. Each of 

the issues is discussed below. 

 

6.2.3 Data Gaps by Landsat 7 SLC off failure: 

Landsat 7 SLC-off data refers to all Landsat 7 images collected after May 31, 2003, when the 

Scan Line Corrector (SLC) component of the Landsat 7 satellite failed. Due to this satellite 

component failure, there are data gaps in the images collected over our study area. This issue 

was resolved by first taking the mean of available images close to January and then replacing 

the data gaps with values from the mean image. The results are given below. 
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Figure 6.3 SLC off image data gaps replaced by mean values (Before and After) 
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6.2.4 Data Occlusion by Clouds 

In a lot of the images taken over January by the Landsat Programs, there were clouds. These 

clouds obstructed the study area and prevented the observation of part of the study area beneath 

them. With the help of native cloud masking algorithms from Google Earth Engine, the clouds 

were masked with null values, and furthermore, the null values were replaced by mean image 

values similar to the process of replacing null values for the SLC-off data gaps discussed above. 

There were also very few artifacts with abnormal color values. These were not treated by any 

process as they were very few in numbers. One of the regions with discolored artifacts is 

visualized below. 

 

 

Figure 6.4 Artifacts of inconsistent color values 

6.2.5 Data Artifacts by Haze 

The images were produced by merging and taking the median from a number of images taken 

on different days. So, on the days when there was a mild haze, a bluish tint was observed in 

parts of the images. One of the haze artifacts is provided below. 
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Figure 6.5 Data Artifacts by Haze 

After exploring the image data, identifying data gaps, and replacing them with meaningful 

values, the data labeling process was conducted in order to prepare data for deep learning 

model development. 

 

 Labeling the data 

In the context of supervised deep learning - the type of deep learning being explored in this 

research - data labeling refers to the task of adding context to raw data so that models can learn 

from data. So for bank erosion prediction context, the task of data labeling meant defining the 

output of the model. As the desired output from the model was the location of future river bank 

lines so that erosion-prone areas and erosion magnitude could be predicted, river bank lines 

were considered as labels for this deep learning task. So, GIS Softwares like ArcGIS and QGIS 

were used to delineate the river bank lines. This delineation resulted in shape files for each of 

the images. This allowed the location of river bank lines to be represented by the geographical 

coordinates.  
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Figure 6.6 Data Labeling using QGIS and Python 
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The shape files were further processed so that the bank lines could be fed to the deep learning 

model. The type of deep learning model used in this research required labels represented as 

integers or floating-point numbers not as vector data. This meant, for representing the location 

of the river bank lines, the geographical coordinates saved as vector data in the shape file 

needed to be converted into integers or floating-point numbers. 

 

6.3.1 Defining the coordinate system 

A python script - by utilizing Raterio library - was written to use the coordinate information 

from the shapes files and draw the left and right river bank lines as white lines on BGR raster 

images of the study area. The river bank lines represented by these white lines helped to locate 

the banks in the local context where there was no geographic coordinate system like the one 

found embedded in tiff file format. 

 

In this new paradigm, each white pixel represented a 30m length of river bank line, and 

predicting the future location of this white pixel meant predicting the next year location of the 

same 30m unit bank line. In order to express the location of each white pixel in the images in 

numbers, a coordinate system was defined by considering the left edge of the image as the 

origin. So, the position of the left and right river bank lines were expressed in terms of their 

distances from the left edge in units of number of pixels.  

 

 

Figure 6.7 Coordinate System for defining Bank Line Locations 

By following the above-mentioned process, the delineated river bank lines were converted into 

integer numbers so that the integer numbers could be fed as labels for the deep learning model. 

This conversion was done for all 33 images.  

 



 

Deep Learning Modeling and Results 

6-10 

 

Final Report                          WRE, BUET 

                     

Figure 6.8 Converting Raster lines into Array Coordinates 
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 Distribution of Coordinates Across Time 

Similar to the image data, later on EDA was performed on the integer numbers representing 

river bank lines. The changes in bank lines over the years were observed by utilizing the integer 

numbers representing the bank lines. These values representing 30m units of bank lines 

changed from one year to another. The changes in values for left and right banks starting from 

1988 are visualized below. 

 

Figure 6.9 Change in Coordinate Distribution across time for both banks 

The first value for each of these arrays represented the location of the first 30m left or right 

river bank line. To represent and identify all of these 30m units of bank lines for a particular 

year each of the 30m line portions were identified by an index starting from zero. So, using 

this coordinate system any bankline portion for a year was identified using two coordinates. 

One coordinate for locating the 30m portion from the upstream which started from zero and 

reached a maximum value of 2221 and the other coordinate for locating the portion from the 

left edge of the image which started from zero and reached a maximum value of 744.  
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The changes in coordinates of bank lines across the years contained the distribution of change 

of bankline shifting. To better understand the distribution of coordinates the change was 

visualized with the help of tensorboard library and python code.  

 

Figure 6.10 Left Bank Distribution Across Time 

In the above visualization of the distribution of left bank coordinates for both x and y-axis 1 

unit = 1 pixel = 30 meters. The darker the region the higher the probability was for left bank 

to assume the coordinate values stated across the horizontal axis. It was observed that that left 

bank coordinate values ranged from around 400 to 700 pixel distance from the left edge of the 

images. There were some regions with higher changes in coordinates than others. For example, 

around 600 to 1000 pixels from the upstream of our study area the coordinates had a high 

frequency region of values ranging from 550 to 600 pixels. Next, for each year, the difference 
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between that year’s bank line coordinates and previous year’s bankline coordinates was 

calculated. Then the distribution of these differences across the years was visualized.  

 

Figure 6.11 Distribution of Difference Between Left Bank Lines Across Time 

The coordinates represented the distance from the left edge of the image. So, for the left bank, 

if the difference was negative and positive it meant deposition and erosion had occurred 

respectively. If the difference was zero it meant no change was observed from the previous 

year. From the visualization, it was observed that across the study area most of the erosion 

magnitude for the left bank assumed values ranging from 1 pixel to 10 pixels (1 pixel = 30 
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meters). There were also some outlier cases of erosion and deposition which were identified 

by the lightest region of the distribution. For example, 1600 to 1900 pixels from the upstream 

of the study area the erosion magnitude assumed values up to 75 pixels. After observing the 

distributions for the left bank, the right bank line shifting was visualized in a similar manner. 

 

Figure 6.12 Right Bank Distribution across time 
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From visualization of the distribution of right bank line shifting across the years, it was evident 

most of the changes in bank line occurred in the top half of our study area and the bank line 

coordinates ranged from around 300 to 450. Similar to the distribution of difference with 

previous year for the left bank, the right bank difference distribution was also visualized. 

 

Figure 6.13 Distribution of Difference Between Right Bank Lines Across Time 

Again, the coordinates represented the distance from the left edge of the image. So, for the 

right bank, if the difference was positive and negative it meant deposition and erosion had 

occurred respectively. If the difference was zero it meant no change was observed from the 
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previous year. It was evident that most of the erosion had occurred in the top half of the right 

bank and the erosion magnitude on average assumed values ranging from 1 pixel to 10 pixels 

(1 pixel = 30 meters).  

After exploring the data for the deep learning task, the input and output for the deep learning 

model were defined. The performance of the approach depended on predicting bank erosion 

depended on what is defined as model input and output/label.  

6.4.1 Use one extra channel and Bank Lines 

One of the most important factors influencing future bank lines was the location of previous 

bank lines. In order to incorporate the previous year bank lines into the multichannel image 

data, an extra channel was generated. This extra channel was a binary mask that expressed 

river bank lines by setting pixel values inside and outside the banklines to ones and zeros 

respectively. The channel was generated from the BGR raster images with white lines as river 

banklines by writing a python script. 

The extra binary channel resulted in raster data with 7 channel information. This multichannel 

raster data, previous year bank line location coordinates and, bank line vertical coordinates 

were used as input data. The raster data were passed through a feature extractor component of 

the model made of convolutional neural networks. The resulting features from raster data were 

then passed to a temporal feature learning component of the model comprised of LSTM layer 

to learn time dependencies.  
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Figure 6.14 Extracting Binary Mask channel 
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 Train Validation and Test Dataset 

In deep learning, a model is developed using training data to learn model parameters and then 

the model is validated on the validation dataset to find optimal model configuration. After 

training and validation, the trained model is finally deployed to make predictions on the testing 

dataset. For the bank erosion prediction task there were data starting from 1988 to 2020. 

Following standard deep learning methodology the entire dataset was first split into training, 

validation and testing dataset. Data until 2017 were used to train the model and model 

prediction of the year 2018 was used to validate the model performance. Further prediction of 

the year 2019 was also used to test model performance. After developing a model for this 

training-validation-testing dataset configuration where the 2018 data was used to validate the 

model, the same model configuration was used to train and compute predictions for dataset 

configuration where the last year data in the validation set was of 2015, 2016, 2017, 2019 and 

2020.  

 

6.5.1 Overall goal of the model development process  

First, model development for the training-validation-testing dataset configuration where model 

prediction in 2018 had been used to validate performance, will be discussed. For the deep 

learning approach, a baseline model was first developed by following standard model training 

configurations. There were various model training configurations or factors that influence the 

model performance differently. The model configuration was iteratively changed so that 

improvement in model performance was observed and a final model configuration could be 

found that performs the best. In order to explain the complete deep learning model 

development process at first a broad overview will be provided on the development pipeline 

for a single model training configuration. Then the process of finding optimal model 

configuration through iterative experimentation will be explained. Lastly, the model 

configurations which were explored and experimented will be discussed in detail. Now the 

complete development loop for a single configuration will be discussed. 

 

 Overview of training loop 

At first, the input data was batched into groups and each group of data was fed to the model 

one at a time. The model took the input data and processed it to make a prediction. The 

prediction from the model was then compared with the actual label/output by using a cost 

function. Based on the difference between predicted and actual output, the model was updated 

using an optimization algorithm. This loop consisting of input, prediction difference 

calculation, and update step was repeated several times. When the model was updated once for 

every available group of data, it was considered that the model had been trained over the entire 

training dataset once.  
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6.6.1 Training and validation error 

After training the model over the dataset once, two important metrics were calculated and 

stored : training error and validation error. Training error and validation error is known as the 

average difference between predicted output and actual output over the training dataset and 

validation dataset, respectively. These two error values gave an idea about how well the model 

performed on training data and also the unseen validation data. It’s considered that the lower 

the error values the better the model performance.  

6.6.2 Evaluation metrics 

Even though training error and validation error provided information about relative 

performance error on the training and validation dataset, these error metrics did not provide 

absolute model performance on bank erosion prediction. A singular evaluation metric was 

needed to understand the model accuracy. Mean absolute error (MAE) between predicted river 

bank lines and actual river bank lines, was considered to be the singular evaluation metric 

which provided information about the absolute performance of the trained model. So, apart 

from the training error and validation error, two additional evaluation metrics were also logged 

after each training loop; these were Mean Absolute Training Error and Mean Absolute 

Validation Error. These errors were expressed in terms of pixels where 1 pixel was equivalent 

to 30 meters. So, a MAE of 3 pixels meant on average the difference between the predicted 

bank line and the actual bank line was 90 meters. 

 

6.6.3 Training one model configuration 

The performance of a deep learning model improves as the model is trained over the entire 

dataset for several times. So, after each training loop over the entire dataset Training and 

Validation MAE were logged and it was observed that gradually the error was going down 

meaning the model was learning to make better predictions. After several training iterations 

the error metrics reached a stable value after which further training did not improve model 

performance. When such a stable state was reached it was considered that the model had been 

trained for the given model training configuration. So, a single model configuration was trained 

by following the above-mentioned process. One of the training errors charts - which visualizes 

decreasing training error - is provided below. 
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Figure 6.15 Training Error vs Number of model update steps 

 

6.6.4 Bias and Variance 

Different model training configurations for the same bank erosion prediction task gave 

different MAE values. The lower the MAE value the more suitable the model configuration 

would be for solving the problem. In order to search the best model training configuration 

different variables of the training process and model architecture were experimented and 

explored. To compare between different model configurations two values were used; bias and 

variance. 

 

MAE on the training set expressed the absolute prediction performance of the model on the 

data it was trained on. This training MAE metric is also known as bias. The lowest bias value 

that could be achieved is zero. A zero bias would mean that the model could perfectly predict 

the next year river bank line for the data it was trained on. A low bias was desired as it ensured 

that the model was able to reasonably learn all the patterns in the training data. The difference 

between training MAE and validation MAE is known as variance. A lower variance value 

ensured that the model performance on unseen/new data was as good as it’s performance on 

the training data.  
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 Finding optimal model configuration 

The overall goal in deep learning model development was to iteratively experiment with 

different model training configurations so that the configuration with the lowest bias and 

variance could be found. By doing so, an optimal model configuration was achieved for bank 

erosion prediction task. 

Deep learning modeling is a very iterative process. In order to find the optimal model 

configuration different ideas were explored, then those ideas were implemented in code and 

experiments were performed to observe if the model could achieve a lower bias and variance 

value than before. Different model training configurations are different based on many factors 

from input data batch size, model weight initialization method to type of activation function, 

optimization algorithm, etc. Changing any of these factors of model configuration led to the 

development of a different model. These factors/decisions that influence the model 

configuration and thus model performance on bank erosion prediction, are known as 

hyperparameters of the modeling approach. These are called hyperparameters because they are 

defined before model training takes place by the people developing the model as opposed to 

the model parameters which are learned by the model itself during training time. Through this 

iterative process of idea generation, code implementation and experimentation an optimal 

model configuration was found for the bank erosion prediction problem as shown in Table 6-

1.  
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Table 6-1 The final model training configuration 

Hyperparameter Name Hyperparameter 

Value 

Data type Images and Lines 

Meters of reach across the channel provided as input for predicting 

30 meters unit bank line 

3840 meters 

Number of past year information used to predict one year into the 

future 

Last four years 

Batch size  4 

Number of convolutional layers 6 

Use of Batch Normalization for all convolutional layers True 

Use of padding in convolutional layers False 

kernel size of convolutional layers 3 

Convolutional Stride 1 

Downsampling method of Pooling Layers Average Pooling 

Activation function for all layers ReLu 

Number of LSTM layers 1 

Number of LSTM layer neurons 257 by 150 
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Number of fully connected layers 1 for each bank 

Number of fully connected layer neurons 150 by 1, for each 

bank 

Last layer activation function Linear 

Cost function Weighted Huber Loss 

Left bank loss weight 0.4 

Right bank loss weight 0.6 

Optimization Algorithm Adam 

Learning Rate 0.000031623 

Number of epochs 28 
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6.7.1 Model Architecture  

 

 

Figure 6.16 Multi Input-Both Bank output Lines Plus Images Model Architecture 
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 Results and Discussion 

The banklines of 2017-18, 2018-19 and 2019-20 were simulated using the final model 

configuration as shown in Table 6-1 and the model arichitechture shown in Fig 6-15. For 

predicting the banklines of a certain year, the model input of images and banklines of previous 

four years were provided. To understand the general difference between predicted and actual 

bank lines some numerical metrics were calculated for both banks of the last six years. For 

each year, Mean Absolute Error (MAE) and Standard Deviation of the Error in Pixels were 

calculated for both bank lines. For example, for the year 2019, an MAE of 2.67 pixels (1 pixel 

= 30 meters) means the difference between the predicted and actual left bank line for 2019 was 

on average (2.67X30) = 80.1 meters. The value of the model performance are shown in Table 

6-2.  

Table 6-2. Summary statistics of Deep learning training and prediction.  

 

  

6.8.1 Prediction of Erosion Prone Areas 

The banklines predicted by the Deep Learning Technique for different years are shown in Fig. 

6-16 to Fig. 6-20. The bankline of previous year is marked by red line, current year by white 

line and prediction by green line.  Fig. 6-18a shows the actual banklines of January 2019 and 

January 2020. A number of erosion prone regions have been selected to closely compare the 

model results which are shown in Fig. 6.18b. The regions of erosion have been selected based 

on visual inspection with a general principle of having erosion of more than 100-150 m as the 

average error in prediction is around 3 to 4 pixels equivalent to 90 to 120 meters. In 2019-

2020, the model can predict 4 erosion areas more or less accurately in the left bank. However, 

in the right bank the model predicts erosion in 3 locations but cannot predict only at one 

location. In 2018-2019, the model can predict erosion in all five locations in the left bank and 

failed to predict the erosion at one location in the right bank. In 2017-2018 the model predicts 

erosion in 4 locations along left bank but failed to predict in two locations and in the right 

bank, the model predicts erosion in 3 locations and could not predict at one location. It is to be 

YEAR 
TRAINING MAE 

(PIXEL) 

PREDICTION MAE 

(PIXEL) 

ST. DEVIATION 

(PIXEL) 

 
Right 

Bank 
Left Bank 

 
Right Bank 

 

Left 

Bank 
 

Right 

Bank 
 

Left Bank 
 

2020 1.278 1.066 3.46 3.29 2.91 2.81 

2019 0.898 0.729 3.82 2.67 4.31 1.89 

2018 0.808 0.723 3.06 4.75 3.11 4.33 
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noted that the bankline prediction by CEGIS model marked by blue line in 2018-2019 has also 

been compared in Fig. 6-17.  

A summary of the model performance in predicting number of erosion prone areas is provided 

in Table 6-3. Out of 24 erosion locations during 2017 to 2020, the model could predict erosion 

in 79% of the locations. Although the model generally underpredicted the magnitude of the 

erosion, the prediction of location in the erosion prone area is very satisfactory.  

One of the most erosion prone area on the left bank was Chowhali during 2015-2016. But 

during 2017 to 2020 there was no erosion as the region was protected by bank protection works. 

However, the model still predicts erosion in this region in 2017-2020 as marked by green circle 

in Fig. 6-19.  The overprediction of the model is due to the fact that no information on the 

protection could be provided in the Deep Learning model. It means that had there been no 

erosion protection in this area, there would have been a significant erosion during 2017-2020.  
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Figure 6.17 Actual bankline of 2019 and 2020 and predicted bankline of 2020 with locations 

of selected regions. 
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Predicted Regions 
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Figure 6.18 Actual bankline of 2019 and 2020 and predicted 

bankline of 2020 at selected regions. 
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Not-Predicted Regions 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 6.19 Actual bankline of 2019 and 2020 and predicted 

bankline of 2020 at selected regions. 
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Figure 6.20 Actual bankline of 2018 and 2019 and predicted bankline of 2019 with locations 

of selected regions. 
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Predicted Regions: 

 

          

                                

 

 

 

 

 

 

 

 

 

                                  Region-1                                                            Region-2 

 

              

 

 

 

 

 

 

 

 

                                  Region-3                                                                   Region-4 

N.B: Blue Lines Represent prediction results reproduced from CEGIS report 

 Figure 6.21 Actual bankline of 2018 and 2019 and predicted bankline of 

2019 at selected regions. 
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Region-5 

Not-Predicted Regions: 

 

 

 

 

 

 

 

 

 

Region-6 

N.B: Blue Lines Represent prediction results reproduced from CEGIS report 

 
Figure 6.22 Actual bankline of 2018 and 2019 and predicted bankline 

of 2019 at selected regions 
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Figure 6.23 Actual bankline of 2017 and 2018 and predicted bankline of 2018 with locations 

of selected regions. 
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Predicted Regions: 
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Figure 6.24 Actual bankline of 2017 and 2018 and predicted bankline of 2018 at 

selected regions. 
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Figure 6.25 Actual bankline of 2017 and 2018 and predicted bankline of 2018 

at selected regions. 
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Not-Predicted Regions: 

                           

 

 

 

 

 

 

 

 

                                Region-4                                                                  Region-5 

 

 

 

 

 

 

 

 

 

 

 

Region-9 

 

  
Figure 6.26 Actual bankline of 2017 and 2018 and predicted 

bankline of 2018 at selected regions. 
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Figure 6.27 Actual and predicted erosion (+ve) and deposition (-ve) of left bank 
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Figure 6.28 Actual and predicted erosion (+ve) and deposition (-ve) of right bank 
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Table 6-2. Performance of Deep Learning Model in Predicting Bankline during 2017-2020 

 

Year 2019-2020 2018-2019 2017-2018 Total % 

Actual Erosion 

Events (Nos) 

8 6 10 24 100 

Predicted (Nos) 7 5 7 19 79 

Not-Predicted (Nos) 1 1 3 5 21 

 

N.B: 1 Pixel = 30 meters 

 

 Conclusions 

Deep learning modeling technique has been applied to predict future banks using historical 

satellite images. Total thirty-two years of satellite images from 1988 to 2020 have been used 

in this modeling. Model architecture of neural network consists of six convolution layers, one 

LSTM layer and two fully connected layers. This trained and validated model has been used 

to predict river banks for the year of 2018, 2019 and 2020 and the predicted river banks have 

been compared with the actual river banks respectively. The mean absolute error (MAE) in 

training was found to vary between 2.1 m to 3.9 m while MAE in validation was found to vary 

between 80 m to 142 m. The performance of the model in predicting the bank erosion in 

selected erosion prone locations has been assessed for 3 years. Out of 24 erosion locations 

during 2017 to 2020, the model could predict erosion in 79% of the locations. Although the 

model generally underpredicted the magnitude of the erosion, the prediction of location in the 

erosion prone area is very satisfactory.  
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Chapter 7:  Prediction Tool  

 Introduction  

To use the deep learning modeling approach and make bank erosion predictions for future 

years, a software was developed using python script and PyQt5 library. The software will 

enable users to easily apply the full deep learning pipeline explained in this research by 

accessing the underlying Application Programming Interface (API) through an intuitive 

Graphical User Interface (GUI) (as shown in Figure 7.1). This will help people easily get 

reliable prediction results of future bank erosion events by following some easy-to-follow 

steps.  

 

 
Figure 7.1 Prediction Tool Main Interface 
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 Data Download  

The first feature available is downloading previous satellite images from the project google 

drive repository. All the required images for running the software are made available to the 

user. The required images are filtered and preprocessed using Google Earth Engine beforehand 

so that the user can readily download the preprocessed file to train the model. To download 

the files the user will click on the “Download” button as shown in Figure 7.2. 

 

 
Figure 7.2 Data Download Features 

 

 

The preprocessed images are stored in a project google drive repository that can only be 

accessed by authorized users. During the deep learning tool workshop, the potential users who 

were present there were added to the list of authorized users and so these users can access the 

required files to run the tool. If there is a new user then he or she can request access. If the user 

is already an authorized user, then a new page in the user’s browser will appear with a 

download option. The user will click the button to download the files to a local machine as 

shown in Figure 7.3. 

 

 
Figure 7.3 Data Download from Project Drive 
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Another window will pop up (as shown in Figure 7.4) so that user can select the location to 

save the compressed file. As there are a lot of satellite images and their corresponding bank 

line, all the files were compressed to a single file for better management of data. After 

navigating to the desired location, the user will click save to confirm the location of the 

downloaded compressed file. 

 

 
Figure 7.4 Save Downloaded Data 

 

Another window within the tool will also pop up as shown in Figure 7.5. The downloaded 

compressed file will need to be extracted and the extracted files will need to be moved to the 

required location within the prediction tool folder. This will happen automatically once the 

user selects the file using the new window. There will be two options in the window: “Open 

File” and “Extract File”. The user will first open the file which was just downloaded using the 

“Open File” button. 

 

 
Figure 7.5 Select Downloaded File 
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Figure 7.6 Select Downloaded File 

 

 

After the compressed file is selected by the user, internally the tool will store the location of 

the file as shown in Figure 7.6. So, when the button to extract the file contents is selected the 

appropriate extraction and file management will be completed. To extract the compressed file 

contents to required location the user will select “Extract File” button as shown in Figure 7.7. 

 

 
Figure 7.7 Extract Files to Required Location 
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Once all the above-mentioned steps are completed, all the required files for the tool will have 

been download to appropriate file location. The steps to download the files is a one-time 

operation. The user will need to follow these steps only once per year. Operations related to 

training and getting results can be performed subsequently once the above-mentioned steps 

have been performed. To check if all the data are available for predicting new bank lines, the 

user will be able to validate the available data. Through this step the tool will check and make 

sure that all the required images and shape files are present. The user will click the “Validate” 

button which will open a pop up with a message about the data validation process (as shown 

in Figure 7.8). If all data is present then the message will show “ Successfully Validated. Your 

Data is Up to Date” or else it will provide information about the missing data. 

 

 
 

 

 
Figure 7.8 Validate Downloaded Data 

 

 

 

 

 

 Model Training  

After the data download step, the user will have the option to use the recommended model 

training configurations or set custom configurations to train a deep learning model. The user 

only has to select the year he or she wants prediction of and the appropriated data along with 

the required operations will take place in the backend of the tool. Deep learning models are 

sensitive to the hyperparameters of the model. These hyperparameters determine the different 

configurations of the model and were selected based on experiments. The “Train Model” loads 

the recommended model configuration and starts the training process (as shown in Figure 7.9). 

It will take a lot of time for the training process to complete. In a modern-day computer, it will 
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take 3-4 days for the model to get fully trained and prepared to make prediction. This is also a 

one-time operation which will need to be performed once a year.  

 

 
 

 
Figure 7.9 Train Default Model 

 

The user can also choose to not use the recommended model and train a custom model. 

Training a custom model allows the user to further experiment with possible model 

configurations and observe the effect. This option for custom training was provided to allow 

the user to build a powerful custom deep learning model for bank erosion prediction problem. 

To train a custom model the user will click on “Customize Training Model” (as shown in 

Figure 7.10). 

 

 
Figure 7.10 Train Custom Model 
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Selecting to train custom model will open a window with various hyperparameters and their 

range of possible values that can be modified (as shown in Figure 7.11). Hyperparameters 

cannot be chosen at random. So, the possible values provided here were selected so that the 

user does not end up trying to train a model configuration that breaks the software. As in the 

hyperparameters of a model dictate how much time will be required, it cannot be determined 

beforehand how much time it will take for a certain configuration of the model in a local 

machine.  

 

 

 

 
Figure 7.11 Custom Model Hyperparameters 

 

 

 Model Prediction  

After successful model training, the tool will store the prediction at a predefined location within 

the software directory. The user will be able to view the trained model prediction directly from 

the tool interface. The user will select “Show” to view the results as shown in Figure 7.12. The 

future bank line prediction along with left and right bank erosion deposition graph will be 

shown in a pop-up window as shown in Figure 7.13. The prediction for 2021 is shown in Figure 

7.13. 
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Figure 7.12 Show Prediction 

 
Figure 7.13 Model Prediction for 2021 
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The user can also get the prediction from the project google drive repository. Each year the 

prediction for next year will be made available through this repository. The user will click the 

“Download” button (as shown in Figure 7.14) to download the prediction image and the 

associated shape files. Only authorized people will be able to download these results from the 

project drive repository. 

 

 

 

 

Figure 7.14 Download Prediction in Shape (.shp) file format 

 

From the project drive folder, an user will download the previous year tiff file and the next 

year shape file prediction. Any GIS software like QGIS, ArcGIS can be used to import the tiff 

file and the shape file for further analysis of the prediction. A sample visualization of 2020 tiff 

file and 2021 prediction using shape file is shown in Figure 7.15. 
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Figure 7.15 Prediction for 2021, viewed in QGIS 

 



 

Research on River Bank Erosion Dynamics using Numerical Modeling and Deep Learning Techniques 

Final Report                                                   8-1                                                   WRE, BUET 

 

 

Chapter 8:  Capacity Building 

 Introduction 

One of the key objectives of this project was to share technical knowledge to WARPO officials 

so as to develop their capacity in the field of river erosion prediction, mathematical modeling. 

To fulfill this objective four WARPO officials were directly involved in this study. Moreover, 

trainings on a 2D mathematical model, a GIS software and the river bank prediction tool, 

developed in this project, were arranged for the officials of WARPO.  

 Agreement Signing 

The agreement between the Dept. of Water Resources Engineering, BUET and Water 

Resources Planning Organization (WARPO) to conduct the collaborative research project on 

“Riverbank Erosion Dynamics using Numerical Modeling and Deep Learning Techniques” 

was signed on 3rd February, 2019 (Figure 8.1) as per ToR shown in Appendix A-3. The 

Director General of WARPO along with senior scientific officers and other officials were 

present in this ceremony. Research team of Dept. of WRE consisting of the Principal 

Investigator, Dr. Md. Mostafa Ali, the Co-Principal Investigator, Dr. Hasan Zobeyer along 

with two research assistants were also present on this event. The ceremony was held in 

WARPO Bhaban, Green road, Dhaka. 
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Figure 8.1 Contract signing between WRE, BUET and WARPO 

 

 

 

 

 

 

 



 

Research on River Bank Erosion Dynamics using Numerical Modeling and Deep Learning Techniques 

Final Report                                                   8-3                                                   WRE, BUET 

 

 

 Office Setup 

After contract signing, an office was setup in room no 734 in the dept. of WRE, BUET as 

shown in Figure 8.2. Sufficient accommodation along with logistic facilities had also been 

provided. Two workstations of specific configuration along with two table, two chair, one 

printer and necessary stationary were bought. 

 

Figure 8.2 Project office in Dept. of WRE, BUET 
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 Progress Meeting 

Progress meetings of DWRE and WARPO research teams of the project were held in almost 

every month. In progress meeting the research team presented their progress report, discussed 

about the methodology, data collection process, and results of different analysis. Progress 

meeting was also held through zoom amidst corona situation. Total 21 progress meeting was 

held during the project run. Figure 8-3 below shows an online progress meeting via zoom. and 

participant list of the progress meeting is stated in the table 8-1. 

 

Figure 8.3 Progress meeting via zoom . 

 

Table 8-1 Participant list of progress meeting. 

Team Designation Name 

BUET TEAM 

Principal Investigator Prof. Dr. Md. Mostafa Ali 

Co-Principal Investigator Prof. Dr. Hasan Zobeyer 

Research Assistant A.S.M Julker Naem 

Research Assistant Kazi Antor Hasan 

 

WARPO 

TEAM 

Senior Scientific  

Officer (Navigation) 

Kazi Saidur Rahman 

Scientific Officer (Water) Alamin Kabir 

Scientific Officer (Ground Water) Jamal Haidar 

Scientific Officer (Soil) Shuvro Bhoumick 
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 Workshop and Training 

8.5.1 Inception Workshop 

Inception workshop was arranged on Saturday 04th May 2019 at International Training 

Network (ITN) center, BUET, Dhaka. Mr. S.M. Reazaul Mostafa Kamal, Joint Secretary, 

Ministry of Water Resources, Government of the People’s republic of Bangladesh and Mr. Md. 

Mahmudul Hasan, Director General, Water Resources planning organization attended the 

event as special guest. Dr. A.T.M. Hasan Zobeyer, Professor, DWRE presented the project 

synopsis and Dr. Mostafa Ali, Professor, DWRE presided the Inception workshop. Officials 

from WARPO, CEGIS, IWM and faculty members of BUET and Dhaka University also 

attended the workshop.  

The program started with a registration process and a welcome tea at 9.30 am, followed by a 

recitation from the Holy Quran by Dr. K. M. Ahtesham Hossain, Assistant Professor, DWRE. 

After the welcome remarks, Dr. Hasan Zobeyer presented the research objective and purposes 

of the project which was followed by an open discussion on Riverbank Erosion Dynamics 

using Numerical Modeling and Deep Learning Techniques. Everyone expressed innate interest 

and discussed how it could be beneficial to other sectors in Bangladesh. Sudipto Kumar Hore, 

Junior Specialist, CEGIS emphasized on how this model output could help BIWTA navigation. 

Aminul Islam, Executive engg, BWDB suggested that, protectiveness of right bank of Jamuna 

river should be considered in making erosion prediction. Director General of WARPO thanked 

everyone and praised that such research initiative had been undertaken. 

After informative speeches from the special guests, the chair of the workshop, announced the 

closing of the program. Selected pictures from the inception workshop are shown in Figure 

8.4. 
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8.5.2 SRH 2D Training 

A training on 2D hydrodynamic model (SRH 2D) use was arranged in 18th & 23rd September 

2019 at WARPO to enhance the technical capacity of the scientific officers of WARPO in 

hydraulic modeling. Total 18 participants from WARPO have been attended in this training. 

In this two-day long program, a hydrodynamic model as well as a morphological model was 

developed with the primary data. The program was brought to a closing with the principal 

investigator Dr. Mostafa Ali, Co-principal investigator Dr. Hasan Zobeyer, Dr. Taufiqe Elahi 

and Mr. Md. Mahmudul Hasan, Director General of WARPO distributing certificates among 

the participants. Selected pictures from the training are shown in Figure 8.5. 

 

Figure 8.4 Selected picture of Inception workshop 
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Figure 5-39  

8.5.3 QGIS Training 

A Training on QGIS was held on January 14, 2020 at WARPO. This training was arranged 

beyond the scope of the project upon request of honorable DG of WARPO. Total 20 

participants from WARPO have been attended in this training. In this training session principal 

investigator Dr. Mostafa Ali briefed about the use of QGIS and its application. At the end of 

the training session a short exam was taken to evaluate the performance of the participants. 

The program was brought to a closing with the principal investigator Dr. Mostafa Ali, Co-

principal investigator Dr. Hasan Zobeyer, Dr. Taufiqe Elahi and Mr. Md. Mahmudul Hasan, 

Director General of WARPO distributing certificates among the participants. Selected pictures 

from the training are shown in Figure 8.6. 

 

Figure 8.5 SRH 2D Training program 
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8.5.4 Training on Prediction Tool 

Training on prediction tool was held on 10th and 11th February, 2021 at WARPO. This 

Prediction tool has been developed from research outcome of the Research on River Bank 

Erosion Dynamics using Numerical Modeling and Deep Learning Techniques. Total 16 trainee 

from WARPO and 4 from BWDB participated in this training program. In this training session 

principal investigator Dr. Mostafa Ali briefed about the introduction and applications of deep 

learning technique. Then Kazi Antor Hasan, Research Assistant of this project, provided hands 

on training on the Prediction tool. The two days long program was brought to a closing with 

the principal investigator Dr. Mostafa Ali, Co-principal investigator Dr. Hasan Zobeyer, and   

Md. Delwar Hossain, Director General of WARPO distributing certificates among the 

participants. Selected pictures from the training are shown in Figure 8.7. 

 

Figure 8.6 Training on QGIS. 
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Figure 8.7 Training on prediction tool  

 

8.5.5 Final Workshop  

Final workshop was arranged on Wednesday 19th May 2019 through zoom video conference 

medium due to pandemic situation. Mr. Kabir Bin Anwar, Senior Secretary, Ministry of Water 

Resources, Government of the People’s republic of Bangladesh, was the chief guest of the final 

workshop.  Mr. Md. Rokon Ud-Doula, Additional Secretary, Ministry of Water Resources, and 

Mr. AKM Waheduddin Chowdhury, Director General, Bangladesh Water Development 

Board, attended the event as special guests. Mr. Md. Delwar Hossain, Director General , Water 

Resource Planning Organization, had conducted the session as the chairperson. Dr. Mostafa 

Ali, Professor, DWRE and Principal Investigator of the research project presented the research 

outcomes. Officials from WARPO, BWDB, Ministry of Water Resources, Planning 

commission, CEGIS, IWM and faculty members of BUET and Dhaka University also attended 

the workshop.   
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At first, the program was started with a registration process at 10.30 am and followed by a 

recitation from the Holy Quran. Then, DG, WARPO initiated the workshop with his 

introductory remarks. Engr. Kazi Sidur Rahman, Project Director of the research project, gave 

a short speech on background and motivation of the research project. After that, Dr. Mostafa 

Ali, Professor, DWRE and Principal investigator of the project, presented the research 

outcomes which was followed by an open discussion. Everyone expressed innate interest and 

discussed how it could be beneficial to other sectors in Bangladesh. Everyone appreciated this 

kind of research initiate and recommended this type of application in other major rivers of 

Bangladesh. Especially, the Chief Guest, Mr. Kabir Bin Anwar, praised the research outcome 

and requested BUET research team to develop similar type of prediction tool for other rivers, 

such as the part of lower Meghna estuary.  Selected pictures from the final workshop are shown 

in Figure 8.8-8.10. A detailed minutes of the final workshop is attached in Appendix – 5. The 

following decisions were taken in the final workshop: 

i) Similar research needs to be caried out for the estuary region of Bangladesh to 

combat river bank erosion. 

ii) The developed erosion prediction tool needs to be improved and customized for 

other major rivers by conducting more similar kinds of research.  

iii) WARPO should initiate institutionalization of the erosion prediction tool through 

capacity development programs with the relevant stakeholders. 

 

 

Figure 8.8: Final workshop Participants (Part 01) 
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Figure 8.9: Final workshop Participants (Part 2) 

 

Figure 8.10: Final workshop Participants (Part 3) 

 



 

 Capacity Building 

8-12 

 

Final Report                          WRE, BUET 

 Field Visit 

8.6.1 Field visit-01 

According to the work plan the first field visit was conducted on 28th March 2019. The research 

team of the project participated (as shown in Table 8-2) in the field visit at Daulatpur Upazila, 

Manikganj (Figure 8-11). The purpose of the field visit was to observe the background 

condition and erosion pattern of Jamuna river. 

Table 8-2 Research Team members in field visit 

Name Designation 

Prof. Dr. Md. Mostafa Ali Principal Investigator 

Prof. Dr. Hasan Zobeyer Co-Principal Investigator 

Md. Alifnur Salim Research Assistant 

Kazi Antor Hasan Research Assistant 

Kazi Saidur Rahman Senior Scientific Officer (Navigation) 

Alamin Kabir Scientific Officer (Water) 

Jamal Haidar Scientific Officer (Ground Water) 

Maimuna Qazi Scientific Officer (Soil) 

Abdulla Al Mahabub Zoraf Scientific Officer (Assistant Programmer) 

 

Figure 8.11 Field visit location 
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The primary destination was Daulatpur, Manikganj. The team started from BUET for 

Manikganj at 7:15 am and reached the Water Board office, Manikganj at 11:10 am. After 

arrival, a conversation was conducted with the Executive engineer and Sub-divisional engineer 

of Water Board, Manikganj about maximum erosion prone area of the locality. Then the team 

made their way to Bacha Mara village, Daulatpur Upazila. In this part of journey, they were 

unable to use their microbus and had to avail the local motorbike service to reach the 

destination. A meeting with the local BWDB officers and local union members was arranged 

to know about the details of bank erosion in the locality (Figure 8-12).  

According to the member of 7 no Union Parishad, Adbur Rahim molla, the area of Char Katari 

had been severely damaged by the erosion process and currently the area of Bacha Mara is 

facing the same problem. Several union parishad members and social workers were present in 

the meeting. Executive engineer and Sub-divisional engineer of Manikganj were also present 

in the meeting. Table 8-3 represents the important persons we met during the field visit. Figure 

8-13 shows the research team members with local people. A pictorial description of the field 

visit-01 is given in Appendix (A-6). 

 

Table 8-3 People present in the meeting 

 

Personnel Name Designation 

BWDB 
Mehedi Hasan Executive Engineer 

Mamun Hawladar Sub-Divisional Engineer 

Locals 

Abdur Rahim Molla UP member 

Badrur Rahman UP member 

Nazrul Islam Social Worker 

Abdul Majid Businessman 

Abdul Baten Businessman 

Unus Ali Molla School Committee Member 

Mrs Rahimon Female UP member 
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Figure 8.132 Meeting with local correspondences in 7 no. Union Parishad Office, 

Bachamara, Daulatpur, Manikganj 

Figure 8.123 Group Photo with local people. 
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8.6.2 Field visit-02 

Another field visit was conducted on 4th November 2019. All the research team members of 

this project participated in this field visit at Jafarganj, Shibhalaya Upazila, Manikganj (Figure 

8-14). The Director General of WARPO along with senior scientific officers and other officials 

also participated in this field visit (Figure 8-15). The purpose of this field visit was to observe 

the background condition of the Jamuna river and to observe the survey procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.14 Field visit-02 location 
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A day before the field visit, a team of three members went to the site, talked to the surveyors, 

locals and collected information on how the river behaved during different seasons, how the 

local people predicted riverbank erosion by observing dunes etc. The next day the research 

team along with WARPO officials started from WARPO for Manikganj at 8:00 am and arrived 

Paturia ferry terminal at 11:30 am. After a short break the team went to Aricha ferry port where 

a boat was waiting for them. 

On the way to the site severe bank erosion was observed in some places (Figure 8-16). There 

was some bank protection works along the riverbank but most of them were vulnerable. geo 

textile bags and concrete blocks had been displaced due to toe failure. Numerous numbers of 

Cracks had been observed and different layers of soil along the riverbank could also be 

identified. After one and a half hour of boat journey the team reached Baghutia. A pictorial 

description of the field visit-02 is given in Appendix (A-7). 

 

 

Figure 8.15 Group photo of the research team with WARPO officials. 
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The survey team was ready with their equipment. They briefed (Figure 8-17) about the survey 

equipment such as GPS tracker, sounding machine, antenna, laptop and battery. They also 

described the software they were using to collect data. They had divided the survey area in 

several number of cross sections. They showed the full process of collecting hydrographic data 

in two of the cross sections. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 8.16 Severe bank erosion 

Figure 8.17Surveyor describing the survey procudeure 
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Chapter 9:  Conclusion and Recommendation 

The aim of this project is to understand river hydrodynamics and morphological processes 

including river bank erosion and to develop a riverbank erosion prediction tool using Deep 

Learning for a 80 km selected reach of Jamuna River starting from Bangabandhu Bridge. Based 

on various analyses, modeling and results and other activities following conclusions and 

recommendations can be made: 

i. A proper hydrologic analysis was made using discharge and water level data of 

Bahadurabad station and Mathura station. From historical hydrologic data it was 

observed that mean annual discharge was found to be around 17000 m3/s. 

Maximum and minimum flood discharge was recorded as 102535 m3/s and 3095 

m3/s respectively.  

ii. Erosion and deposition were calculated for both banks of Jamuna river using 32 

years of satellite images to understand the erosion pattern during this period.  From 

1988 to 2019, total erosion along the Jamuna river left bank was 23800 ha with an 

average of 770 ha per year. Whereas for the right bank of the river total erosion was 

11840 ha and 380 ha per year. It was evident from the data that erosion rate was 

higher for left bank of the Jamuna river. From the planform analysis it was found 

that width of the Jamuna river has an increasing trend and it is widening at the left 

bank side. Since the early 1980s, the Jamuna River in this study area widened from 

14.2 km to 15 km in the 2020 and now the average width is 14.69 km. 

iii. Longitudinal profiles of Jamuna show a high spike of deposition, always followed 

by a steep crest erosion and a medium crest deposition is followed by medium to 

low crest erosion. Maximum erosion of 15.07m occurred along the center profile 

in 2017-2018 and Minimum erosion of 8.06 m occurred along the right profile in 

the year 2016-2017. Maximum deposition was observed as 20.81 m along the left 

profile in the year 2018-2019.  

iv. From these hydrological and erosion data a correlation between peak discharge and 

total erosion was found, with higher discharge erosion will be higher. It was 

observed from the figure that for peak discharge in the year 1996 and 1998, erosion 

was maximum and erosion was less in case of lower discharge. 

v. Morphological modeling of such active river like Jamuna was very challenging. 

Moreover, there was limitation on fine resolution data, computational power etc. 

The best available bathymetry data have a resolution of 500 m but in Jamuna river 

within 500 m the river bed may change several times. Again, there is constraints on 

model capacity, for morphological modeling SRH 2D can handle about thirty 

thousand to forty thousand. To accommodate this model cell size was coarse. 

Including all these uncertainties it was very difficult to replicate the real scenario.  

vi. Model may predict erosion or deposition correctly but the extent of erosion and 

deposition was not obtained. This may be due to very coarse resolution data and 

mesh grid size. Although the model cannot predict the bed form change accurately 

for this grid size it could give some indication of bank erosion. To assess the 
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probability of bank erosion bed shear stress along the bank was observed. It was 

found from the simulation that at the places where erosion took place in the year 

2019, shear stress is higher and where the bank remained almost at the same 

position shear stress is relatively lower. In erosion prone areas, erosion took place 

in 2019 and from model result it can be found that shear stress is relatively higher 

in those areas. Similarly, in areas, where there was little to no erosion and bed shear 

stress along the bank are relatively lower.  

vii. Deep learning modeling is a very iterative process. In order to find the optimal 

model configuration different ideas were explored, then those ideas were 

implemented in code and experiments were performed to observe if the model 

could achieve a lower bias and variance value than before. Different model training 

configurations are different based on many factors from input data batch size, 

model weight initialization method to type of activation function, optimization 

algorithm, etc. Changing any of these factors of model configuration led to the 

development of a different model. Through this iterative process of idea generation, 

code implementation and experimentation an optimal model configuration was 

found for the bank erosion prediction problem. 

viii. The banklines of 2017-18, 2018-19 and 2019-20 were simulated using the final 

model configuration. For predicting the banklines of a certain year, the model input 

of images and banklines of previous four years were provided. To understand the 

general difference between predicted and actual bank lines some numerical metrics 

were calculated for both banks of the last six years. The mean absolute error (MAE) 

in training was found to vary between 2.1 m to 3.9 m while MAE in validation was 

found to vary between 80 m to 142 m.   

ix.  A number of erosion prone regions have been selected to closely compare the 

model results. The regions of erosion have been selected based on visual inspection 

with a general principle of having erosion of more than 100-150 m as the average 

error in prediction is around 3 to 4 pixels equivalent to 90 to 120 meters. In 2019-

2020, the model can predict 4 erosion areas accurately in the left bank. However, 

in the right bank the model predicts erosion in 3 locations but cannot predict only 

at one location. In 2018-2019, the model can predict erosion in all five locations in 

the left bank and failed to predict the erosion at one location in the right bank. In 

2017-2018 the model predicts erosion in 4 locations along left bank but failed to 

predict in two locations and in the right bank, the model predicts erosion in 3 

locations and could not predict at one location. It is to be noted that the bankline 

prediction by CEGIS model marked by blue line in 2018-2019 has also been 

compared.  

x. Out of 24 erosion locations during 2017 to 2020, the model could predict erosion 

in 79% of the locations. Although the model generally underpredicted the 

magnitude of the erosion, the prediction of location in the erosion prone area is very 

satisfactory.  

xi. Finally, a river-bank prediction tool for lower part of Jamuna starting from 

Bangabandhu bridge has been developed for use by WARPO. A graphical user 
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interface (GUI) has been developed for easy use of the model. All programming 

codes including the prediction tool have been handed over to WARPO. The official 

hand-over letter is attached in Appendix A-4.   

xii. Three trainings: a) on hydro-morphological model SRH-2D, b) on GIS software 

QGIS and c) on the prediction tool that has been developed in this research, have 

been provided to the officials of WARPO and selected officials of BWDB. Manuals 

for these trainings have been prepared and supplied during workshops.  

xiii. Furthermore, two workshops: an inception workshop and a final workshop, have 

been arranged to disseminate the outcomes of this research.  

xiv. Four selected scientific officers from WARPO have been involved throughout the 

research project. Through these collaborative works and trainings, capacity of 

WARPO officials has enriched their technical capabilities to develop and assess 

different water resources development project.  

  

Recommendations 

• Defining bank lines was found to be a hard problem given the versatile nature of river 

planform. But identifying prominent features like bars, vegetation, waterbody is an 

easier task and consensus can be reached. Future work can look into predicting all of 

these prominent features as a semantic segmentation mask. This is a promising avenue 

as a lot of recent deep learning works deal with semantic segmentation problems. 

• Only January month data of every year was used to make predictions. Data from other 

months can be used with the hope of improved performance as deep learning models 

always perform better with more data. 

• Bankline and satellite image have been used in predicting river bank erosion. As an 

extra parameter bathymetry data can be incorporated. 

• Here Convolutional many to one LSTM algorithm has been used, different suitable 

algorithm can be tried. One of the recent sequence prediction algorithms known as 

Transforms can be a prime candidate for future work. 

• Prediction tool can be also be developed for other major rivers, such as upper part of 

Jamuna river, Ganges, Padma, Teesta and Lowe Meghna. 
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Appendix 

Appendix A-1: Research Proposal to DWRE, BUET from WARPO. 

Figure A-1 Research Proposal to DWRE, BUET 
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Appendix A-2: 

The Water level, discharge and cross section station, Id and name of the stations are tabulated 

below. 

Table A-1 Water Level and Discharge Measuring Stations on the study area 

 

 

Serial Station 

ID 

Type River Name Station Name 

1 SW46.9L Non Tidal WL Brahmaputra-

Jamuna 

Bahadurabad (Tr) 

2 SW90 Non Tidal WL Ganges Hardinge Bridge 

3 SW91.9L Non Tidal WL Ganges Baruria Transit 

4 SW49 Non Tidal WL Brahmaputra-

Jamuna 

Sirajganj 

5 SW91 Non Tidal WL Ganges Talbaria 

6 SW49A Non Tidal WL Brahmaputra-

Jamuna 

Kazipur 

7 SW91.2 Non Tidal WL Ganges Mohendrapur 

8 SW46.9R Non Tidal WL Brahmaputra-

Jamuna 

Fulchari (Tr) 

9 SW15J Non Tidal WL Brahmaputra-

Jamuna 

Mathurpara (Milanpur) 

10 SW50.6 Non Tidal WL Brahmaputra-

Jamuna 

Aricha 

11 SW50.3 Non Tidal WL Brahmaputra-

Jamuna 

Mathura 

12 SW91.1 Non Tidal WL Ganges Sengram 

13 SW93.5L Tidal WL Ganges Mawa 

14 SW46.9L Non-Tidal Q Brahmaputra-

Jamuna 

Bahadurabad (Tr) 

15 SW90 Non Tidal Q Ganges Hardinge Bridge 

16 SW91.9L Non Tidal Q Ganges Baruria Transit 

17 SW4A Tidal Q Arial Khan Chowdhury Char 

18 SW93.5L Tidal Q Ganges Mawa 
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Table A-2 Cross-section Measuring stations on the study area 

Serial No Station ID River Name 

1 P2 Padma 

2 P2.1 Padma 

3 P3 Padma 

4 P3.1 Padma 

5 P4 Padma 

6 P4.1 Padma 

7 P5 Padma 

8 P5.1 Padma 

9 P6 Padma 

10 P6.1 Padma 

11 P7 Padma 

12 G1 Ganges 

13 G1.1 Ganges 

14 G2 Ganges 

15 G3 Ganges 

18 G5 Ganges 

19 G6 Ganges 

20 G7 Ganges 

21 G8 Ganges 

22 G9 Ganges 

23 G10 Ganges 

24 G11 Ganges 

25 G12 Ganges 

26 G13 Ganges 

27 G12.1 Ganges 

28 G4 Ganges 

30 J6.1 Brahmaputra- Jamuna 

31 J6 Brahmaputra- Jamuna 

32 J5.1 Brahmaputra- Jamuna 

33 J5 Brahmaputra- Jamuna 

34 J4.1 Brahmaputra- Jamuna 

35 J4 Brahmaputra- Jamuna 
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36 J3.1 Brahmaputra- Jamuna 

37 J3 Brahmaputra- Jamuna 

38 J2.1 Brahmaputra- Jamuna 

39 J1.1 Brahmaputra- Jamuna 

40 J1 Brahmaputra- Jamuna 

41 J2 Brahmaputra- Jamuna 

42 J7 Brahmaputra- Jamuna 

43 J7.1 Brahmaputra- Jamuna 

44 J8 Brahmaputra- Jamuna 

45 J8.1 Brahmaputra- Jamuna 

46 J9 Brahmaputra- Jamuna 

47 J9.1 Brahmaputra- Jamuna 

48 J10 Brahmaputra- Jamuna 

49 J10.1 Brahmaputra- Jamuna 

50 J11 Brahmaputra- Jamuna 

51 J11.1 Brahmaputra- Jamuna 

52 J12 Brahmaputra- Jamuna 

53 J13 Brahmaputra- Jamuna 

60 J13.1 Brahmaputra- Jamuna 

61 J14 Brahmaputra- Jamuna 
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Appendix A-3: 

Terms of References (ToR) for 

“Research on River Bank Erosion Dynamics using Numerical Modeling 

and Deep Learning Techniques" 

Water Resources Planning Organization (WARPO), Ministry of Water Resources, 

Government of Bangladesh and Bureau of Research, Testing and Consultation (BRTC) 

represented by the Department of Water Resources Engineering (DWRE), Bangladesh 

University of Engineering and Technology (BUET), BUET join in the following agreement in 

order to conduct the above mentioned collaborative research project: 

1. To collect all necessary secondary data including satellite images, historical 

hydrological data and bathymetric data from different sources 

2. To conduct hydrographic survey in a selected region of the study area to obtain high 

resolution bathymetry data 

3. To analyze the historical trend of river bank erosion in the selected study area using 

satellite images  

4. To apply deep learning techniques to predict bank erosion rate for the selected study 

area  

5. To analyze measured bathymetric data of different years to understand the 

morphological characteristics of the selected study area 

6. To develop a 2D hydrodynamic model to understand the flow hydraulics in the selected 

study area 

7. To develop a 2D morphological model to understand the general morphodynamics and 

bank erosion processes for the selected study area 

8. To develop a tool to predict riverbank erosion for the selected study area combining 

deep learning and numerical model results   

9. To arrange workshops to disseminate research progress and findings 

10. To provide technical support to WARPO professionals on river bank erosion process, 

modeling and prediction  

11. The basic methodology and approach of the 1.5-year collaborative research project is 

given in Annexure-I; 

12. WARPO will supply necessary data free of cost from the NWRD for the development 

and implementation of the model. The data will be used only for this project. 

13. DWRE will install the tools at WARPO and provide training to the WARPO personnel. 

14. The Principal Investigator of the project from DWRE (as mentioned in Annexure-I) 

and the designated Research Coordinator from WARPO will be responsible for 

planning the project activities. 

15. Outcome of this collaborative project will be published jointly by DWRE and WARPO 

in the conferences and peer reviewed journals. 

16. DWRE and WARPO will be the owner of the model software to be developed (if any) 

under this project; future improvements and modifications of the model may be made 
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by DWRE and WARPO, if necessary. If any party modifies the model, it will be 

transferred along with source code to the other party free of cost. 

17. The cost of this research project including tax is 84.28 lac Taka and the amount of VAT 

is 10.42 lac Taka. Therefore, total cost of the project is 94.70 lac Taka. The breakdown 

of this cost estimate is provided in Annexure-I. 

18. Director, BRTC, BUET will submit bill(s) to WARPO for the installment payment 

according to the schedule described in Annexure-I. All payments for the services shall 

have to be made through account payee cheques drawn in favor of Director, BRTC, 

BUET. If VAT and Tax are deducted at source, the copies of challans of deposited 

VAT & Tax shall have to be submitted to BRTC office along with the payment. 

19. The duration of this research project is 18 (Eighteen) months starting from the date of 

signing the contract. However, the project duration can be extended, if necessary, upon 

agreement between two parties.  

20. Reporting and activities will be carried out as per the work plan shown in Annexure-I.  

This agreement is signed on 27th January, 2019.  

 

--------------------------------------- 

Md. Mahmudul Hasan 

Director General 

Water Resources Planning Organization 

Ministry of Water Resources 

72 Green Road, Dhaka-1215, Bangladesh 

Witness: 

 

------------------------------------------ 

Professor Dr. Md. Shamsul Hoque 

Director 

Bureau of Research, Testing and Consultation  

Bangladesh University of Engineering and 

Technology (BUET), Dhaka, Bangladesh 

 

 

------------------------------- 

Kazi Saidur Rahman 

Senior Scientific Officer 

Water Resources Planning Organization 

Ministry of Water Resources 

72 Green Road, Dhaka-1215, Bangladesh 

 

 

 

-------------------------------------- 

Dr. Md. Mostafa Ali 

Professor and Head 

Department of Water Resources Engineering  

Bangladesh University of Engineering and 

Technology (BUET), Dhaka, Bangladesh 
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Appendix A-4 : Submission letter  of the River Bank Erosion Prediction Tool 

 

Memo No. WRE-129/BRTC/WARPO/2021 (02)                       Date: 13.02.2021  

  

  

To  

Mr. Md. Delwar Hossain 

Director General  

Water Resources Planning Organization  

Ministry of Water Resources  

WARPO Bhaban 72 Green Road, Dhaka-1215  

  
  

Subject: Submission of the River Bank Erosion Prediction Tool 

 

Reference No: 42.02.0000.004.14.002.19.5 Dated: 24-01-2019    

  

  

Project: Research on River Bank Erosion Dynamics using Numerical Modeling and 

Deep Learning Techniques.  

  

  

Dear Mr. Hossain,  

  

We have the pleasure to submit herewith one soft copy (attached USB pen drive) of the 

installer of the River Bank Erosion Prediction Tool of Jamuna river for the above-

mentioned project for your kind perusal. We are pleased with the opportunity to work 

with WARPO.  

  

Thanking you for the cooperation.  

  

 Yours sincerely,  
                    

 

 

Dr. Anika Yunus   

Professor and Head  
Dept. of Water Resources Engineering 

BUET, Dhaka.  

  

Copy to: Director, BRTC, BUET, Dhaka  
     

Professor Dr. Anika Yunus 
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Appendix A-5: 

Field visit:01 

Figure A-2: Meeting with BWDB, Manikganj officials 

Figure A-3 Discussion with Executive Engineer, BWDB  
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Figure A-4 Co-Discussion with Local People 

Figure A-5 Bank Erosion in Bachamara, Daulatpur, Manikganj. 
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Figure A-6 Bank erosion at Bachamara, Dauatpur, Manikganj. 

Figure A-7 Eroded Bank with bamboo tree 
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Figure A-8 Crack near the bank 
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Appendix A-6: 

Field visit 02 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1:Field visit Team on the way to Baghutia. 

 

 

 

 

 

 

 

 

Figure A-2 River bank protection work 
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Figure A-3 : River bank protection work-2 

 

Figure A-4: River bank of Jamuna 


