

FINAL REPORT (Draft)

Pilot Project

FAP 17

Fisheries Studies

JUNE 1994

FAP- 17

Call

and

2

Supporting Volume No. 1

BN=474

A = 596(2)

FISHERIES STUDY

TANGAIL COMPARTMENTALIZATION PILOT PROJECT

Prepared for the Government of Bangladesh

FAP 17

FINAL REPORT

SUPPORTING VOLUME No.1

** Draft **

LIBRARY

FISHERIES STUDY

Tangail Compartmentalization Pilot Project

A-10

FAP 17 FISHERIES STUDIES AND PILOT PROJECT

June, 1994

Prepared for the Government of Bangladesh

Table of Contents

			Page No.
LIST	r of f	IGURES	iii
LIST	r of t	ABLES	vi
SUM	IMARY	Y OF FINDINGS	ix
1.	STU	DY AREA: BACKGROUND	1
2.	SAM	IPLING SITES	5
3.	HYD	DROLOGY	9
	3.1	Outside the CPP	9
	3.2	Inside the CPP	9
4.		ER FISHERIES	15
	4.1	Total Catch	15
		4.1.1 Pattern of catch4.1.2 Size of catch	15 15
		4.1.2 Size of calch	15
	4.2.	Pattern of fishing	20
		4.2.1 Catch by gear	20
		4.2.2 Catch by gear by month	23
		4.2.3 Statistical comparison of catch rates	27
	4.3	1 1 2	31
		4.3.1 Species richness	31
		4.3.2 Species composition	31
5.	CAN	AL FISHERIES	41
	5.1	Total catch	41
		5.1.1 Pattern of catch	41
		5.1.2 Size of catch	41
	5.2	Pattern of fishing	46
		5.2.1 Catch by gear	46
		5.2.2 Catch by gear by month	46
		5.2.3 Statistical comparison of catch rates	52
	5.3	Species Composition and Biodiversity	57
		5.3.1 Species richness	57
		5.3.2 Species composition	58

i

FLO	ODPLAIN FI	SHERIES	65
6.1	Total catch		65
	6.1.1 Patter	rn of catch	65
	6.1.2 Size	of catch	71
6.2	Pattern of fis	shing	73
	6.2.1 Catch	by gear	73
	6.2.2 Catch	by gear by month	77
	6.2.3 Statis	tical comparison of catch rates	84
6.3	Species Com	position and Biodiversity	84
	6.3.1 Speci		84
		es composition	86

J.

 E_{23}

5

Ĩ

06

6.

Figure Nos.	LIST OF FIGURES	Page No.
1.1	Location of study areas in the North Central Region	2
2.1	Location of sampling sites inside and outside the Tangail CPP	6
3.1	Seasonal variation in water levels at floodplain/beel sites outside the CPP	10
3.2	Area elevation curve of floodplain/beel	
3.3	sites outside the CPP Seasonal variation in water levels at	11
3.4	floodplain/beel sites inside the CPP Area elevation curve of floodplain/beel	13
	sites inside the CPP	14
4.1	Seasonal variation in catch per unit length (kg/km) of rivers inside and outside	
4.2	the Tangail CPP, August 1992 - February 1994 Seasonal variation in catch per unit length (kg/km)	16
4.3	of all rivers sampled in the North Central Region, August 1992 - February 1994 Inter-annual variation in total monthly fishing	18
4.4	effort and catch rate (CPUE) of dominant gears: all rivers sampled in NCR, August 1992 - February 1994 Percentage of the total monthly catch taken by dominant	<u>1</u> 9
	gears: Northern Dhaleswari & Pungli Rivers	24
4.5	Total monthly fishing effort of dominant gears:	25
4.6	Northern Dhaleswari & Pungli Rivers Catch rates (Scaled CPUE) of dominant gears:	25
4.7	Northern Dhaleswari & Pungli Rivers Percentage of the total monthly catch taken	26
4.8	by dominant gears: Lohajang River	28
4.0	Total monthly fishing effort of dominant gears: Lohajang River	29
4.9	Catch rates (Scaled CPUE) of dominant gears:	20
4.10	Lohajang River Comparison of catch rates of dominant gears	30
4.11	from rivers inside and outside the Tangail CPP, August 1992 - February 1994 Seasonal variation in the number of fish species recorded	32
	from rivers inside and outside the Tangail CPP, August 1992 - February 1994	33

iii

5.1	Seasonal variation in the catch per unit length (kg/km)	0)
	of canals inside and outside the Tangail CPP,	
	August 1992 - February 1994	42
5.2	Seasonal variation in the catch per unit length (kg/km)	
	of all canals sampled in the North Central Region,	
5.3	August 1992 - February 1994 Inter-annual variation in total monthly fishing effort	44
5.5	and catch rate (CPUE) of dominant gears: all sampled canals	
	in NCR, August 1992 - February 1994	45
5.4	Percentage of the total monthly catch taken by dominant gears:	45
5.1	canals outside the Tangail CPP	47
5.5	Total monthly fishing effort of dominant gears:	
	canals outside the Tangail CPP	48
5.6	Catch rates (Scaled CPUE) of dominant gears:	
	canals outside the Tangail CPP	49
5.7	Percentage of the total monthly catch taken by dominant gears:	
11-21-22-2	canals inside the Tangail CPP	53
5.8	Total monthly fishing effort of dominant gears:	
5.0	canals inside the Tangail CPP	54
5.9	Catch rates (Scaled CPUE) of dominant gears:	55
5.10	canals inside the Tangail CPP . Seasonal variation in the number of fish species recorded from	55
5.10	canals inside and outside the Tangail CPP,	
	August 1992 - February 1994	59
	rugust 1992 Teordary 1994	57
6.1	Catch per unit area (kg/ha) from floodplains/beel inside and	
	outside the Tangail CPP	66
6.2	Catch per unit area (kg/ha) from baor-like beel inside and	
	outside the Tangail CPP	67
6.3	Catch per unit area (kg/ha) from lower-lying floodplains inside	
<i>.</i> .	and outside the Tangail CPP	68
6.4	Catch per unit area (kg/ha) from higher elevation floodplains	(0
65	and beel outside the Tangail CPP	69
6.5	Catch per unit area (kg/ha) from all floodplains/beel sites combined, inside and outside the Tangail CPP	70
6.6	Catch per unit area (kg/ha) from all floodplains/beel sites	70
0.0	sampled in the North Central Region,	
	August 1992 - February 1994	72
6.7	Inter-annual variation in total monthly fishing effort and	
	catch rate (CPUE) of dominant gears: all sampled	
	floodplains/beel in NCR, August 1992 - February 1994	74
6.8	Percentage of the monthly catch taken by dominant gears:	
	floodplains/beel outside the Tangail CPP	78
6.9	Total monthly fishing effort of dominant gears:	
	floodplains/beel outside the Tangail CPP	79
6.10	Catch rates (Scaled CPUE) of dominant gears:	
	floodplains/beel outside the CPP	80

У

6.11	Percentage of the total monthly catch taken by dominant gears: floodplains/beel inside the Tangail CPP	81
6.12	Total monthly fishing effort of dominant gears:	
	floodplains/beel inside the CPP	82
6.13	Catch rates (Scaled CPUE) of dominant gears:	
	floodplains/beel inside the CPP	83
6.14	Comparison of catch rates of dominant gears from	
	floodplains/beel inside and outside the Tangail CPP,	
	August 1992 - February 1994	85
6.15	Seasonal variation in the number of fish species recorded from	
	floodplains/beel inside and outside the Tangail CPP,	
	August 1992 - February 1994	87

v

LIST OF TABLES

X

Table Nos.

Page No.

85.

ŧ

		rage 110.
2.1	Description of sampling sites inside and outside the Tangail CPP	7
4.1	Comparison of the annual catch per unit length of	
	rivers inside and outside the Tangail CPP	17
4.2	Comparison of the total catch (kg/km) from rivers inside	11
	and outside the Tangail CPP between different years	20
4.3	Percentage total monthly catch by gear type: Lohajang River	21
4.4	Percentage total monthly catch by gear type: Northern Dhaleswari	
15	and Pungli Rivers	22
4.5	Percentage of the total catch taken by dominant gears used on	
4.6	rivers inside and outside the CPP, August 1992 - February 1994 Percentage total monthly catch by species: Northern Dhaleswari	23
1.0	and Pungli Rivers	34
4.7	Percentage total monthly catch by species: Lohajang River	36
4.8	Percentage contribution to the total riverine catch of	50
	dominant species inside and outside the Tangail CPP,	
	August 1992 - February 1994	38
5.1	Comparison of catch per unit length of canals inside and	
5.2	outside the Tangail CPP	41
5.2	Comparison of the total catch (kg/km) from canals inside	10
5.3	and outside the Tangail CPP between different years Percentage total monthly catch by gear type: canals outside CPP	43
5.4	Percentage total monthly catch by gear type: canals outside CPP Percentage total monthly catch by gear type: canals inside CPP	50 51
5.5	Percentage of Total Catch Taken by Dominant Gears used on	51
	Canals Inside and Outside the Tangail CPP,	
	August 1992 - February 1994	52
5.6	Statistical comparison of catches per unit area inside and	
	outside the Tangail CPP, March 1993 - February 1994	56
5.7	Percentage total monthly catch by species: canals outside CPP	60
5.8	Percentage total monthly catch by species: canals inside CPP	62
5.9	Percentage contribution of dominant species to the total	
	canal catch inside and outside the Tangail CPP,	<i>.</i> .
	August 1992 - February 1994	64
6.1	Comparison of the annual catch per unit area (kg/ha) of paired	
	floodplain and beel sites inside and outside the Tangail CPP,	
	March 1993 - February 1994	71
6.2	Comparison of total catch (kg/ha) from floodplains/beel inside	
1.02 (120)	and outside the Tangail CPP between different years	71
6.3	Percentage total monthly catch by gear type: floodplains/beel	
<i>(</i>)	outside CPP	75
6.4	Percentage total monthly catch by gear type: floodplains/beel	5 <u>1</u> 0088
	inside CPP	76

6.5	Percentage contribution to the total catch by dominant gears used on floodplains and beel inside and outside the Tangail CPP,	
	August 1992 - February 1994	77
6.6	Percentage total monthly catch by species: floodplains/beel	
	outside CPP	88
6.7	Percentage total monthly catch by species: floodplains/beel	
	inside CPP	90
6.8	Percentage contribution to the total floodplain catch by	5.0 5
	dominant species inside and outside the Tangail CPP,	
	August 1992 - February 1994	92

de

June 1994

1

÷

74

4

SUMMARY OF PRINCIPAL FINDINGS

1. The peripheral embankment to be used in the Tangail CPP had no influence on flooding patterns on floodplain, beel and canal sites inside the CPP.

There was a delay in the first river flooding into beel and floodplains of about 2-3 weeks inside the CPP, but this was caused by natural siltation at the mouth of the Lohajang River.

- 2. The annual catch per unit length of the Lohajang River flowing through the CPP was higher (784 kg/km) than those of two adjacent rivers, the Pungli (598 kg/km) and the Northern Dhaleswari (438 km/kg) lying immediately outside the CPP, but the difference could not be validated statistically because of the lack of consistency in catch rate trends.
- There was no statistically significant (p < 0.05) difference between annual catches of canals inside (955 kg/km) and outside (1,042 kg/km) the CPP.
- 4. Floodplain catches were similar inside (57 kg/ha) and outside (60 kg/ha) the CPP. A baor-like beel inside the CPP produced a higher catch per unit area (550 kg/ha) than comparable beel outside it (404 kg/ha) but there was little difference between floodplain depression-type beel inside (123 kg/ha) and outside the CPP (108 kg/ha). Although fish productivity appeared slightly higher inside the CPP, the difference could not be tested statistically because of inconsistencies in catch rate trends of dominant gears.
- 5. Species richness, as measured by the total number of species recorded in the catch, was similar inside and outside the CPP and also between rivers, canals, floodplain and beel. Species numbers ranged from 79 to 92 between different habitats outside the CPP and from 84 to 90 between different habitats within it.
- 6. Species composition of floodplain and beel catches was almost identical inside and outside the CPP, while rivers and canals supported a higher proportion of migratory species outside the CPP compared with inside it. The majority of migratory species

ix

in canals comprised major carps which totalled 30% of the catch outside and 6% of the catch inside the CPP. Species dominating floodplain and beel catches comprised mainly floodplain residents (90 - 94%), whilst the few migratory species comprised the major carps rui, catla, mrigel and raik, the catfish, boal and the minnow, fulchela. This composition appeared typical of floodplains on the left bank of the Jamuna River and along the Dhaleswari-Kaliganga system.

TANGAIL COMPARTMENTALIZATION PILOT PROJECT

1. STUDY AREA: BACKGROUND

The Tangail Compartmentalization Pilot Project (CPP) is situated on the left bank of the Jamuna River surrounding Tangail town (Fig. 1.1). The CPP lies between the Northern Dhaleswari to the east and the Pungli River, an offtake of the Northern Dhaleswari, to the west. The project area is bisected by the Lohajang River, a second offtake of the Northern Dhaleswari. A third offtake, the Elanjani River, runs southwards along the western boundary of the project area. The CPP incorporates an older FCD scheme, the Silimpur-Karatia project, which comprises an embankment running along the western boundary of the horseshoe-shaped CPP (Fig. 1.1). The embankment was constructed by local people on a piecemeal basis in 1963 without professional planning. BWDB assumed responsibility for the scheme from 1975 onwards and installed four flushing inlets for irrigation purposes. In practice this objective was not achieved. The scheme was evaluated by FAP 12 (FCD/I Agricultural Study) as part of a series of Rapid Rural Appraisals. The general conclusion from this study was that the amount of water entering through the inlet gates was small, even in the relatively wet year of 1991, and that the land area targeted for flood protection flooded from the Lohajang to the east. In normal years, flooding was not regarded as a major problem to agriculture. To achieve flood control there would need to be regulation of the flow of the Lohajang and improved drainage to remove congestion by the creation of drainage structures.

The Compartmentalization Pilot Project (FAP 20) selected Tangail as one of its study areas. The boundary of the area, enclosing 13,765 ha, is formed by an embankment along the Elanjani and Northern Dhaleswari Rivers to the east (this is part of the former Silimpur-Karatia project), the Lohajang and Gala khal to the north and the Pungli River in the east. The southern boundary is formed by an earthen road between Silimpur and Karatia.

The FAP 20 CPP is viewed as a key component of the Flood Action Plan, to test the concept of compartmentalization in the field with the aim of achieving integrated water management through controlled flooding. The principal structural work to be completed by FAP 20 involves the installation of a major regulator on the Lohajang River and the control of internal drainage by excavation, sills and sluice gates.

9°

FAP 17 selected the CPP for study to provide the following:

- a. An investigation of the impact of partial flood control on fisheries.
- b. Evaluation of methods for the assessment of capture fisheries in an area where detailed hydrological and sociological data were already available and where an improved MIKE 11 flood simulation model was being developed.
- c. Baseline data collected during the pre-implementation phase of a key FAP initiative which could be used in future assessments of the impact of the project on capture fisheries.

During the study, FAP 17 worked in close collaboration with FAP 20 on studies of the movements of fish hatchlings in rivers (Supporting Volume 11).

2. SAMPLING SITES

Rivers, canals, floodplains and beel were sampled inside and outside the CPP at fortnightly intervals for a total of 19 months from August 1992 to February 1994 inclusive. Detailed information on catch by species and fishing effort of different types of gears was collected at each site following the methods previously outlined in the FAP 17 Inception and Interim Reports.

Two beel were sampled within the CPP : Atia (site 15) and Indrabelta (site 11), lying to the south and east of Tangail town respectively (Fig. 2.1). A floodplain area adjacent to Atia beel was also sampled (site 14), but at Indrabelta a large area of floodplain was included in the area of site 11 (Table 2.1).

The beel selected represent two types which commonly occur along the left bank of the Jamuna River and along the Dhaleswari River system. Atia beel (site 15) is a small baor-type beel formed from an old river which has long since changed course, leaving a series of disconnected beel of which Atia is one. Indrabelta beel (site 11) is a true depression-type beel which would be more seasonal in nature were it not for the limited area of brickwork excavations which serve the same function as a small perennial beel. The depression-type beel differ hydrologically from the baor type because they are physically more closely associated with the floodplain immediately surrounding them, onto which they overspill during the pre-monsoon and from which they concentrate floodwaters and fish during the drawdown. The baor-type beel do not possess such close association with their floodplains but instead tend to drain rainfall runoff and receive river floodwater via canal links to adjacent rivers, overspilling their banks only in times of higher floods.

Each type of beel inside the CPP was paired with an equivalent outside it: Atia with Mailjani beel (site 19) to the south of the CPP and on the right bank of the Dhaleswari River and Indrabelta with Gazaria (site 05) and Tepi beel immediately to the north of the CPP (Fig. 2.1). A second baor-type beel, Anahula beel, was selected for comparison with Atia beel, because this beel directly connected with the Northern Dhaleswari through Anahula khal. However, the elevations of the floodplain surrounding this beel were somewhat higher than those of Atia.

2x

Site Code	Site Name	Habitat	In/Out	Si	ize
			СРР	Area (ha)	Length (Km)
NC 12	Lohajang River	Secondary River	I		9.80
NC 02	Pungli River	Secondary River	0		7.45
NC 06	Northern Dhaleswari River	Secondary River	0		16.05
NC 10	Indrabelta and Santosh Khals	Canal	I		5.64
NC 13	Deojan and Atia Khals	Canal	I		3.62
NC 03	Gala & Borobasalia Khals	Canal	0		4.87
NC 07	Anahula Khal	Canal	0		4.78
NC 17	Zia Khal	Canal	0		4.41
NC 11	Beltaraksit Floodplain	Floodplain	I	1.8470	
NC 14	Atia/Kumuria Floodplains	Floodplain	I	1.9890	
NC 15	Atia Beel	Beel	I	0.1790	
NC 04/05	Gazaria Floodplain/Beel	Floodplain	0	1.2350	0
NC 08	Anahula Floodplain	Floodplain	0	0.7730	
NC 09	Anahula Beel	Beel	0	0.1440	
NC 18	Mailjani Floodplain	Floodplain	0	1.1890	
NC 19	Mailjani Beel	Beel	0	0.1790	

 Table 2.1
 Description of sampling sites inside and outside the Tangail CPP

The total floodplain/beel area sampled within the CPP was 402 ha. A control area of 352 ha was sampled outside the CPP, at sites in Gazaria beel and floodplain (sites 4 and 5) immediately to the north, Anahula beel and floodplain (sites 8 and 9) to the east across the Northern Dhaleswari, and Mailjani beel and floodplain (sites 18 and 19) to the south across the Dhaleswari River.

Canals linking each floodplain/beel with adjacent rivers were sampled inside and outside the CPP (Fig. 2.1). Inside the scheme the canals included Santosh khal (site 10) draining Indrabelta floodplain and leading indirectly to the Lohajang River and Deojan and Atia khal (site 13) draining Atia beel and again connecting with the Lohajang River. Outside the scheme Gala and Borobasalia khal (site 03) on Gazaria floodplain/beel, linked with the Pungli and Lohajang Rivers respectively, were sampled. Anahula khal (site 07) connected the beel

Ser.

with the Northern Dhaleswari, and Zia khal (site 17) linked Mailjani beel to the main Dhaleswari River. A total of 9.26 km of canal was sampled inside the CPP, and 14.06 km outside.

Three rivers were sampled : 9.80 km of the Lohajang (site 12) inside the CPP, and 7.45 km of the Pungli (site 02) and 16.05 km of the Northern Dhaleswari (site 06) outside it (Fig. 2.1).

20

3. HYDROLOGY

3.1 Outside the CPP

Pre-monsoon rainfall resulted in the gradual water-logging of floodplains during April and May 1993. In May, canals linking floodplains and beel with rivers made their first hydraulic connection as a result of this rainfall running off into the rivers. During early May the Northern Dhaleswari filled with rainfall runoff and fully connected with its ox-bow like loops, one of which was included in the sampled site No. 06. About two weeks later, in mid-May, the Pungli River was transformed by rainfall runoff from its winter condition of a series of disconnected pools into a continuously flowing system.

Rainfall runoff continued to enter rivers from the floodplains until the end of the first week in June. By mid-June hydraulic connections were made between the Jamuna River, Northern Dhaleswari and Pungli River and rising river levels reversed most flows in connecting canals which then began to deliver river floodwaters to beel and floodplains. Continued rises in river levels and heavy prevailing rainfall caused increased flooding of floodplains during July and August, reaching a peak in early September. After that water levels dropped sharply at all sampling sites (Fig. 3.1). At sites of higher elevation (Figs. 3.1 and 3.2) floodplains dried out quickly during September, but most retained water until mid-October, after which only a few scattered small depressions held water on the floodplains. Flood depths obviously varied with land height, but over much of the area sampled depths ranged from 0.5m to 1.5m for between 2 and 3 months.

3.2 Inside the CPP

Pre-monsoon flooding by rainfall followed a similar pattern to that outside the CPP. Floodplains were inundated during May and rainfall runoff entered the Lohajang River via connecting canals. In mid-May the Lohajang was transformed from a series of isolated pools to a continuously flowing river by rainfall runoff. It made its first hydraulic connection with the Northern Dhaleswari on the 12 June, about 2 weeks earlier than in the previous dry year of 1992 when it connected on the 29 June.

The first floodwater from the Lohajang was delivered to floodplain and beel about 2 weeks later than the Pungli and Northern Dhaleswari waters. Flow reversal in Deojan khal feeding Atia beel and Kumuria floodplain was not observed until the fisheries survey on 11 July, but

The second second

Figure 3.2 Area elevation curve of floodplain/beel sites outside the CPP

first connection may have occurred a week earlier.

,8

Flooding patterns inside the CPP followed those seen outside (Fig. 3.3). Water levels increased during July and August to a peak in early September, after which they decreased rapidly during the drawdown. Floodplains dried out completely, depending on land height (Fig. 3.4) between the first weeks of October and November, suggesting a slightly longer water retention period than outside floodplains. Flood depths varied from 0.5 m to 2.5 m over about the same period of inundation as sites outside the CPP.

Figure 3.3 Seasonal variation in water levels at floodplain/beel sites inside the CPP

20

Figure 3.4 Area elevation curve of floodplain/beel sites inside the CPP

4. **RIVER FISHERIES**

4.1 Total Catch

4.1.1 Pattern of catch

The collection of catch data for the period of 19 months from August 1992 to February 1994 provided the opportunity to examine changing patterns of catch through two full flood drawdown periods. All three rivers exhibited the same rapid increase in catch coinciding with the drawdown period each year (Fig. 4.1). The Northern Dhaleswari, being the largest of the three rivers, tended to retain water longer during the drawdown and dry season resulting in a slightly extended period of increased catches compared to the other rivers. The Pungli River, although hydrologically very similar to the Lohajang, showed differences in its pattern of catch during the pre-monsoon period (April - May). Heavy runoff from rainfall during April 1993 increased water levels in the series of disconnected pools which remained in the Pungli and Lohajang Rivers. Later, in May, these connected to form a continuous flow of water which resulted in significant increases in catches in the Pungli but, for reasons unknown, not in the Lohajang (Fig. 4.1).

4.1.2 Size of catch

The highest catches per unit length of river were recorded at the inside sites on the Lohajang River (Table 4.1). However, as will be demonstrated in the following section, there was no statistical evidence on which to base differences in catch between rivers inside and outside the CPP.

The lowest catch/km was recorded in the Northern Dhaleswari, the largest and most perennial in water of the three rivers. A similar pattern was found in the Southwest Region, where catches per unit length of seasonal rivers greatly exceeded those of neighbouring perennial rivers (Supporting Volume 2). The difference can be attributed to the increased "catchability" of fish populations trapped in disconnected pools during the drawdown in seasonal rivers. Very heavy fishing effort is concentrated on these isolated stocks.

The survey period of 19 months, from August 1992 to February 1994, provides an opportunity to examine inter-annual changes in total fish catch through two full flood drawdown periods. Peak catches in outside rivers were slightly higher in 1992 than in 1993.

Figure 4.1 Seasonal variation in catch per unit length (Kg/Km) of rivers inside and outside the Tangail CPP, August 1992 - February 1994

16

-4

June 1994

Site	Name	Inside/Outside	Annual Catch March 1993 - Feb 1994 (kg/km)	Total Sampled Catch Aug 1992 - Feb 1994 (kg/km)
12	Lohajang	Inside	784	1,107
02	Pungli	Outside	598	945
06	Northern Dhaleswari	Outside	438	674
All n	ivers sampled in NCR		1,060	1,554

Table 4.1Comparison of the annual Catch per Unit Length of Rivers Inside and
Outside the Tangail CPP.

However, this masks the real difference between years, which is clearly revealed in Table 4.2 and Fig. 4.2. Comparison of the total catch over comparable time periods in the different hydrological years revealed a consistent and substantial increase in the 1993 - 1994 catch compared with the 1992 - 1993 catch. In rivers outside the CPP this overall increase in catch was greater despite high peak catches in 1992. Combining data from all rivers sampled in the NCR, including those not associated directly with the CPP study, an increase in catch of 77% was observed. This can be explained partly in hydrological terms. 1992 - 1993 was a particularly dry year compared with the following year and, given the relationship between flood extent and floodplain fish production demonstrated elsewhere in the world (Welcomme and Hagborg, 1977)¹ it is likely that such differences in magnitude, extent and duration of the flood between years was responsible for differences in catch.

Another factor which may have been influential in determining fish densities and thus catches between years was the occurrence of epizootic fish disease. The disease arrived only recently in Bangladesh (it was first seen in 1988), and outbreaks of it occur irregularly from year to year. The disease was much more severe in 1992 than in 1993. However, since the first serious disease outbreak occurred in mid-November 1992, after the bulk of the catch had already been taken, it is unlikely to have had a major influence on the comparisons of catches made in Table 4.2.

Higher catches observed in 1993/94 were largely a function of increased catch rates of dominant gears (Fig. 4.3). The only gears for which a noticeable increase in fishing effort was observed in 1993/94 were veshal and hooks. For other dominant gears (ber jal, jhaki jal,

1

Welcomme, R.L. and Hagborg, D. 1977. Towards a model of a floodplain fishery Environ. Biol. Fish 2, 7-24.

LIBRARY.

Table 4.2Comparison of the Total Catch (kg/km) from Rivers Inside and Outside
the Tangail CPP between Different Years.

		Aug 1992 - Feb 1993	Aug 1993 - Feb 1994	Percentage Increase
Inside		323	657	103
Outside	(N. Dhaleswari)	236	674	185
	Pungli	347	945	175
All rivers s	ampled in NCR	494	876	77

traps and thella jal), there was little difference in effort between years. Catch rates of ber jal, veshal, jhaki jal and thella jal were higher during 1993/94 compared to the previous year, but little change was seen in the catch rates of traps and hooks.

The increase in catch rates of several dominant gears indicate higher overall fish densities during 1993/94 compared to 1992/93.

4.2 Pattern of Fishing

4.2.1 Catch by gear

Details of the percentage of the total catch taken by each gear sampled on rivers inside and outside the CPP are presented in Tables 4.3 and 4.4. Data for the Northern Dhaleswari and Pungli Rivers were combined together in these tables, but a summarised list of dominant gears is presented separately for each river in Table 4.5. In all three rivers about the same number of different types of fishing gear were found, and the majority of the total catch was captured by small-scale gears frequently used by subsistence or part-time fishermen. These common gears included sip (hand lines), jhaki jal and thella jal. Inside the CPP, on the Lohajang River, the small lift net, dharma jal and doiar traps captured a greater proportion of the catch than in other rivers. This can be explained by the greater density of houses along the banks of the Lohajang, from which the dharma jal and traps operate at subsistence level. Katha fishing was only important in the Northern Dhaleswari, the largest of the three rivers with a greater water retention during the dry season when katha predominate. The moi jal (drag net) also captured a greater part of the total catch in this river, possibly because of the greater area of gently sloping banks which favours the use of this gear.

FAP 17: Supporting Volume No.1

-
ajang
H
3
ype
1
h by gear
h
ch
cat
~
F
T
IOL
E
a
o
-
a
ta
E
ö
le 4.3 Percer
-
le 4.3
0
-

Gear				Year: 1992	992						Year: 1003	ş							1001X		Total annual catch	ial catch
Code	Gear name(Bengali)	Aug		Sen Oct	Nov	v Dec	Ian	Ech	Mar	Anr	May	Innl	Inhol	12114	C.L	1.00			1 cal. 195	Ĭ	Mar 93-re0 94)	re0 94)
1			F									mnr	line	Snv	och	3	VON	Dec	Jan	reb	Kg	20
2	dic	14.780		71.721	71.53	- 71.721 71.534 34.264	1.165	0.161	5.906	1	1	8.604	6.302	44.804 1	19.039 3	37.294 1	15.481	0.472	0.321	- 1	1436.194	19.833
103	105 Dharma jal	2.949	7.428	6.277	2.156		7.450 24.122 13.799	13.799	26.693	1	23.702	39.440	0.736	18.458 2	26.488 1	11.064	4.660	16.314	3.920	-	1185.417	16.370
95	Doiar trap	31.576	7.992		1.493 10.209	9 7.029	74.713	2.210	L	1	9.234	18.299	26.072	15.586		5.413 2			74.864	9.121	991.914	13.698
164	164 Jhaki jal	4.829	68.473	4.829 68.473 18.130 10.475	10.47.	5 7.747		- 31.162	11.043	63.713	61.376	24.919	8.314	8.894	13.230 1	18.550 1	_	_		_	987.618	13.638
255	Thella jal	45.867		2.378	4.610	0 43.510	1	35.524	4.716	3.035	1.908	7.949	1.135	3.587	15.140 1	11.997	1.608	7.528		_	681.869	9.416
271	271 Suti jal	T	6.962	1		1	1	T	L	L	I	0.790	57.441	8.672 1	11.723	1	1	1	1		583.775	8.062
45	45 Ber jal	1	1	1		1	1	E	1	1.784	1	1	1	1	11.544	1	1	1	1	22 240	343 070	4 738
270	270 Katha	J	3	1		1	1	I	24.667	24.759	1	I	I	1	1	1	1	100 80	1		001 800	2117
152	152 Tana Barshi	1	1	1		1	1	I	1	1	1	1	1	1	1	1	010 50	2222			100 00	111-1
307	307 Hand fishing	ļ	1	1		_		17 144		1000					_		610'03	CC0.0	I	1	202.004	5.018
386	Sector Vicebal				_		1	11.144	161.22	0./09	1	I	1	1	1	5.942	8.537	L	I	I	192.411	2.657
007	V CSUAL	I	L	1	1.016	0	1	I	1	1	1	1	1	1	0.413	8.242	1.499	ł	1	1	143.322	1.979
117	Kachilana	I.	1	1		1	1	I	1	1	1	1	1	1	I	1	7.207	1	1	1	67.846	0.937
88	88 Current jal	I.	L	1	-	1	1	1	0.580	1	3.325	1	1	t	0.139	I	0.624	0.317 1	11.564	1	CCF 14	0 571
170 Juti	Juti	1	I	1	-	1	1	1	1	3	T	1	i	1		1 500		10		ł	11 660	
202	202 Moi jal	I.	1	1		1	1	1	4.206	1	1	I	I							I	60017	067.0
314	314 Boat Katha	1	1	1		1	1	1						(I	I	I	1	1	4.092	0.057
89	Dhor jal	1	1	1		1	1	1	1	1	0.455	1	i i		1	I	1	I	0.202	1	0.639	0.000
		5	Not 1	1001	~~.		~~~					10000			1	1	1	1	1	1	0.217	0.003

Table 4.4 Percentage total monthly catch by gear type: Northern Dhaleswari and Pungli rivers

08

																					Total annual catch	al catch
Gear				Year: 1992	12		1			1	Year. 1993	33						•	Year: 1994	94	(Mar'93 - Feb'94)	Feb'94)
Code 0	Gear name(Bengali)	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Kg	%
255 T	255 Thella jal	32.880	23.395	4.673	5.111	15.930	39.078	8.994	12.764	2.882	19.915	18.510	31.662	59.570	20.121	15.147	0.970	6.003	3.467	9.780	1698.857	14.787
30 Sip	di	8.080		5.253 31.487	48.556 53.424	53.424	Ļ	Ĺ	ľ	0.547	12.064	Ľ	5.723	2.348	12.379	12.832	35.582	24.429	0.352	1	1663.354	14.478
164 J	164 Jhaki jal	20.321	25.352	37.361	5.392	2.714	2.714 32.817	5.743	73.256	12.374	40.255	12.788	11.654	5.629	10.177	20.565	7.497	4.452	3.275	2.507	1564.254	13.615
45 E	45 Ber jal	11.199	2.729	2.729 11.650	20.579	I	Ţ	76.675	1	80.644	16.562	34.939	7.607	t	1.419	8.143	5.128	1	I	I	1186.175	10.325
202 N	202 Moi jal	0.120	2.773	7.941	2.007	1	I	I	T	I	2.391	14.953	0.301	1	1	3.822	22.350	38.104	Ţ	13.267	1077.070	9.375
307 F	307 Hand fishing	ļ	I	I	1	I	Ĭ,	3.567	13.980	2.870	1	1	I	I	33.780	13.266	1.265	I	1	6.291	932.146	8.113
270 K	Katha jal	ţ	1	I	1	T	1	1.	Г	t	I	ł	I	1	ł	I	3.100	18.895	49.700	44.292	762.217	6.634
105 L	Dharma jal	10.617	15.082	2.430	2.612	I	4.603	I.	I	ł	4.624	1.079	2.140	5.918	9.589	19.344	1.787	1	I	I	698.704	6.082
95 L	Doiar trap	2.885	21.854	ſ	I	1	Ţ	I	Ĩ	1	1	13.454	6.872	2.031	0.746	0.733	4.368	1	38.833	20.196	582.549	5.071
175 K	Kathi jal	ķ	1	0.128	I	I	Ţ	Ē	ľ	1	2.318	2.774	31.234	12.187	6.379	0.512	1	1	1	I	479.064	4.170
152 T	Tana Barshi	1	1	1	1	I	I	T	T	t	L	I.	ł	I	L	Ĩ	8.770	0.796	1	I.	204.661	1.781
272 E	Daun	7.230	3.564	0.420	11.825	6.411	j.	1	1	1	1	0.932	0.815	12.317	0.782	1.515	0.306	2.529	I.	Ē	150.047	1.306
271 S	Suti jal	J	1	1	1.193	1	1	3	a	T	1.833	I	1.993	1	1	1	4.928	1	1	I.	146.445	1.275
316 K	Kajuli jal	I	1	1.935	I	1	1	1	1	1	I	J	1	Ţ	4.629	0.721	1	I	1	1	91.752	0.799
88 0	Current jal(stationary)	Ţ	1	1.719	1.504	12.972	0.577	5.021	1	1	0.039	1	1	J	1	0.249	0.129	3.997	3.168	3.316	78.829	0.686
282 C	Current jal (drifting)	J	1	1	1) I	1	1	1	1	1	1	1	J	1	0.182	2.978	1	1	1	70.978	0.618
268 K	Konaber jal	l	ł	1	I	1	I	1	1	4	1	3	1	J	1	2.003	0.069	1	1	1	42.681	0.371
123 K	Koi jal	Ĭ	3	1	1	1	1	1	1	1	1	1	1	1	1	1	0.776	1	0.676	I	21.006	0.183
89 I	Dhor jal	6.668	1	0.257	0.998	1	19.230	1	1	1	1	1	1	l	I	0.967	I	T	Ę	L	19.866	0.173
314 E	314 Boat Katha	ļ	9	1	1	1	3.696	1	1	0.682	1	1	1	Ţ	I	Ē	I.	0.794	0.531	0.210	14.800	0.129
278 h	Nol barsi	1	1	1	1	1	t	1	T	I	Ľ	0.570	I	I,	I	I	I	1	1	1	2.569	0.022
170 Juti	iuti	1	1	1	1	1	I,	T	Ē	I.	L	I.	I	١	ľ	I	I	I	I	0.142	0.896	0.008
266 \	Veshal	Ĩ	T	1	0.160	8.548	I	I	I	I	I.	Ľ.	L	1	T	1	I	1	I	1	I	1
149 F	Horga	1	T	1	0.063	I	L	I	L	ł	ł	I.	I	1	I	I	1	1	I	1	I	1
		100	100	100	100	100	100	100	100	100	100	1001	100	100	1001	100	1001	100	81	5	000 0111 001	~~

22

*

4

*

Gear Name	Lohajang (Inside)	Pungli (Outside)	Northern Dhaleswari (Outside)	All Rivers Sampled in NCR
Sip	31	29	14	8
Jhaki jal	15	23	13	7
Dharma jal	13	3	7	2
Doiar trap	11		7	9
Thella jal	10	11	15	5
Sutiber jal	6	16	8	18
Katha	3		7	14
Hatani (hand fishing)	3	5	6	
Kathi jal (seine)		3	3	
Moi jal			12	2
Daun	-	_	4	
Veshal				16
Tara barsi				5
Total No. of Gear types used	19	20	19	

Table 4.5Percentage of the Total Catch Taken by Dominant Gears Used on RiversInside and Outside the CPP, August 1992 - February 1994.

Note: Dominant gears are defined as those which between them take at least 90% of the catch in each river.

4.2.2 Catch by gear by month

In the rivers outside the CPP, peak catches during the flood drawdown of 1992 (October -November) were mainly attributable to a mixture of simple rod-and-line fishing (sip), the jhaki jal and the ber jal of professional fishermen (Fig. 4.4) catching mainly boal, puti (*Puntius sophore*) and baim. The dramatic catch increase resulted from increased fishing effort of these gears (Fig. 4.5), since catch rates of all three gears actually declined compared with the previous two months (Fig. 4.6). During the slack winter period, between December 1992 and March 1993, catches fell to a minimum, but catch rates of certain gears e.g. thella and ber jal (Fig. 4.6) reached maximum levels by exploiting the last remaining stocks of fish and prawns concentrated in shallow waters. As runoff from floodplains increased river water level in May and June, catches by small-scale gears such as jhaki jal and thella contributed most of the catch, together with the larger-scale operation of the ber jal.

S,

Figure 4.5 Total monthly fishing effort of dominant gears: Northern Dhaleswari and Pungli rivers

Note: Scaled CPUE are values of CPUE expressed as a proportion (decimal) of the maximum monthly value recorded.

26

A

Peak catches of the 1993 flood recession were taken principally by jhaki jal (21%), dharma jal (19%) and thella jal (15%) in October, and by sip (36%) and moi jal (22%) in November. In contrast to the catches made during the 1992 drawdown, boal did not contribute greatly during the same period in 1993, although it did do so a little later in December. Instead, the carp *Labeo calbasu* predominated together with two other species, puti (*P. sophore*) and baim, which also contributed greatly to the 1992 drawdown catches.

On the Lohajang River inside the CPP sip, and to a much lesser extent jhaki jal, provided the bulk (90%) of the peak catch during the 1992 drawdown (Fig. 4.7), taking mainly the spiny eels baim and tara baim. Increased catches were a function of both increased effort (Fig. 4.8) and high catch rates (Fig. 4.9). During the rising floods of July and August, suti jal (bag nets), dharma jal and hooks predominated, but catches remained fairly low compared with the considerable increase observed during the initial drawdown of September. At that time dharma jal, hooks and thella jal again captured a great variety of species, none of which particularly dominated the monthly catch. During the continuing drawdown of October and November hooks, jhaki jal and traps predominated. As in 1992, peak catches were a function of both increased fishing effort and increased catch rates of dominant gears (Fig. 4.8 and 4.9),

4.2.3 Statistical comparison of catch rates

At the inside sites for this habitat type, over 88% of the total catch per kilometre for the period March 1993 to February 1994, excluding katha, was taken by 7 gears. In descending order of catch per kilometre, these were: sip, dharma jal, doiar, jhaki jal, thella jal, suti jal and ber jal. At the outside sites, over 87% of the total catch per kilometre over the same period was taken by 8 gears. These were: thella jal, sip, jhaki jal, ber jal, moi jal, hand/dewatering, dharma jal and doiar. Six gears appeared in both lists: thella jal, sip, jhaki jal, ber jal, doiar and dharma jal. Sip took nearly 21% of the catch at inside sites, and nearly 16% at outside sites.

Unfortunately, when seasonal catch rates for the six common gears were compared, there was very little consistency in the trends. For each gear, there was at least one season when the trends in catch rates at inside and outside sites were substantially different. These data provide no basis for valid statistical comparisons of fish densities using the proposed model.

Figure 4.7 Percentage of the total monthly catch taken by dominant gears: Lohajang River

E

28

B

Note: Scaled CPUE are values of CPUE expressed as a proportion (decimal) of the maximum monthly value recorded

30

However, while the seasonal trends by gear are different at inside and outside sites, in almost all cases the inside catch rates for a gear equal or exceed the outside catch rates for that gear (Fig. 4.10). Assuming these catch rates are a valid indicator of fish density, then this provides evidence of higher productivity on the Lohajang River compared to the Pungli and Northern Dhaleswari Rivers outside the CPP.

4.3 Species Composition and Biodiversity

4.3.1 Species richness

A total of 79 species and 84 species were recorded from the Pungli and Northern Dhaleswari rivers respectively, compared with 89 species recorded from the Lohajang inside the CPP. Thus, species richness was slightly higher at the inside site compared with the outside sites.

Clear seasonal changes in species numbers were observed in all rivers. Lowest numbers were found during the winter and pre-monsoon, gradually increasing as river levels increased during the monsoon, before a very sharp rise coinciding with the flood recession when fish migrate from floodplains to rivers (Fig. 4.11). A similar seasonal trend in species richness changes was recorded in other regions studied by FAP 17.

4.3.2 Species composition

Detailed monthly species compositions (% of catch by weight) are presented in Tables 4.6 and 4.7 for rivers outside and inside the CPP respectively. Dominant species, i.e. those together comprising 90% of the catch by weight, found in each river are listed in Table 4.8. These species accounted for 85% of the total catch from the Lohajang and Northern Dhaleswari and slightly more (90%) from the Pungli.

A striking feature of the lists presented in Table 4.8 is the dominance of typical floodplain species in all rivers. This same characteristic has been noted in seasonal rivers in the Southwest Region of Bangladesh (Supporting Volume 2). Such dominance by floodplain species results from the majority of the annual catch being captured during the flood drawdown, when floodplain species migrate to rivers. In the Southwest Region, rivers which

f.

Species Species name				Year: 1992	260	. 19				Ye	Year: 1993								Var. 1004	Total annual catch	rebo
Scientific	Bengali	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Anr	Mav	Inn	Intel	4110	Can	N INC	Noul Des	-	1-1 1224	-	Fen M
175 Puntius conchonius	Canchan puti		0	1.834	6.492	8.651	-		-	-	1	-	4		2		-	1		1	8
931 Prawn spp.	Prawn	18.075			2.481	6.554	_		·	_			_				FCC C L	4.190	095.0 0.980		12.406
180 Puntius sophore	Puti	0.662	_	-	_	7.521	_	· · ·			-	•	-	C			_	_	-		0/7.6
83 Glossogobius giurus	Bailla	9.965		_		1.019		_	100	- 25			_	02	<u>.</u>				- C	Ť	
102 Laboo calbasu	Kalbaus	1	0.157	0.007	0.013	1		_		_			_					XF0.6 10	0+6.0 %		
122 Mastacombolus armatus	Baral baim	0.239	0.344	2.728	15.085	22.469	1.803	1	1	0.301	0.037	8 201 F	0.638	3 181 3			_			100.110 -	
Clupisoma garua	Ghaura	13.802	12.707	7.590	6.934	1.134	1	1	_	_	_	-	_			-	-				
Macrognathus pancalus	Guchi	0.323	0.112	0 566	0110	0 177	1 573	1111			_	_	_	_					_	_	
Channa punciatus	Taki	0.082	0161	5 800	LTF I	377 5			_			_	C00'I	1			_	_	_		
Ailla coila	Kaiuli	14.387	3635	1467	OCL F		6	-	-	_		-	_				8.398	13.701	10.7.033		4.883
Wallacuatu	Boal	100.01	-	101.0	07/-	707.7	i	1	1	1	0.259 14	14.827 11		5.591 4	4.631 4.			1	1	- 399.381	3.476
Muerus vitratus	T	000.0		666.02	43.010	04/.00	_	_	_			_	2.448	_		0.949 2.042	42 29.223	2.350	50 5.172	2 373.210	3.248
Mustice convertice	La La La	01+1	· · · ·	107.7	000.7	2.236	2.038	260.0	1.224		12.348 (0.519	1	_		2.919 2.923	23 2.978	18 4.938	38 3.900	0 367.774	3.201
Culmers to results	N# Dax01	1	161.0	2.540	0.185	1.203	I	I	1			0.446	1		2.734 0.	0.470 7.118	18 0.115	15 0.294	94 2.634	4 243.154	2.116
calmostoma pullo	Fulchela	0.034	1.780	0.637	0.481	1	9.305	ī	1	3.376	2.322	5.050 6	6.427 0	0.915 0	0.951 1.	1.618 1.018	18	- 0.157	57 2.174	4 211.867	1.844
Bardius ovezardi		1	1	1	0.057	3	1	1	1	1	t	1	12.471 6	6.103 2	2.772 0.	0.006	1	1	1		_
Mystus blockeri	Golsha tengra	Ľ	1	0.525	0.598	0.359	I	0.254	1	0.603	0.008	1.255 0		0.488 0		5.186 1.017	17 1.556	0 576	16 1 031		_
Xenentodon cancila	Kaikka	0.511	1.727	0.370	0.146	1	9.820	1	5.507	0.151 (0.908	0.144	_		_						
Aspidoparia morar	Morari	1.000	1.588	0.171	0.319	1.046	- 7	70.312	1			_	5.056	5.063 0				_		_	
Aorichthys aor	Ayre	7.092	2.761	1	1	Ĩ	1	I	1	_		-	_					1 9			_
Gagata youssoufi	Gang tengra	2.069	4.091	2.407	1.087	0.623	1	,	1	1		_	1	_	_		_	2 :	10.0	_	
Gagata cenia	Каима	1	0.028	0.209	I	1	1	1	1	1	_		_		_	0000 TOU U	1+0.0	-	1	110.0/0	
Lepidocephalus guntea	Gutum	0.357	0.303	1.580	0.232	0.610	0.051	1	0.218	0.213 0			_	_		2001 1012		1 0260			_
Chanda nama	Nama Chanda	0.627	0.340	0.117	0.134	0.088	1	1						7 867 0			70077 0		0071 40		
Macrobrachium rosenbergii	Golda	0	1	9	1	1	I	1	1		_		_		_	_		2	0	N67'C6 -	
Cirrhinus mrigata	Mrigel	1	0.910	ļ	1	1	T	1	1	1	1	1	_	4 540 4	4 000	_	2	-	1	00/16	
Barilius barna	Bani Koksa	1	1	9	3	1	ł	1	I	ļ	I	- 10	10.178	-	705.0	1		1 1	1	100016 -	C6/-0
Colisa fasciatus	Khalisha	1	2.668	0.045	I	1	1	1	1	0.014 0	0.010	1	0.053	1	-	121 0 136	1010 38	112 111			
Cirrhinus reba	Raik	0.149	0.220	0.324	0.156	0.120	1	ţ	1		1			0.229 0		-		-	_		+60.0
Chanda ranga	Lalchanda	0.117	0.293	0.272	0.061	1	I	1	1	0.014 0	0.586 0	0.351 0		_	_	_					
Eutropikhthys vacha	Bacha	0.057	0.333	0.458	0.717	1.891	t	I	1	_			-	_			_		_		
Puntius tieto	Tit puti	7.301	8.599	£	1	1	5.105	2.860	5.682	1			0.046	1	_	_	12 0 345	ULF U S	0 0 115	_	
Gagata viridescens	Gang tengra	1	1	1	0.004	1	1	1	1	1	0.015			6.881 0.	_	_		_	-		_
Nemacheilus botia	Balkchata	1	1.296	0.240	0.072	0.070	0.063 0	0.270	0.612 0	0.512 0		1.018 0		_	_	_	16 0.738	8 0.106	0 670		
Anabas testudineus	Koi	0:030	0.262	I	ł	Т	1	1	ł	1	1	1	<u> </u>	I	0	_			-	8 8 	
Mystus tengara	Bajari tengra	0.241	0.094	0.011	0.003	T	1.223	I.	1	0.056	I	1	1	1	0.114	- 1.413	6	1	1	34.153	_
Cath catla	Catha	1	1	Ĩ.	£.	ł	I	1	1	I	1	1	0.013	1	1.992	1	1	1	1	33.231	
Cudusia chapra	Chapila	0.243	0.014	0.157	0.113	0.276	1	1	1	1	0.147 0	0.811 0	0.481 0	0.131	-0	0.456 0.005	50	1	- 1.360		_
Macrognathus acuteatus	Tara baim	L	t.	0.210	0.054	E	E	1	1	1	0.457	1	0.280	1	0	0.703	1	1	- 0.984		
KITA TITA	Rita	1.963	1	0.185	9	1	9	1	1	1	Ę	1	0.037 0	0.160 1.	1.336 0.0	0.093	1	1	1		_
Helenpheusles fossilis	Shingi	1	1	0.097	t,	10	1.180	1	T	ţ	1	1	1	0	0.112	- 0.685	35 0.143	3 0.151	0.625		_
Bagarius bagarius	Baghair	0.709	0.250	0.756	ł	1	4	1	1	1	1	0.759 1	1.691 0	0.670	1	1					
Salmostoma bacaila	Katari	0.406	1.926	0.563	0.085	0.192	Ŧ	1	0.437	ĩ	1	1	_	0.425 0.	0.194 0.1	0.573 0.080	05	1	1	10 405	_
Puntius chola	Chala puti	1	1	0.025	J	0.227	i.	1	1	I	t	I	1	_		_	1135	v	7 270		_
Esomus danricus	Darkina	0.459	L	0.009	0.003	I	0.409	I	1	1	0.407 0	0.174 0	0.082 0	0.624 0	_	0 311	-				
Notopterus chitala	Chital	1	1	1	1	1	1	1	1	1					_	_		1	1	coc./1	
Labor boga	Bhangan	1	1	0.309	0.029	1.640	1	1	1	1			1	1	1		2 1	1	1		
Pseudeutropius atherinoides	Batasi	1	1.524	0.748	0.105	1	ा	1	1	0.038	1	80.00)	4	2			1	1		
Somileptes gongota	Gharnoia	ł		0 025	1	0.209	1			-	2000	070	6	1	10.0	110.0 001.0	= 1	1		- 16.118	
	and mile			240.0		The second second	Ī														

scasta scasta fra fra fra fra corsula s latius s latius s latius godon mola godon mola incus ana s ana s ana s latius latius s latius s latius s latius s latius s latius latius latius s latius	chela		VAN	1007					Ye	Year: 1993							Year: 1994	994	(Mar'93 - F	Mar'93 - Feb'94)
 23 Sicamunic cascasia 24 Securicula gora 25 Sicamunic cascasia 26 Silonia silondia 20 Labeo rohita 27 Rhinomugil corsula 28 Rhinomugil corsula 29 Crossocheilus latius 20 Labeo rohita 20 Labeo bata 20 Labeo bata 21 Awaous stamineus 21 Lepidocephalus thermalis 	chela	Aue	Sen	Oct N	Nov Dec	Jan	Feb	Mar	Apr	May	Jun	July A	Aug Sop	up Oct	ct Nov	ov Dec	c Jan	Feb	Kg	R
Securicula gora Securicula gora Silonia silondia Labeo rohita Rhinomugil corsula Crossocheilus latius Puntius phutunio Setipinna phasa Amblypharygodon mola Labeo bata Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis										-		-	C	C				1	15.128	0.132
Scurwa go a Silonia silondia Labeo rohita Rhinomugil corsula Crossocheilus latius Puntius phutunio Setipinna phasa Amblypharygodon mola Labeo bata Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis		are r	1 1	1 1					1	1	1	•			10.011	-	1	1	15.009	0.131
Labeo rohita Labeo rohita Rhinomugil corsula Crossocheilus latius Puntius phutunio Setipina phasa Amblypharygodon mola Labeo bata Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis			i i		00					1	1	-	0 138	-	_	1	-	1	13.411	0.117
Labeo rohita Rhinomugil corsula Crossocheilus latius Puntius phutunio Setipinna phasa Amblypharyg odon mola Labeo bata Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis		- 1	1		8									_			0.110		377 61	9010
Rhinomugil corsula Crossocheilus latius Puntius phutunio Setipinna phasa Amblypharygodon mola Labeo bata Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis		-	_	_			1	I.	I.	1	_					1	01:010	I.	C++.71	
Crossocheilus latius Puntius phutunio Setipinna phasa Amblypharygodon mola Labeo bata Awaous stamineus Batasio tengana Puntius gelius Badis badis Badis badis Lepidocephalus thermalis		0.801 0	0.084 0.	0.043 0.123	23 0.436	4.603	1	1	1	0.204 0	0.244 0	0.203 0.	-	-	_	1	1	1	C18.11	0.103
Puntius phutunio Setipina phasa Amblypharygodon mola Labeo bata Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis	ala	ï	- 0	0.136	E	1	1	1	0.038	1	I	- 0	0.048 0.523	23 0.028	28 0.043	43	1	1	10.718	0.093
Setipina phasa Amblypharygodon mola Amblypharygodon mola Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis	ni nuti	1	1	- 0.013	13	9.122	1	1	0.079	0.234 0	0.067 0	0.062	- 0.183	13	1	1	1	0.380	9.102	0.079
Setiprinta prasa Amblyphargodon mola Labeo bata Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis	mad m		c	0.146			(1		21	1	0 000	0.048 0.037	17 0 181		1	1	1	8,809	0.077
Amblypharygodon mola Labeo bata Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis		1	1	101	E.		0		8	0	areas	-	_			5	725 0		020 8	0100
Labeo bata Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis		1	1	0.053	1	1	1	0.203	1	1	0.040	+10.0	-			7 4	10000	I	400.0	2
Awaous stamineus Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis		-	1.940 4.	4.807 1.016	16 0.479	1	1	1	1	1	1	1	- 0.185	85 0.037	37 0.180	80	1	1	7.898	0.069
Batasio tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis		1	1	1	1	1	1	1	1	0.669 0	0.080	1	1	1	1	1	1	1	7.130	0.062
Datasto tengana Puntius gelius Botia dario Badis badis Lepidocephalus thermalis		1	Ņ	38	0			1	1	'n	10	-	0 186 0 156	24	1	-	1	1	6.932	0.060
Punttus getus Botia dario Badis badis Lepidocephalus thermalis			ni Vi		15													-	2367	0.005
Botia dario Badis badis Lepidocephalus thermalis	111	1	1	0.006	1	1	ł	I.	010.1	I	1	010.0	-		_	1	1	1	rrr.0	2.2
Badis badis Lepidocephalus thermalis		0.539	1	0.289 0.139	39 0.144	1	1	1	1	1	1	0.039	- 0.022	22 0.164	64 0.078		1	0.050	6.124	0.053
Lepidocephalus thermalis	koi	1	1	1	1	- 0.064	0.916	1	1	0.056 0	0.010 0	0.005	- 0.030	30	1	1	- 0.961	I	6.113	0.053
community empirication		1	1	- I	1	1	1	1	1	1	0.879 0	0.049	1	1	1	1	1	1	4.367	0.038
-		ij								_	_			191 0	2.2	-			1 158	0.038
rama pama		I	1	0000	1		I S	i.	E G	100.0	271.0			_	_	5	0 127		1 202	10.027
notopterus		1	1	1	1	1	1		I		1	1	++1.0	_	-	2	10110 -		04716	2.0
56 Colisa Ialia Lal K	Lal Khalisha	I	E	L	ĩ	1) F	Ľ	0.350	L	0.008	010.0	1			01	1	1	1	3.55/	0.034
68 Danio devario Chebli	li	1	1	0.196 0.0	0.047	1	1	1	1	1	1	1	0.024 0.050	50 0.113	13	1	1	1	3.264	0.028
9 Aplocheilus panchax Kanpona		0.049	T	t	I.	- 0.409	1	1	1	0.143 (0.070 0	0.053 0	0.092 0.030	30	1	1	1	1	3.211	0.028
Omnok nabda	abda	-	0.157 0	0.152	1	1	ľ	1	Î	1	1	1	ţ	ŧ	T	- 0.292		ł	2.425	0.021
Colica cota		_		1	1	1	1	1	1	1	1	1	- 0.017	17	1	- 0.234	1	1	2.228	0.019
Conjelees menerice	Coni obseile								1	1001	,	1		- 0.067	67	1	1		2 103	0.018
	uiapiia	r i	Ú S				8 0	i i					2 3		;				015 1	0.013
Fundus sarana	1	I	I	1	1		1	I				1	1	1						
VS molitrix	Silver carp	Ŀ	ï	1	1	E E	£.	1	L	_	660.0	L	1	Ľ	i.		1	1	1.204	0.010
203 Tetraodon cutcutia Potka	~	1	1	0.038	1	1	1	1	1	0.029	0.034	I	4	ï	- 0.0	0.009 0.004	1	1	0.674	0.006
181 Puntius terio	Teri punti	1	1.516 10	10.863 1.	1.465	1	1	T	I	1	1	1	т	1	1	1	1	0.070	0.439	0.004
187 Osteobrama cotio cotio Keti		1	1	1	1	3	1	Ì	1	1	1	1	- 0.021	121	- 0.0	0.002	1	1	0.390	0.003
Puntius ouganio	puti	1	1	1	1	1	1	I	1	1	0.048	1	1	1	- 0.6	0.002	1	'	0.262	0.002
Reschulanio rerio		8)	1	1			1	1	1	1	0.029	1	1	1	1	1		0.244	0.002
Chalo anabian	Chala	034								0.016			1	1	1	1			0 160	100.0
		607.0	i i	i.	(il.		210.0	y.	10		ĥ,						i
Chela laubuca	Kash Khaira	I	1	1	1	1	1	1	1	_	ł	1	ī	1	-	0.000	1		0.144	100.0
	isha	L	T.	1	1	1	1	1	1	0.008	0.010	T	1	1	1	1	1	1	0.126	0.001
197 Sisor rhabdophorus Sisor		1	1	1	1	1	1	l	1	Ĩ	T	0.004	Ĩ.	1	1	I.	1	1.	0.034	0.0002
89 Hilsa ilisha		2.862	0.698	ı	1	1	1	1	1	0.003	1	1	1	1	1	1	1		0.027	0.0002
12 Aspidoparia jaya Piali	2	1.194	1	ī	1	T	1	1	t	1	L	I.	1	1	T	1	T.	ь 	1	
147 Ompok bimaculatus Kani	Kani pabda	1	1	0.263	1	1	1	1	1	1	1	1	1	i	1	1	3	3	3	
Pangasius pangasius		0.046	1	1	1	1	1	1	1	1	L	T	1	1	1	1	1		1	
Batasio batasio		0.019	1	I	1	1	1	1	1	1	1	I	1	1	1	1	1		1	
Unidentified		_	0.166	0.025	1		1	1	ţ	1	I	ï	1	t	I	1	1		1	
Raiamas hola		0.073	_	9	1	-	'	1	1	1	1	1	1	1	1	1	1		1	
Machrobrachium styliferus	icha	'	1	-	0003	-	'	1	1	1	1	1	1	1	1	1		-	1	
l iza narcia		1	0.047			1		1	1	1	1	1	1	I	1	1	-		1	
Deflochmohine holitore		-	-	9	2000					6 3	01	1			1					
rsitoinyikinus pantora		1	1	1	170	1		1	l.	0	0	15	li i	1	6	р. П				
Barnius meo	OKSA	C9/-1	1	t	1	1	1	I	1	1	1	i	ı	I	1	I	1			
Channa marunus		1	367.1	1	1		1	1	1	1	1	1	,	1	1	I	1			
955 Amolyceps mangols Magur	II		'	1	- 0.030		-	1	1	1	1	'	1	1	L CT	1				1

Species	Species name			0.00	Year: 1992	92					Ves	Vear: 1003									Total annual catch	ual catc
	Scientific	Bengali	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Ant		Tun	L	L			L	×		63	- Feb'94)
931	Prawn spp.	Prawn	0.542	4	2.217	-	+	10 888	+	+		ſ	-		1	1	-	_	_	_	Ke	8
180	Puntius sophare	Puti	5.544		4.048		-	15 876	_	_	011120	7 100 20		-		_			-	20194	830.385	11.467
122	Mastacembelus armatus	Baral baim	0.247		871.52	57 88 K	151 21	_	_	_		_	-7 6cn:nc	-		_	100	-	1 28.816	7.010	790.775	10.920
209	Wallagu attu	Boal	1	1 061	1	-	-			_	7 0001	1007		1.1 185.0	1.091 5.716	~			1.663	I	623.630	8.612
175	Puntius conchanius	Canchan rwth	1	1 051	0 703	1 063	-	10.20				_		-		-	150	4 7.015	1	8.471	440.521	6.083
137	Mystus vittatus	Tenora	107 11	1021	0110		0000	+0.02			10.4				1003	-	52 9.024	4 10.194	4 3.494	3.353	369.827	5.107
_	Notonterus notonterus	Eali	100.41	the state	6117	0.808	1/.8/1	4.926	2322	6.575 19	19.563 5.	5.391 6.	6.326 2.	2.151 0.8	0.899 4.867	67 3.675	15 10.527	7 2.544	1.379	1.706	346.614	4.787
	Glossondine minne	Do.11	1	1	877.0	1	I	2.588		I	I.	1	I.	1	- 9.974	74 0.818	80	- 4.335	1	0.595	296.642	4.096
-	Ailia coila	Daura	3.159	3.006	1.802	9.250	2:945	8.741	4.933 1	10.410 9	9.129 7.	7.557 8.	8.832 6.	6.039 8.0	8.608 2.400	00 1.731	3.468		9.467	2.572	287.412	3.969
-		Infex.	1991	2.479	1	1	Ļ	I.	ï	1	I	1	- 41.	41.017 3.0	3.039 2.880	80 0.354	7	1	1	1	263.506	3.630
_	Channa punctanus	I aki	4.821	0.603	0.042	0.420	0.187	8.983	1.017	5.290 1	1.985 1.	1.246 0.	0.131 2.	2.997 0.4	0.416 1.505		1 2359	2.141	4 018	0 508	CLC YFC	LUN E
-	Esomus danneus	Darkina	1	1	1	I	I	0.110	0.003	1	1	2.598	- 0	0.119 0.6		-			-		101 316	
_	Mystus bleeken	Golsha tengra	E	106.2	0.237	1	1	ł	-	11.017 2	2.519 1.	1.218 0.	0.105 1.	_		33 12 952	_		_	1 104	141.047	00+°C
	Labeo rohita	Rui	1	15.020	1	1	t	1	ļ	1	1								_	5070 2	DCD.CF2	
_	Cyprinus carpao	Karfu	1	I.	ł	1	t	1	1	1	1	I	1	-	_	_		17 022		000.0	C1+.0/1	101-17
	Lepidocephalus guntea	Gutum	2.469	1.034	0.639	0.523	0.267	6.467	6.194	5.225 8	8.470 1.	1.432	1 647 71	7 058 0.7	FOUL FYCU	1 1 067		_		660.71	160.011	2.420
-	Macrognathus pancalus	Guchi .	1.905	5.503	2.386	0.129	0.886	2.099	1.544	4.742 11			_			-	_			106.0	668.861	2.194
16	Hypophthalmichthys molitrix	x Silver carp	1	l	I	1	1	1			-	_		0.000			9007	17	2.026	2.704	149.560	2.065
48	Orthinus reba	Raik	0.819	0.664	1	1	1						I				_		1	ı	137.507	1.899
51	Clupisoma garua	Ghaura	1 854	1 205	1		6	I	I	1	1	1	-	_			9 0.326	3.233	I.	1.138	116.091	1.603
210	Xenentodon cancila	Kaikta		7361	0.060		1 0000	1			1	0	_	5.165 6.5	6.530 2.011	0.476	. 9	3	1	T	111.133	1.535
_	Amhive and a mole	Mole		0.7.1	000	C01-0	0/5-0	CC1.0	4.109	0.834 2	2.724		0.303	- 0.1	0.150 0.308	8 2.968	8 0.803	8 0.538	0.042	18.411	100.001	1381
-	Orthinus mriada	Mriad	1 000	1	1	1	1	1	1	Ú	1	2.967 0.4	0.613 0.0	0.039 0.1	0.155 3.119	9 0.403	3 0.121	1	1	I	91.300	1.261
	I abov hata	Data	7000	CIC+	1	I	I	í	I	1	1	1	1	t	- 2.422	1.417	-	1	1	3.037	88.990	1.229
	atta costa	Ddia	1	8.192	0.123	1	L	Î.	i.	I.	1	1	1	1	- 2.512	2 0.413	3 0.018		1	Î	71 368	0 086
_	Charle caus	Caus	0.342	0.849	ł	1	I	1	1	1	1	t	I.	- 14.371	. 11	1		-	1	1	67 410	0.031
	estina tatika	Lal chanda	1.654	0.370	0.676	0.155	I	1	1.368	0.145 0.	0.462 0.3	0.398 3.4	3.443 0.7	0.711 0.503	03 1.672	2 0.326	6 0.102	0.030	921.0	0310	CC0-19	330.0
10	Ungata youssoul	Cang tengra	0.211	1.871	0.100	0.092	1	T	I	L	1	t	- 21	2.137 1.223				_	<u></u>	-	176.10	202.0
-	Course rasciarius	Khalisha	1	0.385	I	1.062		0.155	0.235	-	1.278 1.0	1.092 4.1	4.181	- 0.197	_		4 0.728	0.163	4.206	2 438	A ARR	0.790
-	runnus acto	11t put	4.187	1.615	I	T	0.684	I	6.772 8	8.100 3.	3.472 0.1	0.161	- 0.1	0.138 0.0	0.015 0.333		- 11		2.27	3 064	201.00	0.767
	Tatra dan munit	Nama Chanda	7.592	0.074	0.728	0.145	0.281	1	0.602	1	1	1.791 3.2	3.523 0.2	0.237 0.3	0.395 1.031	1 0.416	-			0.630	45.252	0.675
_	Colisa Ialia	I al Khalicha	1	I	1	I	I		1	I	1	- 0	0.205	- 0.179	79 0.003	0.096	5 2.464			0.465	40.712	0.562
-	Gudusia charra	Charvia		022.0	1 000	1	1	0.265	0.008	1	1	1	2.114	- 0.105	05 1.077	7 0.222	2 0.045	1	0.379	1.194	38.750	0.535
	Mystus cavasius	Kahashi		611.0 6 784	610.0	1	1		_)	1		2.080 2.836	_	6 0.130	-	1	I	0.336	37.796	0.522
	Clarias batrachus	Magur)	10/10	+/0'0	+11-0	I	0.823	2.058 (0.668 0.	0.477	- 0.5	0.894	Į.		4 0.154	4 1.524	0.364	1	0.414	36.281	0.501
196 5	Silonia silondia	Shillong	0.016	1 061		0	I.	I.	1	1	1	1	1	- 1.733	33 1.064	4	- 0.049	I	I	I	36.241	0.500
178 F	Puntius phutunio	Phutani witi		100.1		1 0000	I	1	1	t	1.	_	T	I	- 1.339	6	-	1	1	1	34,800	0.481
101	Labeo boga	Bhangan)		5150	0/0.0	1	I	1	1	- 0	6.163 0.0	0.053	1	- 0.825		-	1	1.666	1	29.845	0.412
88 1	Heteropneustes fossilis	Shingi	4 915		166	0.150	I	1	1	_	1	r i	1	1		1 0.080	-	+	I	I.	27.946	0.386
211 0	Colisa labiosus	Khalisha			001.0	601.0	I	1	1		2.859	_		30		-	0.060	1	0.008	1	21.613	0.298
945 0	Cab sp	Katra					1	1	1	0.185	- 0.4	0.482 0.8	0.896 0.392	92 0.209	09 0.657			1	Ĩ	I	21.562	0.298
_	Salmostoma phulo	Fulchela	1	8690	1000	- 100	I	1	1	1						*		1	1	t	20.978	0.290
130 A		Aure	0.106		1-70.0	tenin	1	1	060.2	0	0.477 0.9	0.965 0.231	31 0.096	-		5 0.319	0.027	1	ï	0.961	18.968	0.262
76 E	vacha	Bacha	-	207.0		I	1	E.	ľ	I.	1	î	1	- 0.008	08 0.017	7 0.339	1.043	1	L	1	15.173	0.210
218 B	Barilius evezardi		0	C// 'n	I	I	I	I	1	1	1	Ē	I.	1	- 0.139	9 0.770	1	1	1	1	14.671	0.203
_	Labeo calbasu	Kalhauc	20177	1 061	i i	I	I	1	1	1	1	1	1	1	- 0.512	2	1	1	ï	I	13.314	0.184
	s atherinoides		171-0		1 10	1	1	I	1	I	Ē	t.	- 0.107	01	- 0.031	1 0.618	10.017	0.279	I	t	11.880	0.164
	Gagata cenia	Kanua	110.0	_	6+1-7	l.	L	1	ł	1	- 0.4	0.430	1	1	- 0.347	7 0.084	0.027	1	1	1	10,600	0110
			Ì	3	1		10	12	3			8	10/00/00/00	10000	_		_			1	060.01	1.1.2

8×

Scientific Macrograthus aculeatus Setipinna phasa Macrokrachium rosenbergii Nemacheilus botia Nemacheilus botia Gagata viridescens Puntius gelius Badis badis Ompok pabda Somileptes gongota Mystus tengara Mystus tengara Channa orientalis Anabas testudineus Bagarius bagarius Crossocheilus latius			Year: 1992	7661	Concession of the	1 2282			Ye	Year: 1993							Year: 1994		(Mar'93 -	Mar'93 - Feb'94)
Macrograthus aculeatus Setipiuna phasa Macrobrachium rosenbergii Nemacheilus botia Gagata viridescens Puntius gelius Badis badis Ompok pabda Somileptes gongota Mystus tengara Mystus tengara Mystus tengara Bagarius bagarius Bagarius bagarius	Aug	ig Sep	p Oct	Nov 1:	Dec	Jan	Feb	Mar	Apr	May	Jun	July ,	Aug S	Sep Oct	Nov 1:	/ Dec	c Jan	Feb	Kg	26
Setipiuna phasa Macrobrachium rosenbergii Nemacheilus botia Gagata viridescens Puntius gelius Badis badis Ompok pabda Somileptes gongota Mystus tengara Mystus tengara Mystus tengara Bagarius bagarius Crossocheilus laitus	0.040	0 2.505	5 18.710	0 18.664	1	1	0.283	1	1		2.057	-	0.104	- 0.360	. 0		1	1	9.064	0.125
Macrobrachium rosenbergii Nemacheilus botia Gagata viridescens Puntius gelius Badis badis Ompok pabda Somileptes gongota Mystus tengara Mystus tengara Mystus tengara Bagarius bagarius Bagarius bagarius	0.0	1		1	I	I	I	I	I	ï	1	I	- 0.2	0.267			1	I	6.937	0.096
Nemacheilus botia Gagata viridescens Puntius gelius Badis badis Ompok pabda Somileptes gongota Mystus tengara Mystus tengara Anabas testudineus Bagarius bagarius Crossocheilus laitus		1	1	1	1	0.471	1	1	1	1	1	0.641 0	0.891	1	1		1	J	6.826	0.094
Gagata viridescens Puntius gelius Badis badis Ompok pabda Somileptes gongota Mystus tengara Mystus tengara Anabas testudineus Bagarius bagarius Crossocheilus laitus	0.012	.2 0.258	8 0.380	0	I	1	1	1	0.544	I	1	0.192 0	0.117 0.1	0.145	- 0.070	-	- 0.232	I	6.742	0.093
Puntius gelius Badis badis Ompok pabda Somileptes gongota Mystus tengara Mystus tengara Anabas testudineus Bagarius bagarius Crossocheilus laitus		1	7	1	L	I.	L	E	ţ,	T	E	-	0.067 0.2	0.245	1	E	1	E	6.678	0.092
Badis badis Ompok pabda Somileptes gongota Mystus tengara Channa orientalis Anabas testudineus Bagarius bagarius Crossocheilus laitus	-	J	1	- 0.181	1	4	1	I	1	T	1	1	- 0.2	0.205 0.065	5		1	1	6.254	0.086
Ompok pabda Somileptes gongota Mystus tengara Channa orientalis Anabas testudineus Bagarius bagarius Crossocheilus latius		1	- 0.277	7 0.065	I	0.176	0.618	1.657 (0.477 0	0.323 0	0.138 0	0.015	- 0.6	0.028 0.099	. 6	- 0.081	1 0.328	0.172	6.151	0.085
Somileptes gongota Mystus tengara Channa orientalis Anabas testudineus Bagarius bagarius Crossocheilus latius	bda	I	1	1	1	1	1	1	1	T	1	T	1	1	- 0.425	5 0.119	1	1	4.682	0.065
Mystus tengara Channa orientalis Anabas testudineus Bagarius bagarius Crossocheilus latius		i.	1	1	1	1	0.177	2.079	1	I	1	0.044 0	0.033	- 0.110	0 0.032	~	1	t	4.245	0.059
Channa orientalis Anabas testudineus Bagarius bagarius Crossocheilus latius	gra 4.887	87 0.887	7 0.744	4 0.562	0.514	I.	0.036	0.293	0.126 (0.728 0	0.444	1	- 0.6	0.028 0.139	. 6		1	I	4.189	0.058
Anabas testudineus Bagarius bagarius Crossocheilus latius		1	1	1	1	1	1	1	1	1	1.653	1	1	1	- 0.082		1	1	3.509	0.048
Bagarius bagarius Crossocheilus latius	2.946	46 0.746	8	1	L	1	I	I	I	1	I	1	0.033 0.1	0.108	Ĩ		1	1	2.969	0.041
Crossocheilus latius	0.148	82	1	1	T	1	T	1	I	1	1	1	- 0.0	0.009 0.179	6	-	1	1	2.813	0.039
		1	- 0.275	5	1	1.883	ł	t	Ţ	t	1	0.010 0	0.017 0.0	0.007 0.167	1	·	1	£	2.690	0.037
163 Pisodonophis boro Kharu		1	1	1	1	1	1	1	1	1	1	1	- 0.1	0.100	1	1	1	t	2.602	0.036
33 Chaca chaca Cheka		1	1	1	1	1	1	I	I	I	t	1	1	- 0.162	5	- -	1	1	2.323	0.032
69 Brachydanio rerio Anju		1	1	1	1	1	1	1	1	1	1	1	- 0.(0.084	1	1	1	1	2.186	0.030
28 Botia dario Rani	0.024	24 1.071	1 0.029	6	1	1	1	I	1	1	1	0.010 0	0.076 0.0	0.027 0.050	9	-	1	1	1.826	0.025
25 Batasio tengana Tengra		1	1	1	1	1	1	ł	1	1	Ţ	1	0.016 0.0	0.056	1	1	1	1	1.542	0.021
186 Rita rita Rita		1	- 0.062	5	1	1	ì	0.112	I	ł	ţ	-	_	0.004 0.080	9	-	!	1	1.394	0.019
Aplocheilus panchax		_		1	1	0.110	0.003	1	0.535 (0.208	1	1	0.089	- 0.022	12	1	1	Ľ	1.232	0.017
Colisa sota	11.065	65 0.142	2 0.053	2	1	1	I	1	1		0.409	1	1	- 0.028	20		1	1	1.082	0.015
Danio devario		1	1	I	1	I.	0.144	I	1	006.0	Ļ	1	ţ	- 0.019	6		-	1	0.699	0.010
18 Barilius barna Bani Koksa	3	1	1	1	!	1	I	I	1	1	I	1	- 0.0	0.026	1	-	-	4	0.686	600.0
Securicula gora	la 6.218	18	1	r T	1	ŧ.	j.	ľ	1	1	1	1	- 0.	0.001 0.028	8		1	1	0.439	0.006
14 Awaous stamineus Bele		1	1	1	1	1	1	1	I	1	1	0.103	t	1	1	1	1	1	0.427	0.006
Osteobrama cotio cotio	0.036	36	1	1	1	1	1	1	1	1	1	1	- 0.0	0.000 0.028	8	-	1	1	0.412	0.006
Gonialosa manmina	via	Ē	I	1	1	1	I	I	Î.	I.	T	0.096	L	I	1	1	1	1	0.397	0.005
Salmostoma bacaila		- 2.549	9 0.376	100.004	1	1	1	1	1	1	I	1	0.075	1	1	1	1	1	0.351	0.005
Botia lohachata		1	1	1	1	I	I	Ţ	I	I	ī	1	0.074	1	1	1	1	1	0.348	0.005
Chanda baculis		1	1	1	1	1	1	1	1	I	T	1	- 0	0.013	1	1	1	L.	0.343	0.005
		ī	1	1	1	0.110	0.003	1	0.126	1	ì	1	1	- 0.006	0.011	-	1	1	0.280	0.04
Aspidoparia morar		- 0.654	7	1	1	ł.	1	ţ,	ı	I.	ľ	I	- 0.	0.000 0.006	8	1		1	0.094	0.001
Aorichthys seenghala		1	ī	1	1	ł	1	I	1	1	I	1	0.015	3	1	1	1	1	0.069	0.001
177 Puntius guganio Mola puti		1	1	1	1	L	1	U.	1	0.107	1	1	I.	1	1	1	1	1	0.051	0.001
Corica soborna		1	1	1	1	1	1	1	1	1	1	0.010	1	1	1	1	1	1	0.042	0.001
109 Lepidocephalus berdmorei Puiya		- 1.219	6	1	1	1	I	I.	I	I	I.	1	L	1	Ť.	1	T.	r.	1	ì
Pampus argenteus	la	- 1.330	0	1	1	1	1	1	1	1	1	9	1	1	1	1	1	1	1	1.751
147 Ompok bimaculatus Kani pabda	la l	1	1	1	1	L	0.442	t	1	1	1	£	I.	1	1	1	1	1	1	Č
Puntius terio		- 1.588		_	0 0.744	1	1	ļ	1	1	1	ł	1	1	1	1	1	1	Ľ	
Nandus nandus	5	- 0.296	_	43 0.053	1	T	I	1	Î	I	ī	T	1	1	1	1	1	1	1	Ż
Plotosus canius	gur	1	- 0.147	47	1	1	0.204	T	1	1	1	1	1	1	1	ī	1	1	1	20
Puntius chola		- 0.258	88	1	1	1	1	1	1	Ī	1	1	1	1	1	1	1	1	1	
Rhinomugil corsula			1	1	1	E	1	L	I	ţ.	t.	I.	1	I	1	1	1	1	Ľ	ċ
Machrob. birmanicus			9		-	1	1	1	1	1	1	1	1	1	1	1	1	1	0	
22 Barilius tileo 11ila koksa		-		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Species Name	Lohajang River Site 12: Inside	Pungli River Site 02 Outside	Northern Dhaleswari River Site 06 Outside
Mastacembelus armatus	18.9	6.0	5.7
Prawn spp	10.4	4.5	11.5
Puntius sophore	9.1	4.3	11.5
Mystus vittatus	4.6	3.6	2.3
Puntius conchonius.	4.3	13.7	6.1
Wallagu attu	4.3	3.5	15.7
Macrognathus aculeatus	4.2		
Glossogobius giurus	3.8	6.7	5.9
Notopterus notopterus	2.9		4
Ailia coila	2.6	6.1	3.3
Channa punctatus	2.5	2.9	5.2
Mystus bleekeri	2.5	1.9	
Esomus danricus	2.4		
Macrognathus pancalus	2.2	1.9	4.3
Labeo rohita	2.0		
Lepidocephalus guntea	1.9		1.1
Cyprinus carpio	1.7		
Hypophthalmichthys molitrix	1.2		
Xenentodon cancila	1.2	1.3	
Cirrhinus reba	1.1		
Clupisoma garua	1.1	8.2	5.0
Labeo Calbasu		9.0	
Puntius terio		4.3	
Mystus cavasius		3.2	1.2
Gagata youssoufi		2.3	
Labeo bata		2.0	
Salmostoma phulo		1.9	1.2
Aspidoparia morar		1.5	1.3
Macrobrachium rosenbergii		1.3	
Aorichthys aor		1.1	1.2
Puntius ticto			1.5
Barilius evezardi			1.3

Table 4.8Percentage Contribution to the Total Riverine Catch of Dominant SpeciesInside and Outside the Tangail CPP, August 1992 - February 1994.

FAP 17: Supporting Volume No.1

C

June 1994

had a perennial flow supported a community of more typically riverine species. In the Lohajang very few (11%) of the dominant fish species could be categorised as riverine or migratory. These included only boal, kajuli, ghaura and the major carps rui and raik. Two exotic carps, common and silver carp, were found in the list of dominant species of the Lohajang, but did not appear in the lists from the other two rivers (Table 4.8). In these outside rivers there was a higher proportion of dominant riverine or migratory species, 36% in the Pungli and 28% in the Northern Dhaleswari. The migratory species included boal, which was particularly abundant in the Northern Dhaleswari, the carps rui, kalbaush and *Labeo bata*, and the catfish, ayre. The riverine species comprised kajuli, ghaura, gang tengra, fulchela and piali.

Prawns formed an important component of the total catch, particularly in the Lohajang (10%) and Northern Dhaleswari (12%), as they did in the Bhubaneswar (13%), a seasonal river in the Southwest region.

Although there were differences between the Lohajang River within the CPP and those outside it in terms of the relative importance of certain dominant species and in the proportion of migratory or riverine fish contributing to the list of dominant species, there were similar differences between the two outside rivers themselves. It is therefore difficult to attribute such differences to the fact that the Lohajang flowed through the CPP.

5. CANAL FISHERIES

5.1 Total Catch

5.1.1 Pattern of catch

Distinct seasonal changes in catch from canals inside and outside the CPP were observed (Fig. 5.1). Catches from both remained low between December and July 1993, but rose rapidly through August to a peak in September in canals outside the CPP. The peak inside was reached during October. This period of high catch coincided with the flood drawdown. The only difference between sites inside and outside the CPP was that the period of high catches was extended by one month, up to November, within the CPP (Fig. 5.1). This can be explained, certainly for 1993, by the longer period of water retention in Santosh khal inside the CPP compared with canals outside. The clear seasonal trends observed in the Tangail area are similar to those observed in other regions studied by FAP 17.

5.1.2 Size of catch

Total annual catches per unit length of canal were very similar at sites inside and outside the CPP (Table 5.1). No statistical difference between catches was detected using comparisons of catch rates (see Section 5.2.3).

Table 5.1Comparison of Catch per Unit Length of Canals Inside and Outside the
Tangail CPP.

	Annual Catch March 1993 - Feb 1994 (kg/km)	Total Sampled Catch Aug 1992 - Feb 1994 (kg/km)
Outside	1,042	1,392
Inside	955	1,358
All canals sampled in NCR	1,230	1,702

Catches per unit length of canal inside and outside the CPP were slightly lower than the overall average estimated from all canals sampled in the North Central Region (Table 5.1)

÷

and were considerably lower than catches recorded in three of the four canals sampled in the southwest, where annual catches ranged from 2182 to 3235 kg/km. In comparison with riverine catches from Tangail, canal catches were consistently higher. A similar, though not so clear, trend was observed in the southwest.

Inter-annual changes in catch were clearly seen from plots of monthly catch data (Fig. 5.1) and from total catch estimates made over longer comparable periods between years (Table 5.2).

	Aug 1992 - Feb 1993	Aug 1993 - Feb 1994	Percentage Increase
Inside	465	893	92
Outside	432	960	122
All canals sampled in NCR	472	1,137	140

Table 5.2Comparison of the Total Catch (kg/km) from Canals Inside and Outside
the Tangail CPP Between Different Years.

It is obvious from Table 5.2 that both inside and outside the CPP there were substantial increases in the canal catches of 1993, when floods were greater and more prolonged, over those of 1992, which was a very dry year. This pattern was seen in all canals sampled in the NCR, where an average increase in catch of 140% was recorded (Table 5.2 and Fig. 5.2). This increase was a function of both increased fishing effort by dominant gears and increased catch rates (Fig. 5.3). Of the dominant gears, only ber jal exhibited no increase in effort or catch rate during 1993/94. Doiar traps increased in effort, but their catch rates remained unchanged. The increased catch rates of other gears (lift nets, cast nets and push nets) indicated higher fish densities in the more extensively flooded year of 1993/94.

This confirms the pattern found in rivers (Fig. 4.2) where an increase of 77% was observed. The greater increase in canal catches between years suggests that there may be a differential impact of inter-annual changes in flood regimes on fish populations in different aquatic habitats, with the riverine fish being less affected than canal fisheries. This point will be returned to in section 6.1.2 where floodplain catches are examined.

Notes:

1 - Canals sampled comprised Gala+borobasalia(Site 03), Anahula (Site 07), Santosh & Indrabelta (Site 10), Deojang & Atia (Site 13), Zia (Site 17), Chandrakhali (Site 22), Mailagi (Site 26) and Sakini (Site 30).

2 - Total length of canals sampled = 46.8 Km.

29

Figure 5.3 Inter-annual variation in total monthly fishing effort and catch rate (CPUE) of dominant gears: all sampled canals in NCR, August 1992 - February 1994

5.2 Pattern of Fishing

5.2.1 Catch by gear

A total of 19 different types of gear were recorded being used in canals outside the CPP and 17 gears inside it (Tables 5.3 and 5.4).

In general, the composition of gear types used inside and outside was similar, but there were differences in the relative importance of dominant gears (Table 5.5).

Lift nets predominated to an equal extent in and out. The dharma jal was the most important type of lift net used on sites outside the CPP, capturing 39% of the catch, whereas inside the CPP dharma jal and veshal captured an equal share (19.5% each) of the total catch (Table 5.5)

Thella jal and ber jal were both more important outside, while small-scale gears such as sip, doiar and current jal took more of the catch inside the CPP. Katha were important only inside, particularly on Santosh khal, an important drainage canal within the CPP which retained water longer than most others and therefore could support a dry season katha fishery.

5.2.2 Catch by gear by month

On the canals outside the CPP, peak catches during August to October 1992 were taken mainly by lift nets (dharma jal and veshal), thella jal and ber jal (Fig. 5.4). The maximum catch recorded during September principally resulted from thella jal (48%) and dharma jal (20%) capturing prawns, puti (*P.sophore*) and the major carp, mrigal. The following year peak catches (seen again in September despite the larger flooding), were due to dharma jal (51%), jhaki jal (16%) and thella jal (11%) capturing mainly major carps, catla, rui and mrigal.

These species also dominated the high August catches of dharma jal and ber jal. The high catches during the flood drawdown in both years were a function of both increased fishing effort by the dominant gears (Fig. 5.5) and also increased catch rates of these same gears (Fig. 5.6).

FAP 17: Supporting Volume No.1

Figure 5.4 Percentage of the total monthly catch taken by dominant gears: canals outside the Tangail CPP

yD

Figure 5.6 Catch rates (Scaled CPUE) of dominant gears: canals outside the Tangail CPP

Note: Scaled CPUE are values of CPUE expressed as a proportion (decimal) of the maximum monthly value recorded.

																				Total annual catch	alcatc
			Year: 1992	76					Ye	Year. 1993							7	Year: 1994		Mar 93 - Feb 94)	-cb 94
Code Gear name(Bengali)	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Qct	Nov	Dec	Jan	Feb	Kg	%
105 Dharma jal	8.334	8.334 19.865 58.459 68.931	58.459	68.931	59.680	7.038	1	I.	1	1	50.341 1	17.315 5	55.071 5	51.038 3.	33.163 30	36.512 30	30.583 10	18.855	1	6456.186	44.073
255 Thella jal	7.024	7.024 47.634	5.838	2.831	6.348	8.455	47.129	3.781 100.000		54.177	6.251	3.756	2.535 1	10.620 3	32.919	5.330 31	31.471 1	14.091 68	68.088	2071.593	14.142
164 Jhaki jal	5.014	7.186	9.206		27.494 33.972	18.627	I	I.	-	19.709 2	21.485 1	12.509	5.814 1	16.360 1	10.381 10	16.781 (0.992 2	29.932 31	31.912	1806.551	12.332
45 Ber jal	63.846	13.218	3.761	I.	Ē	Ľ	ī	L	I	Ĩ,	<u>е</u>	33.330 2	23.381	7.080	I	I	ļ	L	1	1435.120	797.97
307 Hand fishing	l	T	1	I	Ē	18.511	48.907	42.669	- 1	19.709	I	I	1	0.397	8.367 20	20.293 0	6.409	ī	I	502.119	3.428
30 Sip/Barshi	2.263	1.576	8.380	0.744	I	1.661	T	ļ	1	6.405 1	14.895	1.444	1.398	1.797	5.484	6.018 12	12.401 2	21.832	1	463.730	3.166
88 Current jal	3.377	0.243	3.742	T	1	I	1	I	I	I	3.853	7.691	5.152	0.355	4.725	1	ı	I	1	427.730	2.920
266 Veshal	1	2.348	1	I	Ĩ	1	Ĩ	I	I	I	1	1.048	1.273	5.908	T	1	I	I	I	392.064	2.676
202 Moi jal	ł	1	1	L	T	1	I	I	t	I	I	I	1.237	3.675	0.966	1	11.868	I	I	301.770	2.060
95 Doiar trap	6.952	6.348	7.500	Ľ	I	1	I	Ţ	I	I	1	5.287	1.025	1.083	2.182	8.394	1	t	1	271.084	1.851
89 Dhor jal	1.735	1.583	0.723	I.	1	I	I	Ţ	E	1	3.175 1	13.653	1	0.753	1.029	1.615 (6.277	1	I	216.651	1.479
272 Daun	1.454	1	Ĩ	1	I	Ţ	I	T	L	ľ	I	1.385	2.703	0.085	0.262	I	T	I.	I	112.597	0.769
271 Suti jal	1	T	1	1	I	I.	I	T	I	I	I	1.262	0.334	0.800	I,	L	T	I	I	67.443	0.460
175 Kathi jal/Dolna	1	l	2.392	1	ł	I.	I	53.550	I.	I	I	ï	I	1	0.295	I	I	1	I	53.703	0.367
270 Katha jal	1	ť	E	L	Ĺ	45.459	I	I,	E	Ť	I	ľ	I	Ĩ	T	5.057	-	15.289	I	45.980	0.314
278 Nol barsi	ŀ	1	I	I	I	I	I	l	I	I	1	1.321	0.079	I	I	1	I	I	Ĩ	13.341	0.091
291 Urani	ļ	I	1	L	1	I	ī	ì	I.	I	I	I	I	1	0.228	t	I	ł	Î	8.239	0.056
123 Koi jal	1	I	1	I.	Ĩ	I	ĩ	Ţ	I	I	ł	1	1	0.050	Ĩ	1	í	1	1	2.925	0.020
314 Boat katha	1	1	Ł	I	1	0.248	3.965	1	1	I	1	1	I	1	I	1	1	1	ī	1	
	18	S	1001	2		~	1001				~~~										

Gear			Year: 1992	8						V	5					·····			Total annual catch	al catch
{										Cal . 17	5						Year: 1994	94	(Mar'93 - Feb'94)	Feb'94
Code Gear name (Bengali)	Aug	Sep	0œ	16.6	Dec	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Kg	8
266 Veshal	4.228	4.228 19.116	6.931	2.575	I	Ĺ	I	I	L	20.745	6.842	4.904	20.867	49.854	2.072	1	1	1	2259.376	25.551
105 Dharma jal	7.269	43.849	7.269 43.849 25.059 10.218	10.218	7.533	1	I	1	34.785	47.156	23.225	29.376	47.923	10.759	6.395	0.635	I	1	- 1701.052	19.237
164 Jhaki jal	10.650		9.296 20.970	11.468 28.982		13.144	33.179	63.647	1	1.970	10.040	4.442	0.322	16.994			31.813	29.817	29.817 1472.028	16.647
95 Doiar trap	14.368	6.044	0.145	1	I	1	1.452	1	I	6.864	22.014	29.209	20.625	9.763	9.299			7.002	7.002 1117.024	12.632
270 Katha	I	1	1	1	46.836	1	45.699	1	1	I	I	I	I	1			41.789	62.342	820.796	9.282
255 Thella jal	19.486	2.021	10.879	10.879 15.242 11.642 34.056	11.642	34.056	7.755	28.248	29.259	8.645	6.687	13.535	7.130	3.057			26.398	0.758	523.842	5.924
291 Urani	1	1	1	1	1	T	I	I	ï	ţ	1	1	I	0.972	15.659	1	1	1	286.774	3.243
45 Ber jal	42.672	17.058	5.340	I	1	t	I	L	I	I	I	I	1	6.286	J	I	I	1	219.022	2.477
30 Sip	1.254	2.617		8.616 23.639	5.007 10.986	10.986	1	1	35.956	14.620	4.614	17.300	3.022	0.177	1.779	1	1	Ţ	211.811	2.395
307 Hand fishing	1	1	1	E	E	1	11.521	6.675	1	1	1	1	1	1	4.142	1	I	I	86.678	0.980
271 Suti jal	0.073	t	L	1	I	1	1	1	1	1	26.578	I	I	1		I	I	I	51 646	0 58.0
88 Current jal	I	1	22.060 36.858	36.858	1	1	1	1	1	1	I	0.473	0 112	1 222	0.215	1		0000	220.766	
202 Moi jal	1	I	1	ł	1	1	1	1	1	I	I			0.016	1440	1	1	0000	100.00	50C'N
170 Juti	1	1	1	I	1	1	1	1	1			I.	í.	016.0	1 00 0	I	I	I	51.904	0.361
278 Nol barsi	1	1	1	1	I	0	1	É I	1	I	I	1 0.00	I	1.	C85.0	I	1	Ì	6.214	0.070
314 Boat Katha	0		ij	3	R A	8	100.0	1	I	I	I	0.810	I	I	1	I	1	Ļ	3.348	0.038
A Tubul			I	1	I	I	0.394	I	I	1	I	1	1	I	I	1	I.	I	0.639	0.007
290 1 UKT	1		1	1	- 10	41.815	1	1.430	1	I	1	1	1	T	1	I	1	I	0.240	0.003
	100	100	100	100	100	100	100	1001	1001	1001	1001	100	100	SI.			001			

Gear Name	Outside	Inside	All Canals Sampled in NCR
Dharma jal	38.8	19.5	14
Thella jal	17.4	7.9	8
Ber jal	14.3	5.0	6
Jhaki jal	11.2	15.5	11
Doiar trap	3.1	9.5	7
Sip	3.1	5.8	- 3
Current jal	2.6	7.0	2
Veshal		19.5	30
Katha		6.7	5

Table 5.5Percentage of Total Catch Taken by Dominant Gears Used on CanalsInside and Outside the Tangail CPP, August 1992 - February 1994.

Note: Dominant gears are those gears taking between them at least 90% of the total catch inside or outside the CPP.

Within the CPP, peak catches of 1992 were largely due to current jal and sip catching puti (*P. sophore*) and taki respectively. Peak catches in October 1993 resulted from lift nets (Fig. 5.7) taking *P. sophore*, bailla, kaika and the major carps rui and catla. Peak catches in both years were due to increased fishing effort (Fig. 5.8) and increased catch rates (Fig. 5.9) of the dominant gears.

5.2.3 Statistical comparison of catch rates

At the inside sites for this habitat type, over 90% of the total catch per kilometre for the period March 1993 to February 1994, excluding katha and kua, was taken by 6 gears. At the outside sites, over 90% of the total catch per kilometre over the same period was taken by 7 gears. In all, 10 gears were used in the statistical analysis of catch rates, as listed in Table 5.6. Three gears appeared in both lists: dharma jal, thella jal and jhaki jal. Dharma jal took 21% of the catch at the inside sites, and 44% of the catch at the outside sites. A total of 569 individual catch rate observations were used in this analysis.

FAP 17: Supporting Volume No.1

Figure 5.7 Percentage of the total monthly catch taken by dominant gears: canals inside the Tangail CPP

Figure 5.8 Total monthly fishing effort of dominant gears: canals inside the Tangail CPP

1

y^y

Figure 5.9 Catch rates (Scaled CPUE) of dominant gears: canals inside the Tangail CPP

Note: Scaled CPUE are values of CPUE expressed as a proportion (decimal) of the maximum monthly value recorded.

Statistical Comparison of Catches Per Unit Area Inside and Outside the Tangail CPP. March 1993 - Fehruary 1994. Table 5.6

уX

									SEASON	Z									
		M	March - April			May - June			July - Sept			Oct - Nov			Dec - Feb				
			-			7			8						5			Total	
	J	obe	Pred	Part	obs.	PL.	Mo	Obs	Pred	Pred	Obs	Pred	Pred	Obs.	Pred	PLA INO	Obs	Pres	Part out
OUTSIDE	105 SL	0.0	0.0		5.0	45		350.1	300.2		114.9	98.0		3.7	3.6		473.7	406.4	
	255 PU	4.2	4.2		5.3	5.7		43.9	69.1		85.6	88.8		4.7	4.4		143.6	172.1	
	164 CA	0.0	0.0		3.4	3.4		78.2	78.3		30.8	44.4		2.2	2.9		114.7	129.0	
	45 SE	0.0	0.0		0.0	0.0		102.1	102.1		0.0	0.0		0.0	0.0		102.1	102.1	
	307 HA	14.5	14.5		2.6	2.6		0.0	0.0		37.1	37.1		0.8	0.8		54.9	54.9	
	30 HO	0.0	0.0		2.1	2.1		9.0	9.0		17.0	17.0		2.6	2.6		30.8	30.8	
	88 SG	0.0	0.0		2.7	2.7		16.2	16.2		9.4	9.4		0.0	0.0		28.3	28.3	
	266 SL	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
	95 PT	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
	291 OT	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
TOTAL STD ERR		18.6	18.6 5.8		21.1	21.0		599.4	574.9		294.8	294.8		14.0	142		948.0	923.5	
INSIDE	105 SL	0.0	0.0	0.0	14.3	14.8	13.0	107.8	129.3	188.0	54.1	73.4	57.2	25.7	87.4	63.8	201.8	304.9	322.0
	255 PU	2.1	2.1	1.1	2.7	2.5	2.2	26.5	18.6	27.0	24.6	22.7	17.71	33.8	36.1	26.4	89.6	81.9	74.4
	164 CA	7.0	7.0	0.0	0.4	0.6	0.5	4.2	4.2	6.1	115.0	89.0	69.4	62.8	59.6	43.5	189.5	160.4	119.5
1	45 SE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	307 HA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0'0	0.0	0.0
	30 HO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	88 SG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	266 SL	0.0	0.0	0.0	3.9	3.9	3.4	37.9	37.9	55.1	201.6	97102	157.1	0.0	0.0	0.0	243.4	243.4	215.6
	95 PT	0.3	0.3	0.1	1.3	. 61	1.1	34.3	34.3	49.9	60.4	60.4	1.72	27.4	27.4	20.02	123.7	123.7	118.3
	291 OT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL STD ERR		1.4	2.4	113	2.4	23.0	20.2	210.8	542	326.2	455.7	41.2	348.5	149.8	210.5	153.7	848.0	914.4	849.8

56

Comparison of the seasonally pooled catch rates by gear between inside and outside sites indicated that the main assumptions of statistical analysis were reasonably satisfied, with acceptable agreement between observed and predicted catch rates. Parameter estimates measuring the seasonal differences in underlying density of fish at the inside and outside sites indicated higher densities at the inside sites in seasons 1, 2, 4 and 5, and lower densities in season 3. Only the difference in season 3 was statistically significant when judged individually. Taken together, the seasonal densities at inside and outside sites are significantly different, but the statistical test was only marginally significant (p=0.03).

Total annual catches per kilometre by the 10 gears were quite similar at the inside and outside sites (Table 5.6). Estimates of standardised effort per kilometre, summed across all 10 gears and seasons, were derived from the statistical analysis. For the inside sites, the total standardised effort (measured in dharma jal hours per kilometre) was 8,970, compared with 10,408 for the outside sites.

To make allowance for this small difference in effort, estimates of the total annual catch per kilometre at inside sites, based on the observed effort pattern by gear at the inside sites, were calculated using both the predicted densities at inside and outside sites. The results are shown in Table 5.6. The predicted total catch per kilometre using the inside densities was 914.4 kg per kilometre (s.e. 97.2), while the corresponding figure predicted using the outside densities was 849.8 kg per kilometre (s.e. 77.3). This comparison suggests that the inside sites may have been slightly more productive than the outside sites, but the difference between the predicted values is nowhere near statistically significant.

5.3 Species Composition and Biodiversity

A R. P. O. LIBRARY.

5.3.1 Species richness

A total of 90 species of fish was found in canals outside the CPP and 84 species in canals inside it. The numbers are comparable with those found in the three rivers over the same sampling period (79 - 89 species) but are considerably higher than the number of species found in canals in some parts of the Southwest Region, where total numbers ranged from 42 to 55. The regional difference is partly due to the shorter sampling period (13 months) in the southwest. If the same period is used on the North Central data, then species numbers recorded outside and inside the CPP decrease to 77 and 73 respectively; still considerably higher than in the southwest.

FAP 17: Supporting Volume No.1

Seasonal changes in species number were similar inside and outside the CPP (Fig. 5.10) and followed the same trend as that in rivers (Fig. 4.11), with numbers rising during the flood season to peak at the time of the recession as fish leave the floodplains, followed by a decrease again during the winter.

5.3.2 Species composition

Percentage monthly catches by species are provided in Tables 5.7 and 5.8 for sites outside and inside the CPP respectively. Those species dominating the total catches for the period August 1992 to February 1994 are listed in Table 5.9. The composition of dominant species was very similar inside and outside the CPP, differing only in the relative contributions made by certain species.

It is clear from Table 5.9 that the greatest difference between sites was in the reduction of the abundance of major carps inside the CPP (6% of total catch) compared with sites outside it (30%). This reduction was most marked in 1993, when carp were generally more abundant. The reduction can be partly explained by the differences in timing of the first flow of river waters into beel and floodplains inside and outside the CPP and the effect of this on the supply of carp hatchlings delivered by these waters. Some sites outside the CPP (e.g. site 19) received waters from the Jamuna River in late May, but most first received river waters in mid-June. By contrast, within the CPP, Lohajang River waters did not flow into beel/floodplains until late June or early July. Since carp hatchlings first appeared in mid-May (Supporting Volume 11), the delay in reaching the floodplain inside the CPP resulted in a significantly lower recruitment which would be expected to result in lower catches later in the year.

A prominent feature of the composition of the dominant species list for all sites is the importance of typical floodplain resident species. This same characteristic was noted in rivers around Tangail. Of the species listed in Table 5.9 only the four major carps, catla, rui, mrigel and raik are migratory, while the minnow, fulchela is more typical of rivers. The remainder are species capable of remaining on the floodplain throughout the year and can therefore be categorised as floodplain residents, even though they also inhabit canals and rivers.

L 1

Antific Mandi Antific	s	Species name		2	Year: 1992	2					í	Year: 1993							;		To	Total anuual catch	catch
Contaction Contact		Bengali	Aug	Sep		-		Jan	Feb	Mar		Mav	Jun	Inly	Alle	Can		New	-	ar: 1994	-	r'93 - Fe	(16.9
Thereality in the second of the second	_	Catla	4.533	4.170	1	1	1	1	1	1	1	1	0.471	12.903	14.876	77 007	1 447	NON	Dec	Jan		KE	25
The state st	_	Rui	1.286	2.164	0.566	1	1	1	1	I	1	1	0.225	12.966	11.039	22.040	009 5	()	1	1	- 19	10.267	13.453
International Parto 233 Mail Cold	_	Puti	5.631	9.026	38.836	11.00		26.461	37.149	3.395	1	16.452	29.249	11.722	6.765	2.924	23.586	48 664				000.01	13.28
The state st		Prawn	2.339	38.446	0.697		1	7.672	8.813	0.231	12.703	18.772	1.088	10.594	3.330	11.149	20.326	8.697	_			B17.00	12.04
111	_	Mrigel	6.992	7.073	7.500	1	1	1	1	1	1	1	0.165	1.902	24.379	8.117	1	1		***		030.00	00.11
MathematicationMath	_		1.398	2.568	10.466		6.118	19.783	15.927	10.403	14.242	1	5.293	3.614	1.934	3.194	10.162	13.740	_	_	-	0.07.0	10.0
ononservice Material			2.434	0.761	2.943		4.925	0.487	ľ	17.187	16.224	33.151	2.894	4.701	1.589	4.983	4.508	2.266				140 40	18.0
The contract manual and	_	Builla	3.702	0.974	1.087		0.656	0.835	7.456	1	1	4.327	2.201	5.609	5.243	3.063	4.252	1.567	8.891			UOF EL	8.4
Contractione Contractione<	1	Canchan puti	1	0.007	1.517		26.949	1.809	5.875	0.309	ï	20.349	9.815	6.912	2.069	1.863	7.645	2.534	3.604			DK#-C	16.0
Matrix Matrix<			0.903	0.447	0.618		T	1	I	1	1	1	1	0.218	1.222	4.917	1.221	0.004	1		8.8		2000
Mathem partial p			0.731	2.377	2.663		4,486	4.339	1.199	8.520	15.833	1.179	1.090	1.933	0.272	0.893	4.159	4.537	7.018		2010	746.0	707
Max matrix Targe 131 231 233 <t< td=""><td>-</td><td>Khalisha</td><td>0.552</td><td>2.414</td><td>1.986</td><td></td><td>Ľ</td><td>15.136</td><td>5.823</td><td>4.097</td><td>6.399</td><td>1</td><td>2.985</td><td>0.794</td><td>0.712</td><td>1.152</td><td>3.642</td><td>2.652</td><td>177.4</td><td></td><td>20121</td><td>06C.0</td><td>16-1</td></t<>	-	Khalisha	0.552	2.414	1.986		Ľ	15.136	5.823	4.097	6.399	1	2.985	0.794	0.712	1.152	3.642	2.652	177.4		20121	06C.0	16-1
I construction Difficult Construction Constructin Construction Construction <td></td> <td>Tengra</td> <td>1.855</td> <td>2.601</td> <td>8.378</td> <td></td> <td>13.151</td> <td>13.811</td> <td>3</td> <td>2.225</td> <td>1</td> <td>1</td> <td>8.103</td> <td>2.116</td> <td>1.034</td> <td>0.792</td> <td>2.829</td> <td>0.017</td> <td></td> <td>-</td> <td></td> <td>0/7-1</td> <td>1.62</td>		Tengra	1.855	2.601	8.378		13.151	13.811	3	2.225	1	1	8.103	2.116	1.034	0.792	2.829	0.017		-		0/7-1	1.62
Thereace		Kalbaus	0.290	0.313	1	1	1	1	1	ſ	1	1	1	0.240	2.027	1 823	1	0.006	_		2005	0.404	1.01
I manuscut	-	Darkina	7.105	1.416	2.440		Ĩ	1	5.125	48.869	5.341	4.921	0.757	4.903	0.365	0 356	1 080	0.175			_	2.870	1.180
International Internad International International		Tit puti	1.686	0.706	1.092	0.056	1.421	1	1	1	2.148	1	1.567	0.697	0.800	802.0	0.170	0000	700.0			0.825	1.13.
Antonentionum Marchana			1.228	0.435	1.146	0.388	T	0.094	3.412	ī	1	1	1.397	1.087	1.300	0.610	1 310	275	2120	0361	ц 1	0./0	1.09
I containenten Manuellanten Manuellante			0.572	0.034	1	1	4	1	1	1	1	1	3.318	0.057	0.251	1.425	0.847	0140		ACC.1	1	001.0	66.0
Materior Fundame <		Nama Chanda	0.670	0.181	0.330	0.479	4	0.680	1	1	1	1	0.228	2.832	1.968	0.357	0.421	0.396	0.807		1 1	769.0	0.96.0
Matter international mat		Fulchela	7.566	3.928	0.091	0.027	1	1	1	4	1	1	0.541	2.824	1.748	0.397	0.305	1	0.897	1		100 3	0.780
Manufalingeree and any and any and any and any any and any any and any any and any			0.343	0.898	0.176	0.594	6.373	1	E	I	I	Ļ	0.338	0.820	0.572	0.473	1.207	0.870	2.172	2.920		7.556	PLL 0
constant Any and an			/10.4	0.802	1 00 0	1	r	0.130	1	1	8.011	1	6.653	2.143	1.325	0.250	0.379	1	0.633	1	1	3.800	0.709
Answerstratinger Event Distribution Distribution <td></td> <td>I al Khalicha</td> <td>היה</td> <td>10.014</td> <td>500°0</td> <td>1 2000</td> <td>1</td> <td>I</td> <td>1</td> <td>ţ</td> <td>I.</td> <td>I.</td> <td>I.</td> <td>0.123</td> <td>2.049</td> <td>0.222</td> <td>0.054</td> <td>ł</td> <td>1</td> <td>1</td> <td>80</td> <td>1.727</td> <td>0.558</td>		I al Khalicha	היה	10.014	500°0	1 2000	1	I	1	ţ	I.	I.	I.	0.123	2.049	0.222	0.054	ł	1	1	80	1.727	0.558
Phypophalanichtyknaunic		Koi	0.114	0.380	010.1	3100	1	i S	1 55	1	l.	1	5.653	0+1-0	0.314	0.038	1.256	0.540		0.489	-	5.555	0.516
Image: section in the sectio			1	'	1	1	1	1	KOC. 1	1	1	1	1	0.215	1.520	0.207	0.187	1	0.952	4	-	0.491	0.481
Punction between Chapter 0.11 0.11 0.001		_	0.070	0.106	0.010	1	1	1	1	1	1	1	1	1 0000	1.963	1	1	1	ſ	L	1	3.113	0.431
Puninkepeting Description - 0.02 - 0.03 0.006 0.036		Chapila	0.174	0.103	0.505	į	1	1	1	1		1 1	2/110	704.0	2221	0.093	1 000 0	0.002	1	1	1	5.403	0.378
		Phutani puti	1	0.027	1	1	1	I	I	1	1	1	1190	0.086	10.385	050.0	0.026	1 0036	_	1	1	197.	0.365
Manusculatura Tara baim 0.31 0.33 0.34 0.218 0.34 0.218 0.34 0.33 0.34 0.33 0.34 0.33 0.34 0.33 0.34 0.33 0.34 <th0.34< th=""> 0.34 0.34<!--</td--><td></td><td></td><td>I</td><td>1</td><td>1.737</td><td>1</td><td>1</td><td>2.815</td><td>÷1</td><td>1</td><td>1</td><td>1</td><td>0.245</td><td>1.440</td><td>0.000</td><td>0.110</td><td>0 2450</td><td>00000</td><td>1</td><td>44C</td><td>1</td><td>808</td><td>0.354</td></th0.34<>			I	1	1.737	1	1	2.815	÷1	1	1	1	0.245	1.440	0.000	0.110	0 2450	00000	1	44C	1	808	0.354
Collis Inboars Khalika -	_		0.573	0.526	3.347	0.218	Ľ	1	t	î	17.981	1	2.102	0.751	0.528	0.083	700.0	1	1	200	1	_	0.345
Mysuusagenanti Mysuusagenanti Bijoritargen Bajoritargen Bijoritargen J.073 0.043		Khalisha	I	1	1	ı	1	1	1	1	1	1	5.048	0.805	0.125	0.138	0.401	1	1	1 1	1 1		005.0
Reprint subprint Reprint subprint Reprint subprint Reprint subprint Subprint supprint Subprint suprin supprint Subprin supprint	_	Boal	2.075	0.482	1	1	1	ł	I.	I	1	ĩ	I	0.085	0.411	0.489	9	1	Ţ	1	1	_	082.0
Laborationalizationalerererepate deride alla decidizationalizationalizationalizationaliz		pastal tengra	14.076	4.075	0.003	1.070	1.801	0.187	1	I	1	1	0.163	0.187	0.402	0.039	0.574	1	1	1	1		1.258
Gagana youssouff Gang reagra 0.051 0.13 0.430 0.131 0.430 0.131 0.430 0.131 0.430 0.131 0.435 0.431 0.435 0.431 0.435 0.431 0.435 0.431 0.435 0.431 0.432 0.131 0.432 0.131 0.432 0.131 0.432 0.133 0.432 0.133 0.432 0.133 0.432 0.133 0.432 0.133 0.432 0.133 0.432 0.133 0.432 0.133 0.432 0.133 0.432 0.133 0.432 0.133 0.432 0.133 0.432 0.433 0.133 0.133 0.433 0.134 0.235 0.134 0.432 0.441 1.741 2.346 Reactionare nearine Kanéri 0.033 0.343 0.403 0.235 0.234 0.035 0.234 0.432 0.431 2.4563 Reactionare nearine Kanéri 0.033 0.347 0.431 0.235 0.234 0.035 0.234<		Rara	001.0	/10.0		1 000 0	1	1	1	ſ	1	1	1	ł	1	0.617	1	1	1	1	1		0.244
Salimostoma bacalla Kani 0.039 0.518 0.013 0.111 - - 0 - 0 - 0 - 0 31.061 Rani Shing 0.173 0.131 - - - 0 0 0 0 0 - - 0 - 0 31.061 Rani 0.002 0.130 - 0.131 1.131 4.754 - - 0.123 0.078 - - 0 - 0.336 Boilid anio Kanis 0.002 0.130 0.313 0.437 0.436 0.325 0.036 0.325 0.336 0.336 Mapir koi - 0.003 0.336 <		Gang tenera	0.054	0.057	100.4	007°0	1	1	1	I	1	1	I	1	1	0.615	î.	ı	1	1	-		0.243
Heteropresses (sosiii) Shing 0.472 0.129 1.456 - 1.610 1.713 4.754 - - 0.722 0.078 - - - 3.061 Boin dario Rari 0.062 0.130 - 0.243 0.472 0.139 - 0.472 2.344 33.023 Boin dario Rari 0.003 0.130 - 0.243 0.407 - - - - - - 2.344 33.023 Mysus avaius Kabashi 0.001 0.130 0.363 0.407 - - - 0.031 0.035 0.472 2.344 33.023 Mysus avaius Kabana 0.000 0.130 0.343 0.363 0.363 0.363 0.363 0.363 0.473 - 2.4601 Baraio tegen Tegen 0.361 0.363 0.363 0.363 0.363 0.347 - - 16.373 Baraio tegen Avea 0	_	Katari	0.039	0.518	0.075	1510			1	1	I	1	0.241	0.695	0.529	0.155	0.047	1	1	1	1	122.0	0.231
Boili dario Raní 0.062 0.150 - - - - - - 0.000 0.025 - 0.472 2.344 33.023 Boili dario Raní 0.062 0.150 - 0 - 0 - 0 - 0 - 0 - 2 2 3.023 Mystus cavasius Kabasi - 0.033 0.036 0 - - - 0 - 2 - 2 - 2 - - 2 - 2 - 2 - 2 - 2 2 2 2 2 2 2 2 2 2 2		Shingi	0.472	0.129	1.456	1	1	1.610	1.713	4 764	1	1 1	1 031	87/-0	0.722	0.078	1 44	1	1				0.230
Mystus centairs Kabashi - 0.013 0.407 - 0.407 - 0.407 - 2 <th2< th=""> 2 2</th2<>		Rani	0.062	0.150	1	1	1	1	1	1	Ĩ	1	-	806.0	0.006	1000	000.0	0.028	1	ri .			0.225
Badis badis Napit koi - 0.003 0.008 - - 0.0164 0.0361 0.016 - 0.449 1.074 - 2.0.361 Crossocheius larius Kaabara 0.001 0.130 0.3545 - - 0.064 0.361 0.036 - - 2.4.601 - 2.4.601 Crossocheius larius Kaabara 0.001 0.130 0.3545 - - 0.064 0.361 0.036 - - 2.4.601 Baragio tengraa Tengra - - - - 0 0.015 0.135 - - 2.4.601 Arritic trap 0.353 0.132 - - - - - - - 2.4.601 Baragio tengraa Tengra 0.353 0.132 - - - 0.411 - - 2.4.601 Aspielo boga Dist Dist Dist Dist <thdist< th=""> Dist <thdist< th=""> <th< td=""><td>_</td><td>Kabashi</td><td>1</td><td>0.073</td><td>1</td><td>0.243</td><td>0.407</td><td>I</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0.038</td><td>0 380</td><td>500.0</td><td>200.0</td><td>1</td><td>1</td><td>i i</td><td>1</td><td></td><td>1.188</td></th<></thdist<></thdist<>	_	Kabashi	1	0.073	1	0.243	0.407	I	1	1	1	1	1	0.038	0 380	500.0	200.0	1	1	i i	1		1.188
Crossochelus lattus Kalabata 0.01 0.130 0.545 - 16.572 - - - 16.572 - - 16.572 - - 16.572 - - 16.572 - - 16.572 - - 16.572 - - 16.572 - - 16.572 - 16.572 - 16.572 - 16.572 -	_	Napit koi	1	0.003	0.008	1	1	1	t	ľ	0.919	1	0.064	0.361	0.081	0.287	0016	1 1		1 10	1		0.180
Maraso tengina Tenjin - - - - - 0.001 0.285 - 1<		Kalabata	0.001	0.130	0.545	I.	I.	1	1	1	3	ï	1	1	0.082	0.247	1	1			1 1		1.100
Annermanys aur. Ayre 0.133 0.131 0.471 - - 1 1.336 Apple obga Bhangan - 0.013 - - - - - - - 1.336 Apple obga Bhangan - 0.013 - - - - 1.1340 Aspidopetin morar Morari - 0.246 0.024 - - - - 1.1336 Aspidopetin morar Morari - 0.246 0.020 - - - 1.1336 Aspidopetin morar Morari - 0.137 0.109 - - - 14.269 Aspidopetin morar Morari - - - - - - 14.269 Aspidopetin morar Morari - - - - - - - - - - - - - - - - - - -	_	I en gra	1	1	1	1	1	9	1	1	L	E	I	1	0.001	0.285	1	1	i	i	1		ELL
Dirational Diration Dirationa Dirationa<	_	Ayre Bhana	6600	0.152	Ľ	I.	t	1	1	1	1	I	1	0.154	0.471	1	I	1	ĩ	1	- 16		112
Carriars barrachus Magur - 14.269 - 0.400 0.020 - - - 14.269 - 0.137 0.148 - - - 14.269 - - 10.384 - 10.384 - - 10.364 - - 10.384 - 10.384 - - 10.384 - - 10.384 - 10.384 - - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10.384 - 10		Morari	1 1	450.0	1 00	ı	1	1	1	1	1	1	T	1	0.353	0.069	1	1	ł	1	- 15		.105
Macrobrachum rosenbergii Golda - - - - - - - - - - - - 1.373 0.148 - - - 1.2984 Macrobrachum rosenbergii Golda - - - - 1.177 - - - - - - 1.384 Nemachellus botin Balicham 0.179 0.003 - - - 1 - 1 - - - 10.588 Nemachellus botin Balicham 0.173 0.179 0.003 - - - 1.431 0.169 0.000 0.082 0.006 - - - 9.247 Chanaa orientalis Cherg -	_	Macur		0+770	-70.0	1 1	1	1 000 0	1	1	T.	1	1	1	0.409	0.020	1	1	E	ı	1		160
Nemachellus botin Balchan 0.373 0.179 0.003 - - - - - - - - - - - - 10.588 Nemachellus botin Balchan 0.373 0.179 0.003 - - - - - - - - - - - - 10.588 Channa orientalis Cheng -			1	1		1		0707	ı	i	1	I	I.	I.	0.137	0.148	1	Ţ	Ł	1	1		.089
Channa oricontilis Cheng			0.373	0.179	0.003	1		1117	I, I	1	I.	1	1	1	1	0.183	1	ļ	+	1	- 10		.072
		Cheng	1	1	1	- I	1	1	-	1		1 1	104-1	401.U	000070	0.052	0.006	1	1	1		_	.063

A

 r_{i}
Cute Stantific Dere Tat Proj Dere Tat Proj Tat 31 Cute Cu	Mart Mart Mart Mart Mart Mart Mart Mart	Apr M	May Man Jun May Jun May Man Jun May Man May Man May Man May Man May Man May Man	July International 0.054 0.031 0.054 0.031 0.054 0.031 0.055 0.199 0.055 0.199 0.054 0.199 0.054 0.199 0.054 0.199 0.054 0.199 0.055 0.054 0.055 0.054 0.055 0.054 0.000 0.000 0.001 0.000	Avg Avg 0.115 0.1194 0.194 0.1194 0.1188 0.0188 0.0138 0.0158 0.0138 0.0158 0.0138 0.0158 0.0138 0.0158 0.0138 0.0158 0.0138 0.0158 0.0138 0.0158 0.0138 0.0158 0.0138 0.0158 0.0138 0.0158 0.0138 0.0158 0.0148 0.0158 0.0158 0.0158 0.0158 0.0168 0.0168 0.0168	Sep 0.015 0.016 0.018 0.016 0.016 0.016 0.003 0.003 0.003 0.003 0.001 0.001	Oct 0.012 0.013 0.012 0.012 0.001 0.001 0.001 0.001	0.043	Dac	Feb 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 Kg 8.079 7.715 6.613 6.676 6.049	% 0.055 0.053 0.047
Clupisonan garaClupisonan garaGara0.3650.784Aplochelius penacherKanpona0.032Aplochelius penacherKanpona0.032Aplochelius penacherKanpona0.013Notoprerus agaliprerusFouli0.0130.018Somilepres gorgonsCharpoli0.0130.0131.4031.4031.413<							0.012 0.151 0.151 0.072 0.072 0.001 0.001 0.001	0.043	11111	11111	6.079 7.715 6.813 6.676 6.045	0.055 0.053 0.047
Aplochedius paracharKanponan0.032Terratodor curcuiaPodtaTerratodor curcuiaPodta0.0010.018Puoritus geliusPodta-0.0020.01300.0138Puoritus geliusChala purit-0.01300.01381.6450.018Puoritus geliusChala purit0.1300.0231.6450.018							0.012 0.151 0.072 0.072 - - 0.001 0.001	0.043	1111	1111	- 7.715 - 6.813 - 6.676 - 6.045	0.053
Ternodon curcuiaPostaTaterodon curcuiaGoulNonsprensGuiputi0.0100.018Puntius golusGuiputi0.0100.018Puntius cholaGuiputi0.0110.0130.018 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.151 - 0.072 - - 0.001 0.004</td><td>2 T T T T T T T T</td><td>1 1 1</td><td>1.1.1</td><td>- 6.813 - 6.676</td><td>0.047</td></t<>							0.151 - 0.072 - - 0.001 0.004	2 T T T T T T T T	1 1 1	1.1.1	- 6.813 - 6.676	0.047
Laboo goniusGoniGoni––– </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.072 0.072 - - 0.001 0.004</td> <td>111111</td> <td>1.1</td> <td>1.1</td> <td>- 6.676</td> <td></td>							0.072 0.072 - - 0.001 0.004	111111	1.1	1.1	- 6.676	
Noiopricus audiprierusFoli-0.000Puntius geliusGiliputiPuntius geliusGiliputiSomilopres gangoraGiliputiFundius geliusGiliputi<							0.072	111111	1	0	- 6.049	0.046
Puntius geliusCiliputi0.0100.018Puntius colosCiliputi0.141Peisolosoptis porgoraChain puri0.1300.018Brisolosoptis porgoraChain puri0.0241.4051.6450.018Brisolosoptis porgoraKharuu0.0241.4051.6450.018Brisolosoptis porgoraKharuu0.0120.0031.018Brisolosoptis porgoraKharuu0.0120.0031.018		00				0.064 0.064 0.016 0.009 0.003 0.003 0.003 0.001	0.072	1111				0.041
Puntius cholaChain punti						0.064 0.016 0.003 0.003 0.003 0.001 0.001 0.001	0.001	1111	1	1	- 5.549	0.038
Somilepres gongons (harpoin outs) (harboin outs) (h						0.064 0.016 0.003 0.003 0.031 - - - 0.007 0.011 0.007	0.001	111	1	1	4.866	0.033
Picodonophis boroKharuBoia lobachanaPuurliBoia lobachanaKharuBoia lobachanaKauru-0.0241.4051.4550.018Bora boracaChora chacaChora chaca0.0120.0200.010Danio devarioTert punti0.0120.0010.0010.0010.001 <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td>0.016 0.009 0.001 0.001 0.001 0.007 0.007 0.007</td> <td>0.001</td> <td>1.1</td> <td>1</td> <td>1</td> <td>- 4.158</td> <td>0.028</td>		0.0				0.016 0.009 0.001 0.001 0.001 0.007 0.007 0.007	0.001	1.1	1	1	- 4.158	0.028
Botia kohachataPatulBotia kohachataColisa sotaFatul0.0241.4051.4450.018Colisa sotaChora chela0.2360.0351.4450.018Securicula goraChora chela0.0120.0031.4454.720Barilius areioChaca checa0.0120.001Barilius areaChaca chacaChecki0.0120.0010.001Barilius areaCharas abornaKacht0.0110.003Barchydanio rerioAnju <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td>0.009 0.003 0.001 0.007 0.007 0.007 0.007</td> <td>0.001</td> <td>a</td> <td>1</td> <td>1</td> <td>- 2.564</td> <td>0.018</td>		0.0				0.009 0.003 0.001 0.007 0.007 0.007 0.007	0.001	a	1	1	- 2.564	0.018
Colias soraColias soraKhalisha00241.4051.6450.018-Puntius terioPuntius terioTeri punti-0.0231.6450.018Puntius terioTeri punti-0.0230.033Puntius terioTeri punti-0.030<						0.003 1.001 - - - 0.007 - 0.007 - -	0.004		1	1	- 2.284	0.016
Securicula gora Chora chela 0.286 0.053 1.934 4.720 Puntius terio Teri punti 0 0 0 0 0 Daratio devario Teri punti 0 0 0 0 0 Daritius terio Cheka 0.012 0.000 0 0 Daritius terio Cheka 0.012 0.000 0 0 Daritius terio Cheka 0.012 0.000 0 0 Daritius terio Charas oborna Kachki 0 0 0 Daritius terio Anju 0 0 0 0 0 Brachydnalis rerio Anju 0 0 0 0 0 Sicamugi colus auruus Nunabailla 0 0 0 0 0 Sicamugi colus auruus Nunabailla 0 0 0 0 0 Sicamugi colus auruus Nunabailla 0 0 0 0 0 Sicamugi colus auruus Nunabailla 0 0 0 0 Sicamugi colus auruus Nunabailla 0 0 0 0 Sicamugi colus auruus Gaigar angu 0 0						0.001	0.004	E	1	.697 0.52	2 1.843	0.013
Puntitus terioTeri punti-0.6271.9344.720Chaca chacaCabat0.0120.000Danio devarioCabatCabat0.0120.000Barilius evezardiKachki-0.010Barilius evezardiKachki-0.010Barilius evezardiKachki-0.0100.000Barchydanio rerioAnjuBrachydanio rerioAnju						0.007 0.007 0.007 0.007	0.004	1	1	1	- 1.797	0.012
Chaca chaca Chaca chaca Chaca chaca 0.012 0.000 Danio devario Caria soborna Kachki - 0.010 - - Bariflus evezardi Kachki - 0.010 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.007</td> <td>1</td> <td>î</td> <td>I</td> <td>1</td> <td>- 1.778</td> <td>0.012</td>						0.007	1	î	I	1	- 1.778	0.012
Danio devario Chebii - 0.010 -<	11111	111111	547A			0.007 0.011 0.007		1	0.949	1	- 1.116	0.008
Bartilius evezardi - - - - - Corica soborna Kachki - - - - - Corica soborna Rachki - - - - - Corica soborna Rubja - - - - - Expidocephalue berdmorei Puòsa 5hol - - - - Brachydanio rerio Anju - - - - - Brachydanio rerio Gajar - - - - - Brachydanio rerio Gajar - - - - - Chanda buculis Gajar - - - - - Chanda buculis Gaigare colis Kauwa - - <td></td> <td>1 1 1 1 1 1</td> <td></td> <td></td> <td></td> <td>0.007</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>- 0.850</td> <td>0.006</td>		1 1 1 1 1 1				0.007	1	1	1	1	- 0.850	0.006
Cortea soborna Kachki - 0.661 - Lepidocephalus berdmorei Puiya - - - Brachydanio ratio Shol - - - - Brachydanio ratio Anju - - - - - Brachygolius nuous Nunabalila - - - - - Brachygolius nuous Gajar - - - - - Channa marulius Gajar - - - - - Aorichthys seenghala Guizza - - - - - Chanda baculis Kuwa - - - - - Aorichthys seenghala Guistengra 0.001 0.003 0.003 0.001 Chanda baculis Kuwa - - - - - Chanda baculis Kuwa - - 0.001 0.003 0.003 <td>1111</td> <td></td> <td></td> <td></td> <td></td> <td>0.007</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>- 0.642</td> <td>0.004</td>	1111					0.007	1	1	1	1	- 0.642	0.004
Lepidocephalus berdmorei Pu Pu Brachydanio rerio Pu Aqu	1 1 1		5420.			11	ï	t	1	1	- 0.385	0.003
Channa striatus Shol - - - - Brachydanio rerio Anju - - - - - Oryzias melastigma Kanpona Kanpona - - - - Brachydanio rerio Anju - - - - - Oryzias melastigma Kanpona Kanpona - - - - Brachydanio rerio Anju - - - - - Sisamugit casesia Gajar - - - - - Aorichthys seenghala Gajar - - - - - Aorichthys seenghala Guizza - - - - - Chanda baculis Kauwa 0.001 0.003 0.003 0.003 Gagat ocoia Kasia -	1 1	1 1 1	1911	0.00	1 - 1 1	1	1	1	1	1	- 0.376	0.003
Brachydanio rerio Aqju - - - - Oryzias melastigma Kanpona Kanpona - - - - Brachydohus nuuus Nunabailla - - - - - Brachygobius nuuus Nunabailla - - - - - Brachygobius nuuus Nunabailla - - - - - Sicama maruliur Gajar - - - - - Aorichthys seenghala Gajar - - - - - Aorichthys seenghala Guizza 0.001 0.003 0.007 - Chanda buculis Kauwa - - - - - Chanda buculis Kauwa - - - - - Cagara conia Guizza 0.002 0.003 0.003 0.009 Gagara conia Kauwa - - - - - Chanda buculis Kauwa 0.002 0.003 0.003 0.009 Gagara conia Kauwa 0.002 0.003 0.003 0.00 Cagara conia Kauwa 0.002 0.003	ĩ	1 1 1	<u>9</u> 11	0.02	- 1 1		1) I	0.055	1	1	- 0.350	0.002
Oryzias melastigma Kanpona – – – – Brachygobius nuous Nurabailia – – – – – Brachygobius nuous Nurabailia – – – – – Sieamugit cascasia Gajar – – – – – Eutropicitys wacha Bacha 0.001 0.003 0.007 – – Aorichtibys seacha Bacha 0.001 0.003 0.007 – – Puntius costaris Kauwa – – – – – Cagata conia Kauwa 0.002 0.003 0.003 0.009 Dataka Kauwa – – – – Cagata conia Kasti 0.002 0.003 0.003 Cagata conia Kasti 0.003 0.003 0.003 Datakaa 0.003 0.003 0.003 0.003 Machrobrachum styliforus Bata 0.004 0.003 0.003 Machrobrachum styliforus Bata 0.014 0.003 0.031 Machrobrachum styliforus Bata 0.014 0.003 0.031 Machrobrachum styliforus Bata<		1 1		0.02	- 0.008	1	I	ï	ī	1	- 0.276	0.002
Brachygobius nuaus Numabailla - - - Sisamugl cascasia Sisamugl cascasia Chanaa marulius - - - Chanaa marulius Gajar - - - - - Chanaa marulius Gajar - - - - - Chanaa marulius Gajar - - - - - Conchriptishtys wacha Gaizzaa - - - - - Aorichtikys seenghala Gaizzaa - - - - - Puntius costurits Chanda Casourits Kauwa - - - - Cagata centia Kauwa 0.002 0.003 0.003 0.003 - Cagata aangra Gang tengra 0.002 0.003 0.003 - Orseobrama corio corio Keti 0.003 0.003 0.003 Lisa parsia Bata 0.164 0.003 0.003 Lisa parsia Bata 0.164 0.003 0.001 Machrobrachum styliforus Bata 0.003 0.003 0.001 Machrobrachum styliforus Nura tengra - - - <tr< td=""><td>1</td><td>E</td><td>1</td><td>- 0.021</td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td>- 0.265</td><td>0.002</td></tr<>	1	E	1	- 0.021	1		1	1	1	1	- 0.265	0.002
Siemungil casasia – – – – – Chanaa marulius Gajar – – – – – Chanaa marulius Gajar 0.001 0.003 – – – Aorichtiys seenghala Guitzaa – – – – – Aorichtiys seenghala Guitzaa – – – – – Punrius cosuntis Chanda – – – – – Punrius cosuntis Chanda – – – – – Cagata costa Kauwa – – – – – Origota aangra Conol 0.002 0.003 0.003 0.009 Distochrama cotio cotio Keti 0.004 0.000 0.003 0.009 Liaa parsia Bata 0.164 0.000 – – – Machrobrachium styliforus Bata 0.164 0.003 0.001 – Machrobrachium styliforus Machrobrachium styliforus – – – – Machrobrachium styliforus Nura tongra – 0.001 – – Machrobrachium styliforus Nura tongra <td>E</td> <td></td> <td></td> <td>- 0.021</td> <td></td> <td>0.004</td> <td>1</td> <td>E</td> <td>I.</td> <td>1</td> <td>- 0.257</td> <td>_</td>	E			- 0.021		0.004	1	E	I.	1	- 0.257	_
Channa marulius Gajar - - - Eutropichthys wecha Bacha 0.001 0.003 - - Aorichthys wecha Bacha 0.001 0.003 - - Aorichthys wecha Bacha 0.001 0.003 - - Aorichthys wecha Bacha 0.001 0.003 - - Cagata centa Caurai Kauwa - - - - Cagata centa Kosuati Nosati 0.002 0.003 0.003 - Cagata anagra Gang tengra 0.002 0.003 0.003 - - Osteobrana cotio cotio Keti 0.004 0.003 0.003 - - Liza parsia Bata 0.164 0.003 0.003 - - Keti 0.004 0.003 0.003 0.003 - - Kasbora daniconius Bata 0.164 0.003 0.003 - - Machrobrachium syllferus Bata 0.164 0.003 - - - Machrobrachium syllferus Numa tengra - 0.017 - - Machrobrachium syllferus Numa tengra	I	1	1	-	1	0.057	1	1	1	1	- 0.233	
Eutropricatifys wacha Bacha 0.001 0.003 - - Aorichthys seanghala Guizza - - - - - Aorichthys seanghala Guizza - - - - - Chanda baculis Chanda 0.001 0.003 0.007 - - Cagara conia Kauwa - - - - - Puntius costaria Kosuati Kosuati 0.002 0.003 0.003 Osteobrana cotio cotio Keti 0.004 0.000 - - Distobrana cotio cotio Keti 0.004 0.000 - - Rasbora daniconius Bata 0.0164 0.000 0.003 0.009 Liza melinoptera Bata 0.0174 - - - Machrobrachium syllferus Numa tengra - 0.017 - - Machrobrachium aryliferus Kunchu icha - 0.013 - - Machrobrachium aryliferus Kunchu icha - 0.013 - - Machrobrachium aryliferus Cura icha - 0.013 - - Machrobrachium aryliferus Numa tengra <t< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>0.004</td><td>I</td><td>1</td><td>1</td><td>1</td><td>- 0.219</td><td></td></t<>	1	1	1	1	1	0.004	I	1	1	1	- 0.219	
Aortectifys seenghala Guuza - - - - - Chanda baculis Chanda - - - - - - Cagata cenia Kauwa - - - - - - Funtius costantis Kosuati Kosuati 0.002 0.003 - - Gagata acenia Kosuati Kosuati 0.002 0.003 - - Gagata acenia Kosuati 0.002 0.003 0.003 - - Osteobranas cotio cotio Keti 0.004 0.000 0.003 - - Austor Bata 0.0164 0.000 0.003 0.009 Liza parsia Bata 0.0144 0.000 - - Mechrobrachium syllferus Bata 0.0174 - - Mechrobrachium syllferus Numa tengga - 0.017 - - Machrobrachium subtit Kunchu icha - 0.013 - - Machrobrachium subtit Kunchu icha - 0.013 - - Machrobrachium subtit Kunchu icha - 0.013 - - Machrobrachium subtit	1	I.	1	- 0.016	1	1	ľ	1	1	1	- 0.128	
Canada Bacutas Canadas - - 0.001 - Gagara conia Kauwa - - - - - Gagara conia Kauwa - - - - - - Gagara acoria Kauwa - 0.002 0.003 - - - Gagara acoria Gang tengra 0.002 0.003 0.003 - - Ostoobranas cotio cotio Keti 0.004 0.000 0.003 0.009 Liza parsia Darkina 0.164 0.000 - - Liza melinoptera Bata 0.014 0.000 - - Mechrobrachium syttlerus Bata - 0.017 - - Mechrobrachium syttlerus Gura icha - 0.017 - - Machrobrachium syttlerus Kunchu icha - 0.017 - - Machrobrachium fammarioi Kunchu icha - 0.013 - - Machrobrachium fammarioi Kunchu icha - 0.013 - - Machrobrachium fammarioi Kunchu icha - 0.013 - - Machrobrachium syttlerus Numa tengra	I	1	1	- 0.012	1	'	1	1	1	1	- 0.101	
Congentar scotta Antana Puntius costantis Kostanti Puntius costantis Kostanti Caganta anagra Gang tengra Ostoobranaa cotio cotio Kati Ostoobranaa cotio cotio Kati Data parsia 0.002 Liza parsia 0.002 Rasbora daniconius Bata Darkina 0.0164 Ostoobachum asyliferus 0.0164 Machrobrachum asyliferus Bata Machrobrachum asyliferus Gura icha Machrobrachum harmariei Kunchu icha Asabora anabora 0.017 Ompok pabdia 0.013 Postina 0.013 Ompok pabdia 0.013 Poste cochiu 0.013	(Ę.	-	_	_	1	I	1	1	1	060'0	_
Cagaia anagra Gang tengra 0.002 0.003 0.003 0.00 Cagaia anagra Gang tengra 0.002 0.003 0.003 0.003 Osteobra cotio cotio Keti 0.002 0.003 0.003 0.003 Rasbora daniconius Bata 0.0164 0.000 0.003 0.003 Rasbora daniconius Bata 0.164 0.060 - - Varitia parii Bata 0.164 0.060 - - Varitia parii Bata - 0.014 0.060 - - Machrobrachium syliferus Gura icha - 0.017 - - - Machrobrachium fammariei Kunchu icha - 0.017 - - - Machrobrachium fammariei Kunchu icha - 0.142 - - - Machrobrachium fammariei Kunchu icha - 0.142 - - - Machrobrachium fammariei Kunchu icha - 0.142 - - - Afilia purcias Addhu pabda 0.033 0.033 0.033 - - Compok pabda Pasas - 0.113 - - -	1	1			100.0		1	1	1	1	- 0.044	0.0003
Octoporta managea Consignation of the section of th	1 1						1	I	1	1	1	r
Line partial Darkina 0.004 0.000 0.003 0.006 Line mediaoptera Bara 0.164 0.003 0.003 0.006 Rabora daniconius Darkina 0.164 0.003 0.003 0.006 Functius serana Bara 0.164 0.003 0.003 0.006 Machrobrachium styliferus Bara - 0.013 - - - Machrobrachium styliferus Gura icha - 0.017 -	1	-						I		1	1	
Rasboratian Darkina 0.164 0.060 Rasboration Darkina 0.164 0.080 Puntius sama Bata 0.028 Machrobrachium styliferus Bata 0.028 Mystu gulio Nuna tengra 0.017 Mystu gulio Nuna tengra 0.017 Machrobrachium styliferus Kauschu ichn 0.017 Mstu gulio Nuna tengra 0.017 Alia punctata Kajuli 0.142 Alia punctata Fasbora 0.013 0.024 Sciptiona phasa Phasa 0.1142 Chela carchiu 0.035 0.022 0.003	1							1				
Lisa melinoptera Bata - 0.028	1	1					18 - 1			E a		
Puntius serana Sarputi - 0.035 - Puntius serana Sarputi - 0.035 - - Machrobrachium styliferus Gura storga - 0.017 - - Mystu gulio Nuoa tengra - 0.017 - - - Machrobrachium lammariei Kunchu icha - 0.017 - - Machrobrachium lammariei Kunchu icha - 0.017 - - Ailla punctaa Kajuli - 0.142 - - Ompok pabda Madhu pabda 0.033 0.024 - - Chela cachiura Chela 0.018 0.002 0.003 -	1	2.3						1		1		
Machrobrachium styliferus Gura icha - 0.068 0.181 Mystuu gulio Nuna tengra - 0.017 - - Mystuu gulio Nuna tengra - 0.017 - - Machrobrachium lammariei Kunchu icha - 0.017 - - Machrobrachium lammariei Kunchu icha - 0.017 - - Ailla punctau Leuzza darkina - 0.163 - - Ompok pabda Madhu pabda 0.033 0.024 - - Setipinana phasa Phasa - 0.013 - -	1	1	- 34							1		
Mysture gulio Nuna tengra - 0.017 - Machrobrachium lammariei Kunchu icha - 0.017 - - Machrobrachium lammariei Kunchu icha - 0.051 - - Rasbora rasbora Leuzza darkina - 0.163 - - - Ailla punctata Kajuli - 0.033 0.024 - - Setipinna phasa Phasa - 0.113 - - Chela carchiura 0.078 0.002 0.003 -	1	1			,	1	1	1	- 1	-		
Machrobrachium lammariei Kunchu icha - 0.091 - Rasbora rasbora Leuzza darkina - 0.163 - - Ailla puncrau Kajuli - 0.142 - - Ompok pabda Madhu pabda 0.033 0.024 - - Setipinna phasa Phasa - 0.113 - - Cheja carchiur 0.078 0.002 0.003 -	1	1	1			1	-3	1	1	1		
Rasbora rasbora Leuzza darkina - 0.163 - - Alila punctau Kajuli - 0.142 - - Ompok pabda Madhu pabda 0.033 0.024 - - Setiplina phasa Phasa - 0.113 - - Chep chela 0.078 0.002 0.003 - -	t	1	1	-	1	1	1	1	1	1		
Alila punctata Kajuli - 0.142 - - Ompok pabda Madhu pabda 0.033 0.024 - - Setiplina phasa Phasa - 0.113 - - Chela cachius Chela cachius 0.078 0.002 0.003 -	1	1	1	1	1	1	1	1	1	1	1	
Ompok pabda Madhu pabda 0.033 0.024 -	1	1	1	1	1	1	I	I	I	1	1	
Sotipiana phasa Phasa – 0.113 – – – Chela cachius Chela 0.078 0.002 0.003 –	I	T	1	1	1	1	T	1	1	1	1	
Chela cachius [Chep Chela 0.078 0.002 0.003] -	1	1	1	1	'	1	1	1	1	1		
	I.	E	1	1	1	1	1	T	1	1	1	1
Puntius sp. 9.723	1	1	1	1	1	1	1	1	1	3	1	
940 Awaous sp =	1	1	1	1	-	-	1	1	1	1	1	

Species Species name			-	Year: 1992	2					Ye	Year: 1993						Ver	Vear. 100.1	(Mar 02	Mario3 - Fabiot
Code Scientific	Bengali	Aug	Sep	Oct	Nov	Dec	Feb	Mar	Apr	Mav	Inn	Inh	Aue	San	0.1	Now	Dac 19	Tan 1774	Lot V.	
180 Puntius sophore	Puti	12.414	18.056	40.429	45.099	37.823	0 106	111	1	-	-	17 702	1	1.1	-	•		1 000 000 V.		-
931 Prawn spp.	Prawn	15.468	_		2.808	1.483	7.690	4 874		•	-	-							_	
210 Xenentodon cancila	Kaikka	1.583	\$ 782	976 9	1 310	1 1 31		0 605			-	<u> </u>							-	-
41 Channa punctatus	Taki	3 783	4 38.4		100.96	0 857	13 602	-				167.1		_	_		_	_		
83 Glossoenhius eiurus	Railla	102 6	1 076	-	100.04	100.0	20		-		<u> </u>	4.284			-		-	-	55 593.458	58 6.711
-	Tarta	140.7	C/0-1	100.1	C07.0	079.0	-	660.5			_	2.654	in a sha		2.062	4.899	1.743 9.	9.044 2.034	34 385.010	10 4.354
_	rengra	7.400	274.7	105.0	3.129	20.844	600	_	_	-		9.770	3.119	2.222	2.273	6.839	7.235 2.	2.692 9.448	48 367.200	00 4.152
-	Cuchi	9.293	5.536	2.508	3.393	0.116	3.276	8.195 2	28.689 1	10.059	3.872	5.638	2.465	4.007	4.791	2.685	2.133 6.	6.097 2.235	35 362.547	47 4.100
	Gutum	1.802	2.076	2.539	4.236	2.650	60.235	6.428	6.234	0.930	2.943	2.146	2.145	1.584	4.163	6.014	2.226 3.	3.447 0.958		
175 Puntius conchonius	Canchan puti	1	1	2.140	2.296	0.393	1	0.245	1		_	19.216			_	-				
107 Labeo rohita	Rui	1.659	7.284	1	1	1	1	1	1	_					_	_	_	~		
55 Colisa fasciatus	Khalicha	2 603	4 544	3776	1000	924 2				-	_	1	- 11		_	-		_		
_	Botto	C.C		077.0	N+.+	004.1	C+7.0	2000	CI/.0	1.405	7.280	8.115				_		4.964 4.820	20 243.409	09 2.753
_	LUIM	1	466.U	0.250	I	0.040		_	1	1	I	1	0.027	2.415	4.533	2.112 0	0.224	1	- 241.313	13 2.729
	Shingi	1.066	0.639	0.704	1.015	3.630	6.641	22.065 2	28.266	1	1.208	0.622	1.128 (0.615	2.175	1	1.141	- 13.409	09 191.567	67 2.166
-	Darkina	0.062	0.497	1.308	0.878	Ŀ	1.648	0.211	0.715	4.349	6.057	0.775	2.297	5.599	0.370	1.569 0	0.344	- 0.233		
	Catla	6.915	10.426	0.822	Ţ	1	J	1	1	1	1	0.510	0.147	5.474	0.306		1	1		
_	Tara baim	3.468	0.117	0.593	0.321	1	1	0.222	6.436	1	4.279	0.881			_	0.203 0	0 301	- 0 370		
42 Channa striatus	Shol	1	0.062	I.	I	5.204	1	1	1	1		1	1		_	_	1	- 1 417		
212 Puntius ticto	Tit puti	1.314	2.193	0.012	1	1.160	1	0.426	I	1	0.344	1.000	0.256	0 377	_		1 108	1210		
37 Chanda ranga	Lal chanda ·	0.561	0.321	2.456	0.262	0.138	1	-	0.358	5.690		2.353		_			_	1/1.0	007 10 20 EUO	000.0
5 Amblypharygodon mola	Mola	0.112	0.839	0.038	0.007	I	I	1	1	0.747		3 956		_	_	_				
6 Anabas testudineus	Koi	0.266	0.531	0.692	0.869	1	2.933	1	1			0.447			-	-		_	761-11 01	240'U 046
182 Rasbora daniconius	Darkina	0.051	2.074	0.026	t	2.073	ł	I	1	1	1.248	1		_	_		0 043	0 100	_	
	Cheka	1	1	1	I	1	1	ŀ	2.449	1	3.586	I	1	_	_	1		5		
56 Colisa la lia	Lal Khalisha	I	0.183	0.016	1	1	1	0.486	1	0.634		0.666	0.685			0 040	0 038 1	1 867 0.050		
-	Cheng	T	I	1	0.304	1	1	1	1	8.958				_	-	_		_		
2111 Colisa labiosus	Khalisha	I	0.177	0.026	I	Į	ļ	0.083	0.715			1 681			-			0		
47 Cirrhinus mrigala	Mrigel	0.038	4.404	1	I	1	I	_	1	1						770.0		c10'0 -	2	
51 Clupisoma garua	Ghaura	I	I	1	1	1	I	1	1	1					200.0	I	I	1	- 54.610	
62 Cyprinus carpio	Karfu	I	ł	1	I	1	1	1	- 1			0.755	10.01	0++0		-	1	1	- 53.433	
48 Cirrhinus reba	Raik	1.272	2.029	0.276	I	1	I)	į			CCC.1				CI 799.0	170.01	1	- 49.825	2
136 Mystus tengara	itenera	13 876	6 198	3 7 7 8	0.606	1361	(3610	1		_	1	1	0001	0.40	I	t,	1	2	2
-		2.604	2.258	0 801	0.187	107.1	1 1	0200	1	1 5 6	102.2	0.510	_	-			_		0.65	
130 Aorichthys aor	Avre	1		0 0 30	1	1010	1	0000			_	0/0.4	1/21	_	_	0.231 0	0.197 1.1	1.196 0.309	с.	
181 Puntius terio	Teri punti	4.840	335	4 200	0 087	1	1				I	I	1	_	0.545	I	I,			
102 Labeo calbasu	Kalbaus	0.000	0.650				0.9	6			I	1	1.		800.0	I	1	0.165 0.011	102	
178 Puntius phutunio	Phutani puti	1		30126	0.078	1	i l		I						0.274	1	1	1	- 32.242	
131 Mystus bleekeri	Golsha tengra	1	1	1	0.050	1	1	0 732			_	06/.0	9 705.4		0.114	I		_	9150	
189 Salmostoma phulo	Fulchela	0200	0 1 00	2200	-	5		66.910		1	c11-1	ı					_	0.220 2.711		78 0.320
	Fali	-		cc/.n		I	I	1	L		0.418	1	0.050 0		_	0.004 0	0.287 1.7	1.753	- 25.743	43 0.291
	Magne			1000	(I	1	1	I	1	I.	ſ.	1	-	0.010	Ļ	1	T	- 15.231	31 0.172
	Chanda	I a	C74-0	1000	1 000 0	1	I	1.473	1	1	1	1	_	0.298	T	I,	I.	- 1.469	59 14.178	78 0.160
	Dool	I	1	1	0.028	i	Ĩ	I.	Į.	1	0.827	1	0.598 0	0.481	1	1	1	- 0.059	59 13.794	94 0.156
	Domin	I	/91.0	1	1	I	1	4.754	<u>I</u>		I	I	1	0.221	Î	1	1	1	- 12.139	39 0.137
te participas gougou	narpou	_	_	_	1	i	1	1	3	-	1.931	1	1	0.383	T	1	1	1	- 11.034	34 0.125
-	Napit Kol	0.333	0.204	0.113	220 0	1														

Table 5.8 Percentage total monthly catch by species: canals inside CPP

0,8

h

×,

k

																		;	•		-	al catch
	Species name		-	Yea	26	-	-	+	F	-	_ F	Year: 1993	ŀ	ł		-		-	Year: 1994		2	- re0.94
Code Scientific		Bengali	Aug	Sep (Oct	NO	Dec	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Kg	8
101 Labeo boga		Bhangan	0.077	1	1	1	1	1	1	1	1	1	1	1	1	0.204	i	1	1	1	7.123	0.081
122 Mastacembelus armatus	rmatus	Baral baim	4.001	1.479 0.0	0.025 0.1	130 2.	.360	1	1	1	I	1	ī	1	0.199	0.078	T	1	i	1	6.715	0.076
81 Gagata youssoufi		Gang tengra	0.923	Ĩ	1	1	I.	I	ī	Î.	I.	1	0.064 0	0.157 (0.244	l	I.	I	I	I	5.670	0.064
100 Labeo bata		Bata	1	0.518 0.6	0.620	1	1	1	1	1	t	1	1	1	0.229	I	T	I	1	1	4.598	0.052
28 Botia dario		Rani	0.005	- 0.(0.035	1	1	1	1	i	1	1	1	1	0.154	0.032	1	1	1	1	4.199	0.047
176 Puntius gelius		Giliputi	1	0.013 0.1	0.126 0.0	028	1	1	ï	L	1	0.052 0	0.175 0	0.104	0.010	0.062 (0.056	I	1	0.006	4.159	0.047
174 Puntius chola		Chala puti	1	1	1	1	ţ	I	I	t	I.	1	I	1	1	0.104	I	I.	ī	I	3.622	0.041
_	hax	Kanpona	1	1	I	1	0.101 0.	0.824 0	0.017	1	-	0.314	1	0.014	0.105	0.001	0.011	0.100	1	0.017	3.172	0.036
76 Eutropiichthys vacha	cha	Bacha	1	1	1	1	1	1	1	1	1	1	1	1	0.149	1	1	1	1	J	3.004	0.034
_	tica	Nilotica	1	1	I	1	Į	1	1	1	1	1	1	0.390	1	1	1	1	0.669	1	2.714	0.031
68 Danio devario		Chebli	I	I	1	1	I.	ı	1	1	1	Į)	1	1	0.124	I	I	1	I	I	2.496	0.028
2 Ailia coila		Kajuli	1.030	0.196	1	1	1	1	1	1	1	I	1	0.131	0.096	1	1	I	1	1	2.468	0.028
169 Pseudeutropius atherinoides	therinoides	Batasi	0.246	0.117 0.1	0.121	1	1	1	1	1	1	1	1	0.005	1	0.050	ł	1	1	Î	1.766	0.020
945 Crab sp		Kakra	ï	ï	1	t	1	1	I	I	1	I	ı	1	0.084	1	I	I	I	I	1.680	0.019
188 Salmostoma bacaila	ila	Katari	0.734	0.384	1	I.	1	1	0.036	1	1	1	1	0.182	0.040	1	1	I	I	T	1.607	0.018
91 Hypophthalmichthys molitrix	thys molitrix	Silver carp	I	1	1	I	1	1	1	1	1	1	1	0.381	I	I	1	I	I	1	1.573	0.018
86 Gudusia chapra		Chapila	0.002	I	1	I,	t	1	I	ī	I	I	1	0.143	0.046	1	I	I	1	I	1.509	0.017
7 Anguilla bengalensis	nsis	Bamosh	1	1	1	1	1	1	1	1	1	1	1	I	0.070	1	I.	1	1	1	1.401	0.016
132 Mystus cavasius		Kabashi	1	0.044 0.	0.308	I	1	į	1	I	1	ļ	1	1	0.065	î	1	1	1	1	1.310	0.015
150 Oreochromis mossambica	ssambica	Tila pia	I	Ľ	1	L	I.	I.	I.	I	1	Ļ	L	I	L	ľ.	1	0.641	ł	1	1.188	0.013
57 Colisa sota		Khalisha	0.413	0.206 1.	1.632 0	0.688 0	0.230	ji.	1	1	1	0.024	J	1	1	0.008	0.042	1	0.055	1	1.088	0.012
69 Brachydanio rerio	.0	Anju	1	ı	t	1	1	1	1	ı	1	0.048	1	j.	0.043	1	I	1	1	Î	0.957	0.011
139 Nemacheilus botia	ia .	Balichata	0.013	I	I.	I	1	1	I	I	1	0.057	I	T	I	0.019	I	I	Ĩ	Î	0.743	0.008
109 Lepidocephalus berdmorei	berdmorei	Puiya	1	1	1	1	Į.	1	0.017	T	1	0.383	1	I	1	1	Ĩ	1	L	I	0.686	0.008
214 Oryzias melastigma	am	Kanpona	1	a.	1	1	1	1	I	1	1	1	1	1	0.010	0.012	I	1	1	1	0.619	0.007
13 Aspidoparia morar	ar	Morari		ì	1	1	1	1	I	1	1	1	1	I	0.018	1	I	J	1	ł	0.367	0.004
148 Ompok pabda		Madhu pabda	0.073	0.196	ı	1	I	1	0.176	I	I	I	I	I	Ĩ	1	1	0.038	I	1	0.356	0.004
138 Nandus nandus		Bheda	0.146	0.017 0.	0.063 0	0.371 0	0.275	1	0.157	1	1	1	1	1	I	I.	E	I.	I	1	0.255	0.003
191 Scatophagus argus	SU	Bishtara	1	1	1	1	T	1	ł	1	1	1	J	1	1	0.004	1	1	1	1	0.137	0.002
59 Crossocheilus latius	ius	Kala bata	I	t	i	1	ï	ł	ł	1	Î,	1	<u>1</u>	I	0.006	1	I	1	I	1	0.123	0.001
133 Mystus gulio		Nuna tengra	I	I	I	T	I	L	I	1	1	I	Į,	L	1	I	L	0.041	I	1	0.076	0.001
199 Arius gagora		Gagla	1.153	1	1	1	1	1	1	9	1	1	Ţ	1	1	1	1	1	1	1	I.	1
43 Chels cachius		Chep Chela	0.009	I	I	I.	ī	I	ł	1	1	1	1	1	1	1	1	I	ı	1	1	1
142 Nemacheilus scaturigina	turigina	Dari	0.009	Ľ.	I	t	Ľ	I	I	I	ľ.	E	I.	Į.	I	I	I	I.	I	1	I	ά.
29 Botia lohachata		Putul	1	0.025	1	1	1	I	Ţ	1	1	1	J	1	1	1	1	1	1	I	I	
184 Rasbora rasbora		Leuzza darkina	1	0.408 0.	0.002	ı	1	1	1	1	1	ï	Ţ	1	1	1	1	1	I	I	1	2
183 Rasbora clanga		Sephatia	I.	- 0.	0.125 0	0.028	I	E	I.	I.	1	1	I,	t	t	1	L	I	l	1	t	Ċ
45 Chelonodon fluviatilis	in tilis	Potka	1	I	1	1	0.781	I	1	1	1	1	Ţ	1	I	1	1	1	I	t	I.	86
54 Coilia ramcarati		Olua	0.262	T	ł	I	ï	1	ļ	1	ī	I	I	1	1	I	1	1	1	1	1	
170 Pseudapocryptes lanceolatus	lanceolatus	Chewa	1	0.108	1	I	I.	1	Ļ	I.	i.	Ľ	Ĩ	I	1	I	Ĩ	I	1	I	1	Å
- 24.0	S	Baghair	0.352	1		1	1	1	Ţ	0	1	1	1	1	1	1	T	1	1	1	I.	57
154 Securicula gora		Chora chela	0.130	- 0	0.418 0.	660'	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	0
			1001																			

Table 5.9Percentage Contribution of Dominant Species to the total Canal
Catch Inside and Outside the Tangail CPP, August 1992 -
February 1994

Species Name	Outside	Inside
Prawn spp.	13.4	11.4
Puntius sophore	13.4	24.4
Catla catla	10.5	2.0
Labeo rohita	9.8	2.7
Cirrhinus mrigala	8.0	<1
Channa punctatus	5.1	9.2
Glossogobius giurus	3.4	3.3
Macrognathus pancalus	3.4	4.2
Puntius conchonius	2.9	2.8
Mystus vittatus	2.3	4.1
Lepidocephalus guntea	2.0	3.5
Cirrhinus reba	2.0	<1
Mystus tengara	2.0	1.7
Colisa fasciatus	1.9	3.2
Salmostoma phulo	1.7	<1
Esomus danricus	1.7	1.6
Puntius ticto	1.1	<1
Amblypharygodon mola	1.0	<1
Chanda ranga	1.0	<1
Xenentodon cancila	<1	6.8
Tetraodon cutcutia	<1	1.9
Heteropneustes fossilis	<1	1.8
Puntius terio	<1	1.1
Macrognathus aculeatus	<1	1.1

A

June 1994

6. FLOODPLAIN FISHERIES

6.1 Total Catch

6.1.1 Pattern of catch

Seasonal trends in catch were generally similar at paired sites inside and outside the CPP (Figs. 6.1 - 6.3). The small depression-type beels and associated floodplain supported little or no fishing during the winter and pre-monsoon periods (December - May) either inside or outside the CPP (Fig. 6.1). Catches gradually increased during the monsoon before rising very sharply during and immediately following the drawdown when fish were concentrated into the remaining small area of water in the beel.

In the larger baor-type beel, substantial catches extended into the dry season principally because of katha fishing. Peak catches were again observed during the flood drawdown both inside and outside the CPP.

The lower-lying floodplain sites associated with baor-type beel supported more fishing during the winter and pre-monsoon seasons (Fig. 6.3) than the floodplains on higher land (Figs. 6.1 and 6.4). Catches during this time remained low and rather variable, but increased dramatically during the September flood drawdown both inside and outside the CPP. Yields remained high during October within the CPP while dropping sharply outside it, and catches rose again in December due to katha and kua fishing both inside and outside the CPP.

The floodplain site at the highest land elevation hardly flooded at all during the dry year of 1992, resulting in very low catches (Fig. 6.4). The following year catches here fluctuated more than at other sites during the rising floods and exhibited only a modest rise during the flood drawdown before the land dried out again in February 1994. The baor like beel associated with this higher floodplain showed the usual catch increases in September of both years, but supported little fishing during the winter and pre-monsoon (Fig. 6.4).

When the catches from all sites are combined together, some slight differences between inside and outside the CPP emerge (Fig. 6.5). Compared with sites outside, catches observed within the CPP showed little initial increase during the monsoon months of July and August, but remained higher after the drawdown and during the winter months of December and February.

Figure 6.1 Catch per unit area (kg/ha) from floodplains/beel inside and outside the Tangail CPP

dr

Figure 6.2 Catch per unit area (kg/ha) from baor-like beel inside and outside the Tangail CPP

(kg/ha)

Figure 6.3 Catch per unit area (kg/ha) from lower-lying floodplains inside and outside the Tangail CPP

KO

68

-

*

Figure 6.4 Catch per unit area (kg/ha) from higher elevation floodplains and beel outside the Tangail CPP

P

6.1.2 Size of catch

Annual catches from floodplains and beel were similar inside and outside the CPP (Table 6.1). However, the catch from the baor-like beel inside the CPP, Atia beel, was substantially higher than that from Mailjani beel, a comparable water body outside the embankment. Catch rates of dominant gears pooled across sites indicated somewhat higher productivity within the CPP, but the difference in combined catches was not statistically significant (see Section 6.2.3).

Table 6.1	Comparison of the Annual Catch Per Unit Area (kg/ha) of Paired
	Floodplain and Beel Sites Inside and Outside the Tangail CPP, March
	1993 - February 1994.

Site Comparisons	Habitat	Inside	Outside
Site 04/05 vs 11	Beel depression floodplain (intermediate elevation)	123	108
Site 19 vs 15	Baor-like beel	550	404
Site 18 vs 14	Floodplain (low elevation)	57	60
Site 9	Seasonal baor-like beel	-	123
Site 8	Floodplain (high-elevation)	-	28

Inter-annual variations in catch were clearly identified at all sites inside and outside the CPP and at other sites sampled in the North Central Region which were not associated with the Tangail study (Fig. 6.6). Comparison of the total catch over a seven month period (August to February) in 1992/93 and 1993/94 revealed substantially higher catches both inside the CPP (197% higher) and outside it (135% higher) during the wetter 1993/94 flood season than in the dry year of 1992/93 (Table 6.2).

Table 6.2Comparison of Total Catch (kg/ha) From Floodplains/Beel Inside and
Outside the Tangail CPP Between Different Years.

	August 1992 - February 1993	August 1993 - February 1994	Percentage Increase
Inside	33	98	197
Outside	34	80	135
All FP/beels sampled in NCR	25	64	156

÷

Analysis of the catch from all floodplain/beel sites sampled in the North Central Region, including those of the Tangail study, revealed an increase in the 1993/94 catch of 156% compared with the drier year of 1992/93. The increased catches observed in 1993/94 were a function of increased effort by some dominant gears (thella and current jal) but not others (jhaki jal, ber jal, and dharma jal) and increased catch rates of all but ber jal (Fig. 6.7). Increases in catch rate were quite marked for certain gears, e.g. dharma jal and jhaki. For current jal and thella jal increases were fairly modest, but they occurred during periods of peak catch and therefore substantially increased the overall total catch. Increased catch rates in 1993/94 indicate generally higher fish densities, despite the potential dilution effect of a greater volume of floodwaters in this year. This confirms the pattern of increased fish densities observed in canals and rivers of the North Central Region.

Although epizootic fish disease was more prevalent in 1992 than 1993, the disease did not appear until mid-November, after the bulk of the 7 month catch had already been taken. Therefore, the major factor responsible for such large inter-annual catch variations is likely to be the extent and duration of flooding. As mentioned previously (Section 5.1.2), there would appear to be a differential impact of inter-annual variation in flood extent and magnitude on fish populations in different habitats, with the greatest changes occurring in floodplain/beel catches (156% increase in NCR, 1993) followed by canal catches (140% increase) and then rivers (77%). This agrees with the expected direction of differential impact due to changes in flooding.

6.2 Pattern of fishing

6.2.1 Catch by gear

The types of gears used outside and inside the CPP were similar (Tables 6.3 and 6.4). A total of 24 gear types was found inside and 27 outside the embankment. The thella jal predominated both in and out of the CPP, catching 34% and 39% of the total catch respectively (Table 6.5). The only difference in the composition of dominant gears in and out of the scheme was the greater relative catch by ber jal outside and by hand fishing and katha inside the CPP. Katha were particularly important to local farmers living adjacent to Atia beel, while hand fishing and dewatering was a regular annual village event on Indrabelta floodplain.

Figure 6.7 Inter-annual variation in total monthly fishing effort and catch rate (CPUE) of dominant gears: all sampled floodplain/beels in NCR, August 1992 -February 1994

N

74

à

T

6.3 Percentage total monthly catch by gear type: floodplains/heed ontside CPP

		-				I															Total annual catch	al catch
Gear			ALL NOT	Year: 1992	92	North North				Y	Year: 1993	3						1	Year: 1994	94	(Mar'93 - Feb'94)	Feb'94
Code Gear na	Gear name(Bengali)	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Kg	0%
255 Thella jal	al	32.915	12.844	35.448	25.161	77.033	76.592	7.318 3.	35.120 3	37.392 4	48.804	46.088	27.251	47.497	50.102 4	44.716 3	33.619	26.816	46.869	13.893	13263.927	41.836
45 Ber jal		15.131	37.158	1.606	1	1	1	1	1	1	1	1	55.287	24.076	17.178	6.242	1	1	1	1	4231.162	13.346
164 Jhaki jal		7.981	4.110	28.083	22.060	11.245	9.425	7.445	6.040 5	58.453 2	21.784	37.483	1.742	1.824	5.188 1	14.827 2	20.367	13.762	23.044	19.406	3561.780	11.234
105 Dharma jal	i jal	16.379	8.619	14.880	1.911	1.441	I	1	1	1	1	0.387	1	1.328	20.820	7.397	3.136	0.752	6.604	1	2703.318	8.527
89 Dhor jal		ĩ	0.136	1	2.648	0.670	1	1	3.122	1	1	6.605	2.289	0.646	1	4.956	0.783	19.634	1	1.736	1100.286	3.470
88 Current jal	jal	0.727	19.929	2.788	9.149	6.233	2.417	1	0.498	1	I	0.799	2.877	5.463	1.300	5.910	2.639	0.909	4.766	0.114	1088.837	3.434
307 Hand fishing	shing	1	1	1	1.124	ł	1	1	4.913	1	1	Î	1	ł	I	5.833	10.095	6.625	I	1.400	965.647	3.046
270 Katha		1	1	1.820	0.928	L	I	38.826 3	32.431	1	I	ſ	I	1	1	1	8.448	3.407	1	40.156	803.826	2.535
30 Sip		8.436	0.147	8.005	32.912	0.146	0.016	I	I	4.155	0.564	5.657	0.187	0.446	1.225	5.538	1.180	0.843	2.160	Ţ	792.740	2.500
302 Kua		T	I	1	1	1	1	44.960	Î	T	I	I	E	I	1	ł	8.248	21.534	I	6.585	709.700	2.238
298 Akra		Ū	L	I	3.475	3.231	Ē.	1	0.697	ť	I.	L	Ę	I)	T	I	8.626	4.581	12.350	10.325	568.786	1.794
277 Kachitana	na	17.803	2.076	4.677	1	1	ł	1	1	1	T	1	6.621	13.110	1	1	J	I	ł	1	537.850	1.696
266 Veshal		1	į.	i.	1	I	1	1	1	1	1	1	0.241	1	3.642	0.557	J	1	1	ų.	367.048	1.158
175 Kathi jal		1	1	3	1	1	1	1	1	1	7.826	1	2.806	1.752	1	0.428	1	1	1	1	175.203	0.553
272 Daun		0.629	9.582	1.299	0.633	1	1	1	1	1	10.441	2.981	0.287	1.027	0.410	0.606	Ĩ	Ĩ	I	1	157.443	0.497
170 Juti		1	ł	1	1	Ĩ	1	ł	1	1	ł	Ĩ	1	ł	0.081	0.940	1	1	1	2.276	131.215	0.414
278 Nol barsi	Si	1	5.399	1.396	1	I	1	T	I	1	1.483	I	0.121	2.833	t	0.277	I	0.874	1	I	129.761	0.409
296 Tukri		1	l	t	1	I	ł	1	15.050	I	9.100	I	I	I.	0.054	0.157	0.658	1	0.437	1.430	102.296	0.323
291 Urani		ł	L	1	1	I	1	I.	1	1	I	1	t	ļ,	l	0.877	I	I	1	I.	90.232	0.285
202 Moi jal		1	Ļ	t	ľ	Î	10.122	1.155	0.904	I	l	1	1	I	ł.	I	I	I	3.560	2.197	80.272	0.253
123 Koi jal		-L	Ļ	Ę	ľ	Ē	Ľ	I,	Ē	I.	L	Ŭ	ţ	I,	ť.	0.344	0.198	0.244	L	L	44.514	0.140
263 Ucha		I	IJ	Ę	I	E	Ľ	I	Ŀ	I.	L	E	I	I	l	0.352	Ī	Ē	L	T	36.208	0.114
97 By hand	By hand + dewatering	1	I	1	1	1	1	I	ł	1	l	1	I.	t	1	1	1.685	1	1	I	31.760	0.100
314 Boat katha	tha	1	1	1	1	1	1	1	1	1	I	1	1	1	1	1	0.318	0.019	0.210	0.481	15.296	0.048
95 Doiar trap	de	1	1	1	1	1	1.428	1	1	1	1	1	0.290	1	1	0.043	1	Ì	ġ.	1	12.341	0.039
149 Horga		1	1	1	1	1	3	0.296	1.224	3	1	Ĩ	1	0	j	į.	1	3	9	1	3.038	0.010
		1001	1001	100																		

			Year. 1992	266						Year: 1993	26							Voor 1004	10	Total annual catch	d catch
Gear name(Bengali)	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mav	Inn	Inh	Ano	Con	Qut.	Now	Dag	I cdl. 199	Cat	War yo - FCD 94	rc0 94
	20.214	5.497	16.379	9.625	12.249	57.447	37.337	31.113	31.776	67.558	9.185	33.208	47 183	68 537	-	-	-	18 405 7	-	16050167	20 750
	I.	ţ	2.674	18.704	75.413	I	19.277	37.960		1	1	1		1			_		10	201.2020	200 21
	7.268	4.404		17.011 38.474	4.950	29.790	23.037	3.129		1.645	73.634	1.455	1.622	0.159	6.049				7401	CT1.C100	1060.01
Hand fishing	I	ļ.	1	2.977	1	1	1.677	6.050	11.927	1	1	I	1	1					170.0	4565 164	10.422
Current jal	0.204	7.528	5.383	1.471	4.818	7.214	6.954	3.966	1	17.614	0.952	33.242	16.646	7.563	9.538	_	10.996		2253	167 547	200-01 800 L
Dharma jal	2.009	4	9.517	1.687	0.443	1.388	0.531	1	0.273	0.922	6.446	5.210	26.100	11.973	8.533		0.093		1	2652.854	6.063
	9.070	5.047	5.329	2.490	0.184	0.747	0.128	1	1	ľ	7.977	10.412	1.327	0.846	3.085	8.566	1.919	0.490	1	1644.337	3 758
	T		1	3.780	1	1	I	ł	2.781	E	1	T	Ţ	1	2.502	5.137	I		1.390	885.101	2.023
	39.867	15.900	7.593	14.314	0.720	1	1	T	Ļ	I	L	1	2.493	7.889	0.795	1	1	J	1	827.103	1.890
	Ĩ	1	1	Į	1	1	1	T	ł	L	I.	1	Î	1	I	3.078	1	1	1	361.815	0 877
	I	1	1	J	1	1	1	16.044	Ļ	1	I	1	ļ	1	Î	1.157	I	1	2 482	348 150	902.0
	I	Ţ	0.313	ł	0.127	2.511	1	1	1	l	I	1	0.019	0.389	0.923	1 480	0.847	1		101 102	N21.0
	1.380	1.604	0.892	1	1	J)	1	1	i.	1.373	1.238	0.335	0.798	1.731	0.169	1	1	I	PTT 274	9090
	19.987	13.691	28.015	2.881	0.663	0.904	1	1	2.163	8.611	1	0.528	2.435	0.956	0.607	0.273	0.062	1	0.076	150.020	0 507
	1	I	ŀ	1	1	ł	1	I	1	3	1	1	1	0.182	1.119	1	2.904	_	162.0	250 345	0 577
	Į.	I.	L	1	0.433	Ţ	1	1	1	3.649	0.433	14.707	1.839	I	0.303	1	I			700734	0.450
	ľ,	F	L	T	1	Ţ	1	I	ł	1	1	1	ļ	0.617	I	1	1.529	I	I	115 680	796.0
	ľ,	3.257	6.894	3.599	1	ţ	1	1	1	1	1	Ē	1	160.0	0.204	0.254	1	1	1	55 667	1010
	1	ŀ	1	I	1	ļ.	11.060	1	1	1	I	I	ł	1	1	0150	0.551	_	0 1 2 0	400°00	171-0
	Ţ.	1	Î	1	1	ļ	1	1.737	0.768	1	1	1	1			0.110	1000		671.0	440.74	260.0
By hand + dewatering	ļ	1	Ĩ	1	1	1	9			()	5	1	1					I	/00'0	CIC-74	160.0
J	ţ	1	I	1	1	1)	i i		í.	1	1	I	I	I	0.1/8	cc7.0	1	1	30.734	0.070
Boat katha	1	j	i.		1	8	11.8	Ŭ,	i)	I	I	1	1	1	I	I	I	1.758	1	30.587	0.070
	001	00.	1 007			1	1	L	L	1	1	1	1	1	Ţ	1	1	0.061	1	1.067	0.002
	100	100	100	100	100	100	1001	100	1001	1001	1001	1001	1001	1001	1001	1001	1001	1001			

4

7

T

*

+

Table 6.5Percentage Contribution to the Total Catch by Dominant Gears Used on
Floodplains and Beel Inside and Outside the Tangail CPP,
August 1992 - February 1994.

Gear Name	Outside	Inside	All Floodplains/beel Sampled in NCR
Thella jal	39.3	33.9	32.0
Ber jal	12.6	4.4	9.4
Jhaki jal	12.3	11.7	10.5
Dharma jal	8.5	7.1	5.3
Current jal	4.5	6.6	6,1
Sip	3.7	4.0	2.9
Katha	3.1	14.3	7.0
Kua	2.8	<1	7.8
Dhor jal	2.6	<1	1.7
Hatani (Hand fishing)	2.3	8.1	4.8
Doiar trap	<1	3.8	1.9
Veshal	< 1	<1	2.7
Total Number of Gear Types	27	24	30

Note: The dominant gears listed above caught 92% of the total catch outside and 94% inside the CPP.

6.2.2 Catch by gear by month

Thella jal operated on floodplains and beel outside the CPP throughout the year, but became particularly important during the flood recession when peak catches were made (Fig. 6.8).

Other gears which predominated during periods of peak catch included the dharma jal and the ber jal of professional fishermen. Peak catches were a function of increased fishing effort (Fig. 6.9) and increased catch rates (Fig. 6.10) of dominant gears.

Within the CPP, the thella jal again dominated the gears used during the peak catches of the 1993 flood drawdown, taking 64-68% of total catch, but other methods such as hand-fishing and jhaki jal contributed more to the high catch of November 1993 (Fig. 6.11). Again peak catches resulted not only from increased fishing effort (Fig. 6.12) but also increased catch rates of dominant gears (Fig. 6.13).

T

Figure 6.9 Total monthly fishing effort of dominant gears: floodplains/beel outside the Tangail CPP

T

+

2

Note: Scaled CPUE are values of CPUE expressed as a proportion (decimal) of the maximum monthly value recorded.

Figure 6.11 Percentage of the total monthly catch taken by dominant gears: floodplains/beel inside the Tangail CPP

Ť

ł

Figure 6.13 Catch rates (Scaled CPUE) of dominant gears: floodplains/beel inside the CPP

Note: Scaled CPUE are values of CPUE expressed as a proportion (decimal) of the maximum monthly value recorded.

83

6.2.3 Statistical comparison of catch rates

At the inside sites for this habitat type, over 90% of the total catch per hectare for the period March 1993 to February 1994, excluding katha and kua, was taken by 6 gears. In descending order of catch per hectare, these were: thella jal, jhaki jal, hand fishing and dewatering, current jal, dharma jal and doiar traps. At the outside sites, over 90% of the total catch per hectare over the same period was taken by 8 gears. These were: thella jal, ber jal, jhaki jal, dharma jal, dhor jal, current jal, hand fishing and dewatering, and sip. Five gears appeared in both lists: thella jal, jhaki jal, dharma jal, current jal, hand fishing and dewatering.

For each of these common gears, there were similar seasonal trends in catch rates at inside and outside sites, with the exception of current jal in season 4 and to a lesser extent in season 5. For this gear, the catch rates were much higher at outside sites than in the earlier seasons, whereas at inside sites the catch rates remained about the same throughout the year. There was also a single aberrant catch rate observation for dharma jal at inside sites in season 5, but this would have no effect on the statistical analysis. With the exceptions already noted, not only the seasonal patterns, but also the sizes of the catch rates were very similar at inside and outside sites for jhaki jal, dharma jal and current jal. However, in seasons 2, 3, 4 and 5 thella jal had consistently and substantially higher catch rates at inside sites than at outside sites. Despite this, statistical comparisons were attempted, but inspection of observed and predicted catch rates revealed that the discrepancies in trends and sizes of catch rates caused severe lack of fit in the model.

Summarising the trends in seasonally pooled catch rates, for three of the five common gears, there is little evidence of differences in catch rates at inside and outside sites. Larger catch rates were taken by current jal at outside sites in seasons 4 and 5, but thella jal had much higher catch rates at inside sites in seasons 2, 3, 4 and 5 (Fig. 6.14). This lack of consistency precludes valid statistical comparisons of fish densities.

6.3 Species Composition and Biodiversity

6.3.1 Species richness

The total number of species recorded inside the CPP (90) was almost the same as that outside (92) despite the fact that more sites were sampled outside and therefore the increased sampling

FAP 17: Supporting Volume No. 1

+

i.

effort might be expected to have yielded a higher number of species. The total number of species found in floodplains and beel was similar to those in canals and rivers around Tangail. This species richness is very high compared with the Southwest Region of Bangladesh.

Seasonal variations in the number of fish species found were fairly similar in and out of the CPP (Fig. 6.15). This pattern differed from that recorded in canals and rivers, in that quite high species richness was maintained throughout the winter and pre-monsoon seasons when normally substantial reductions in species number occur. The retention of high species diversity reveals the importance of the perennial waters, particularly the baor-type beel which are especially abundant in the Dhaleswari system.

6.3.2 Species composition

The species compositions (% of total catch by weight) for combined floodplain and beel sites outside and inside the CPP are presented in Tables 6.6 and 6.7. Those species dominating the total catch for the period August 1992 to February 1994 are listed in Table 6.8. These comprised 87% of the total catch outside the CPP and 88% inside it. Clearly, the compositions of dominant species were virtually identical at sites inside and outside the CPP. This degree of similarity is surprising given the preponderance of the major carps rui, catla and mrigel in canals outside the CPP (30% of catch) compared to within it (6%). Since most of the canal catch is taken during the flood drawdown when fish migrate from the floodplains, then a fairly close similarity in catch composition of canals and floodplains is to be expected. The reason for the disparity in the relative contribution made by major carp to canal and floodplain catches remains unclear. There are two possible explanations. Firstly, that major carp might occur on the floodplains at the same relative densities as in canals but for some reason are not captured at the same rate. This seems unlikely given the presence and operation of gears suitable for their capture e.g. ber jal, dharma jal, current jal etc. The second possibility is that juvenile major carps migrate from the floodplains at a greater rate than many other dominant species. The second explanation appears more likely in the Tangail area, where few large water bodies capable of supporting high carp densities remain in the dry season.

With the exception of the major carps, the only other migratory species appearing in the lists of dominant floodplain species are boal and fulchela. The former was equally abundant

FAP 17: Supporting Volume No. 1

5

an

Species name	Tame			Year. 1992	22						Year: 1993			.(*				-	Year: 1994	F C	Total annual catch (Mar'93 - Feb'94)	catch O eb'94)
Scientific	Bencali	Aup	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mav	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	KR	25
31	Prawn	14.385	9.461	-	[°]		32.112	22	19.685	14.521	15.631	6.734	11.821	34.724	39.413	21.003	6.724	4.399	12.902	1	7314.208	23.070
	Puri	8.208	35.478				7.458	5.704	1.964	11.856	1.557	11.546	7.119	5.631	3.829	18.320	29.107	11.608	20.858	12.555	3879.603	12.237
41 Channa punctatus	Taki	2.097	5.934	13.198	11.884	13.855	4,469	4.114	5.496	15.057	5.839	17.082	1.981	169.31	2.897	10.482	16.674	26.961	15.109	9.972	2923.571	9.221
123 Macrognathus pancalus	Guchi	3.364	2.019	2.208	2.490	5.560	0.605	0.778	10.204	10.172	15.477	6.138	6.422	8.519	8.966	2.682	7.482	8.187	14.481	7.644	2127.328	6.710
110 Lepidocephalus guntea	Gutum	1.338	1.708	5.644	3.041	4.626	4.282	2.8.46	6.125	8.701	11.871	6.766	1.799	2.982	2.480	4.174	2.5%	4.515	4.257	4.589	1096.229	3.458
55 Colisa fasciatus	Khalisha	0.645	0.816		5.260	14.623	13.525	3.226	9.809	2.736	2.892	3.429	2.822	2.012	1.134	3.819	8.372	4.464	3.970	2.236	1005.421	3.171
37 Chanda ranga	Lal chanda	4.672	1.717	0.851	0.546	0.907	3.354	2.577	0.841	1.616	0.616	1.747	16.231	4.724	1.579	2.278	0.371	0.156	1.251	0.616	984.026	3.104
32 Carla carla	Catla	19.442	0.351	1	1	1	1	3.518	1	1	1	3	0.363	0.267	9.864	0.931	0.172	ł	1	2.450	967.075	3.050
107 Labeo rohita	Rui	1.069	0.856	0.169	3.150	0.805	I	6.564	I	I.	1	I.	4.997.	1.155	5.045	2.720	0.179	0.615	1	3.043	921.101	2.905
175 Puntius conchonius	Canchan puti	1	1.064	1.523	0.189	0.035	3.164	0.113	0.141	0.493	3	1.575	5.812	3.058	0.575	5.113	1.822	0.677	1.364	1.020	905.478	2.856
83 Glossogobius giurus	Bailla	3.961	0.880	3.776	0.741	1.571	1.573	0.857	0.637	2.326	2.942	1.151	166.0	1.517	2.699	3.955	1.321	2.154	3.269	5.621	898.946	2.835
121 Macrognathus aculeatus		2.458	1.763	0.672	2.282	2.900	0.023	1	1.035	2.579	2.339	1.520	2.390	6.750	2.193	1.968	4.005	1.737	2.927	1.170	817.986	2.580
		1	0.001	0.400	1.296	0.146	I	2.150	0.322	0.080	0.504	5.046	0.815	2.263	1.470	4.093	1.021	1.759	2.496	1	749.161	2.363
_	Tengra	2.640	1.202			2.892	1.434	0.719	0.328	5.099	2.549	1.740	1.573	3.022	0.966	0.560	4.144	2.293	1.258	4.172	474.804	1.498
_		6.800	0.476			4.456	1.888	0.396	7.520	I	1	1	0.638	0.568	0.800	2.615	0.062	0.831	1.049	3.949	469.860	1.482
_		0.188	3.018			1	0.214	0.347	0.139	0.881	1	0.136	6.852	1.168	1.983	0.504	0.055	0.852	0.495	0.280	466.629	1.472
_	Kaikka	0.298	0.759			0.598	0.718	1.192	0.282	1.311	0.141	0.340	0.294	1.032	1.292	1.466	1.105	1.693	3.305	2.541	434,311	1.370
	Shingi	1.307	0.033			1.163	0.604	3.774	8.285	1	5.878	66LLL	0.568	0.797	0.076	0.836	4.987	4.667	0.579	2.177	428.182	1.351
_	Mrigel	0.743	1.202			1	1	8.623	1	3	1	9	1	0.352	3.629	0.650	1	1	1	0.202	381.042	1.202
75 Esomus danticus	Darkina	3.313	0.306	0.145	0.599	0.551	0.446	1.024	0.310	T	2.300	4.931	2.048	1.726	0.176	1.578	1.401	0.720	1.873	0.082	378.757	1.195
6 Anabas testudineus	Koi	0.237	1.939	0.618	1.979	5.564	0.496	5.700	0.270	1	1	1.623	0.145	1.608	0.044	0.511	1.705	6.173	0.161	2.624	315.565	0.995
36 Chanda nama	Nama Chanda	1.870	0.572			0.143	4.000	1.918	0.471	3.272	0.045	0.458	6.976	1.019	0.480	0.203	0.250	0.130	0.633	0.543	306.225	0.966
209 Wallagu attu	Boal	0.026	0.500	_			I	5.706	14.057	1	1	5.656	1	0.038	0.795	0.640	0.334	606.0	L	3.168	262.539	0.828
	Tit puti	0.971	0.204			1.161	8.158	0.396	0.279	0.821	1	0.769	0.265	0.295	0.537	0.707	1.060	1.917	1.679	0.965	235.838	0.744
_	Phutani puti	I	K.		0,097	0.100	0.935	1	0.122	0.080	1	0.417	1.280	1.248	6/0.1	0.336	0.103	0.082	0.804	190.0	218.192	0.088
	Magur	ï	0.298			0.856	1	1.647	ł	L	1	0.312	0.047	0.269	1	1 1	2.722	6.347	1 0000	1.245	216.464	0.683
	Potka	1		0.00	160.0	C60.0	/00.2	1	I	IR I	I	C07-0	E:	970.0	176.0	1.10/	011.0	000.0	6/0'0	760.0	7401017	0000
144 Notopterus chifala	Catal	407.0	100	136.0	- 001 0	0 678	1 110		- 08 0	1 164	- 222 0	0110	0 575	1 1/2	047.0	0011	0 373	- 0.044	7 801	0.156	187.651	0 500
		ELE C	LEE U		_		1147	1600	0.585	P35 F	6909	1.312	1 174	1 281	0.643	0.147	100.0	0.355	0.195	1.126	175.267	0.553
		1 000	4 656			1	0.056	1	1	01	6.407	1	1	0.311	1.251	0.017	0.229	0.464	0.124	1.397	153.466	0.484
	Morari	1	I		1	1	1	1	I	1	I	1	5.576	1	0.024	1	1	1	1	1	153.413	0.484
	Cheng	1	1	1	0.022	1	9	1	1	a	1	1.312	0.219	1.092	1	0.993	0.157	1	1	1	147.770	0.466
211 Colisa labiosus	Khalisha	1	1	0.042	0.166	1	T	0.461	2.697	0.473	5.036	3.680	1.015	0.905	0.489	0.165	0.058	0.255	0.021	ī	147.704	0.466
130 Aorichthys aor	Ayre	0.609	1.375	0.013	0.140	1	3	j	0.376	4.338	1	1	U.	0.130	3	0.753	0.111	0.244	J	3.287	130.944	0.413
86 Gudusia chapra	Chapila	2.509	0.600	0.001	0.075	0.022	0.414	1.353	0.538	È	1	1	2.331	090.0	0.114	0.061	T	1	I.	0.708	90.662	0.286
42 Channa striatus	Shol	1	đ			I	1	0.549	1.175	1	1	1	4	1	1	I	0.236	2.761	1	1.849	90.661	0.286
_	Bajari tengra	2.016	0.236			0.114	4.231	0.167	0.112	2,930	0.141	0.119	0.344	0.093	0.397	0.184	0.042	0.211	0.427	0.187	79.693	0.251
_	Kabashi	1	2.553	_		1	0.056	0.888	0.320	3.340	1	1	0.083	0.039	0.005	0.628	0.119	0.031	1	0.398	78.104	0.246
_	Golsha tengra	Ĺ	1	6/0.0	0.100	I	U.	Ľ	0.289	IS -	-	1.246	0.025	0.310	0.000	0.163	0.191	0.176	0.103	1.409	100.95	0.189
_	Cragar E'6.			0.102	1			t	01011	E SI	10.440	610.0	967.0	cin.n	1	1	1 51 0	1 10	I	1.191	001.40	0.101
04 Cyprinus carpio	Cilinut		1 0 0 1	335.0	80.00	1000	1 0 1	- 117	0.040			0 616	0100	0.155	0 163	6410	CC1-0	101.0		0110	191.02	81.0
101 Labor bom	Bhancan	1		_	_		-	-	1	-			10,794	-	306.0	-	1	-		1	47 085	671.0
_	Kani nabda	1	1		1	1	ł	1	1	I	I	1		1	0.006	0.433	1	1	I	0.068	45.854	0.145
	Madbu pabda	0.110	1.453	0.161	0.225	0.082	0.211	1	0.118	ા	ł	1	1	1	0.381	1	1	0.205	0.084	0.022	37.982	0.120
145 Notopterus notopterus	Foli	I	0.123	_	1	1	1	0.305	0.501	I	1	1	1	0.194	I	0.089	0.078	0.580	1	0.322	33.874	0.107
102 Labeo calbasu	Kalbaus	0.490	0.372	0.056	1.023	Ŭ.	1	1.630	1	1	t	1	0.376	0.082	0.112	1	1	1	1	0 570	78 735	100.0
C7 Colice ente	TTL-17.L-	2110													T. OCH TANK					2.2.2	10.04	

Samias	Scecies name			Y	Year: 1992						Yca	Year: 1993						all and the second	Ye	car: 1994	(Wi	(Mar'93 - Feb'94	(16)
Scientific		Beneali	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	_	Kg	8
188 Salmostoma bacaila	a hacaila	Katari	0.574	0.059	0.007	0.100	1	0.285		0.077	1		0.114	0.843	1	0.004	1	1	1	1	0.074	24.913	6.0.0
	CB/LIB	Ghaura	1	1	1	1	1	1	1	1	1	I.	1	L	0.383	0.136	1	1	1	1	1	21.765	690.0
-	Pseudapocryptes lanceola tus		ť	t	t	1	1	1	1	1	1	1	1	1	1		0.209	I.	1	1	L	21.470	0.068
_		_	0.652	1	1	1	1	1	1	1	I	1		0.254	0.255			1	1		0.004	21.122	0.067
9 Aplocheilus panchax	s panchax	Kanpona	0.024	0.006	0.005	0.280	0.124	1	0.051	6.079	0.080	1	0.246	0.107	0.057	0.017	_		1	0.026	0.000	260.11	1000
139 Nemacheilus botia	us botia	Balichata	0.138	0.365	0.004	0.071	1	0.154	Ľ.		0.351	I	1	I.	1	1	_	0.272	0.152	I	0.412	0/7.01	100.0
135 Aorichthys seenghala	scongha la	Guizza	1	a.	1	1	1	1	1	2.303	1	1	1	1	1 000 0	_	0.000	\$70.0	1	1	1	114.71	10100
81 Gagata youssouff	inossi fi	Gang tongra	0.015	1	t	E.	I.	Ľ	U.	I.	t	1	1	0.425	0.030	40.000	1	1	I	l	1	211.21	01010
100 Labeo bata		Bata	0.004	9.378	0.024	1	1	1	ł	1	l	ł	I	1	0.099	0.089	0.023	1	I.	1	1	144.71	ACD.0
59 Crossocheilus latius	lus latius	Kalabata	1	0.066	1	Ŋ	T.	1	1	1	1	1	1	0.418	1	1	0.005	1	1	1	1	C69.11	950.0
_			1	1	1	1	1	1	ł	T	I.	1	1	0.372	ľ	ı	1	1	t	1	1	10.100	0.032
-	mannina	Goni chapila	1	I	I	T	1	1	1	0.093	0.234	1	1	1	0.025	1	0.019	ī	I	0.338	0.040	8.258	0.026
_	iue	Goni	1	1	1	1	1	ī	1	ŀ	1	I.	E	0.274	I	1	ï	1	1	1	1	7.440	0.023
_	I anidocenhalue sharmalie	Puiva	1	1	1	<u>j</u>	1	1	1	1	1	1	Ţ	0.020	0.007	J	0.038	1	1	£	t	4.651	0.015
_	enumente enum	_	0 128	1000	1000	01040	0.050	1	2.631	0.171	0.117	1	0.026	0.024	0.023	0.011	0.012	1	1	1	0.036	4.470	0.014
	Esendentropius atuettuoties	_	2		0.016	1	1	1	1		1	1	I	1	0.031		0.008	I	t	L	0.225	4.362	0.014
	018	Coata put	t BUT	104.0	1 633	1 400	1	1	1	1	1	1	1	0.003	0.070	1	0.004	1	1	0.068	0.010	3.545	0.011
	01	I en punt	cno-T	174-0	cco.c	700.1	6	1	1	1	1	1	1	1	1	1	1	1	1	0	0.234	2.850	0.009
_	Clenopharyngodon idellus	Gheso carp	1 10 0	1	1		1	1	.)		1	3	1	0.024	1	0.026	1	1	1	1	1	2.788	60000
		Najut	50.0	i.					1	1	I	-	1	1	0.019	0.008	1	1	0.065	1	1	2.605	0.008
_	emo	Nacriki	766.1	1	1	0.001	1)	1	1	0.667	1	1	1	0.018		0.018	I	1	t	1	2.531	0.008
	igano	Backa		1	1		1	1	1	1	1	1	1	1	0.093	1	1	1	1	1	1	2.529	0.006
_	Eutropuchtays vacua	DACON	0	0	1	8 1	1	1	1	1	1	1	1	1	0.058		0.005	1	1	1	1	2.080	0.007
33 CDRCH CDRCH	3	Diffe		1	0000	- a	1	1	1	1	0.157	-	1	0.034	1	1	0.001	1	1	1	1	1.038	0.003
	Charde branks contained	Chanda	0 148	1	1	1	1	1	ł	1	1	I	ţ	1	0.007	1	0.008	1	1	0	1	1.015	0.003
	and on the	Ghamoia	1	1	1	0.033	1	1	1	1	0.644	1	1	1	1	0.004	0.003	1	1	1	1	0.531	0.003
	urio	Chebli	1	0.011	1	0.012	1	0.090	1	0.023	I	1	1	0.008	1	1	0.002	1	1	1	0.022	0.780	0.002
	aniconius	Darkina	1	1	0.038	a	1	1	1	1	1	0.732	t	t	Ţ.	Ľ	I	1	T	T.	1	0.661	0.002
	1 28.0.8	Tengra	I	1	ł	0.007	ţ	I.	1	1	1	1	1	1	1	0.006	1	1	1	1	1	0.521	0.002
	io rerio	Aaju	1	1	1	0.001	1	1	1	1	1	0.034	0.062	1	1	I.	I.	ţ.	L	1	I	0.357	0.001
-	chata	Putul	0.328	1	I.	ľ	Ļ	ł	1	1	1	1	1	1	0.013	1	1	1	1	1	1	0.353	0.001
_	olastigma	Kanpona	3	1	0.001	1	1	1	1	i	1	Ŀ	0.042	I.	ţ	L	I.	I.	1	t	ţ	0.218	0.001
			I	1	T	1	1	1	1	1	1	1	1	I	0.004	1	1	1	1	1	I	0.102	0.0003
185 Rhinomugil corsula	ril corsula	Khorsula	1	0.066	1	1	I	1	1	1	I	t	1	1	Į,	L	ì	Ŋ	1	1	I	L	1
173 Puntius cosuaris	suaris	Kosuati	1	1	0.009	1	1	1	1	1	1	1	1	1	1	1	1	1	T	1	Î	1	1
134 Mystus menoda	about	Ghagia	1	4.222	I.	1	1	1	E	I.	ľ,	I.	1	1	1	1	1	1	1	1	1	1	1
187 Osteobran	Osteobrama cotio cotio	Keti	060.0	1	1	0.005	1	1	ï	1	1	I	J.	I	I	I.	1	I	Î	I.	ī	Ľ	1
18 Barilius barna	1/718	Bani Koksa	0.024	1	t	I.	I	1	1	1	1	3	1	+	I	1	1	1	1	1	1	1	1
	Macrobrachium rosenbergil	-	1	1	1	1	1	0.087	L	1	1	Î.	I.	í.	ľ	1	1	I	I I	L	L	I	1
157 Pampus chinensis	hinensis	Rup chanda	1	1	1	1	0.042	1	1	1	I	1	t	1	1	1	1	1	I	1	1	1	I
1	asbora	Louzza darkina	1	0.069	I.	1	ţ.	1	i.	1	L	I.	1	I	1	1	1 1	1	Ç.	r h		1 1	1 (1
	cascasia		10.0	1 1	1 1	1 1	1 1	1 1	0.050	1 1			1	1		1	1	1	I	1	1	1	1
_	alus showing	Eat puri	0.055	I	1	1	1	I	1	1	1	ł	1	1	1	1	I	ľ	ï	1	1	I	1
Anonononono Subman and us	Anouoniosioma cascuna Nandue nandue	Bheda		1	ł	1	1	1	600.0	1	1	1	1	1	1	1	I	1	I	J	1	1	1
-	allow a	Chora chela	0.172	1	I	1	ţ	I	1	1	Ľ	t	1	ľ	I	1	Ľ	T	1	I	I	L	T.
	alor	Bhol	1	1	1	0.002	1	4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
_	And a state of the		and a second sec		Conception of the second			000000000000000000000000000000000000000	100			~~~				0000 17 mm		1001	• • • •			A 170 4 4 4 4	000

				Year: 1992	1			N. C.		Y	Year: 1993							~	Year: 1994		10tal annual catch (Mar'93 - Feb'94)	catch
	Bengali	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Kg	89
	Prawn	10.709	6.394	5.634	6.829	5.789	9.817	17.054	19.287	14.091	39.768	22.192	7.851	21.762	46.241	37.079	8.386	12.136		-	10538.525	24.085
	Puti	10.548	20.069	17.826	44.656	18.424	12.567	12.123	10.857	12.502	1.213	26.841	17.894	10.660	7.320	6.817	30.543	13.116	17.069	1.1	6705.668	15.325
	Taki	3.745	6.049	8.659	5.241	9.347	18.767	10.272	4.643	8.810	10.467	4.719	15.442	4.093	3.944	196.9	13.507	29.418	13.744	12.503	4914.280	11.231
	Khalisha	4.143	2.118	2.978	2.957	6.522	20.071	13.692	3.523	4.251	1.024	3.980	0.798	4.935	1.697	4.546	9.122	5.807	10.678	169.5	2399.047	5.483
	Guchi	3.043	1.506	3.841	2.585	0.347	0.603	1.477	6.973	7.364	1.862	3.057	2.988	5.369	6.029	4.652	4.985	1.817	3.113	1.594	1980.610	4.527
	Kaikka	13.372	3.127	1.040	3.945	0.056	0.706	1.589	0.823	0.244	0.017	0.292	0.754	1.127	5.462	5.521	6.660	2.368	4.557	0.599	1978.924	4.523
	Shingi	0.672	1.396	2.213	0.849	3.586	2.275	1.271	3.019	10.574	8.710	0.183	11.024	2.587	2.190	4.623	1.506	4.479	1.284	3.687	1365.242	3.120
	Gutum	0.440	0.533	3.045	4.072	0.922	3.015	3.167	162.2	7.518	5.316	1.395	1.424	1.345	1.303	3.400	2.866	2.364	2.734	1.752	1120.283	2.560
_	Rui	3.475	12.234	1.026	0.083	0.165	0.084	I	0.418	2.813	ì	۱,	0.320	2.424	2.798	2.593	1.760	1.458	2.597	7.507	1084.747	2.479
-	Foli	0.044	0.105	0.306	0.153	9.239	0.113	2.465	0.169	0.536	1	0.031	0.008	0.032	1	0.720	0.796	4.084	6.905	17.444	981.747	2.244
	Lal chanda	3.020	0.922	1.182	0.318	0.405	0.406	3.833	5.407	0.619	0.268	6.049	4.330	5.139	2.064	1.938	0.732	0.562		0.744	760.301	1.738
137 Mystus vittatus	Tengra	1.058	3.161	1.374	5.481	3.657	1.841	3.719	6.640	3.783	4.855	6.474	2.900	2.990	1.083	0.571	1.255	1.241	5.771	1 000	760.055	1 737
62 Cyprinus carplo	Karfu	1	1	1	I	1	1	1	1	30	1	1	1	I	1.804	1.314	1.457	0.705	5.062	4.710	710.434	1.624
56 Colisa Inlia	Lal Khalisha	0.042	0.027	0.146	0.277	0.646	11.553	t	0.849	1.030	0.077	2.492	2.512	1.071	1.641	1.784	1.751	0.700	2 079	0 787	681 081	1 457
42 Channa striatus	Shol	11.595	7.001	24.003	3.497	4.966	0.589	0.030	6.347	0.291	1	1	0.020	1	0.189	0.980	2 504	1.474	LFY I	1 971	100.100	AND 1
40 Channa orientalis	Cheng	4	1	1	0.056	1	1	1	1	1	1	0.029	14.444	0.570	2 565	0 401	1 462	1110	'	. '	585 110	1 328
6 Anabas testudineus	Koi	9.336	4.103	2.144	0.843	5.265	11.444	2.159	3.965	3.049	1.064	0.463	1.608	4.318	0.516	1 48.4	0.688	ALL I	0.054	1 556	112.000	00011
83 Glossogobius giurus	Bailla	1.478	0.450	1.050	1.077	0.192	0.309	1.469	1.598	1.864	0.894	0.199	1.280	2 318	1 306	579.0	1 060	515 1	0 040	1 003	16 888 815	181 1
32 Catla catla	Catla	3.047	13.036	2.000	1.032	1	1	i	ļ	1.293	I	1	1 950	12 531	0.688	0.478	0 716	1 682	0 36.4	136.0	080 234	101.1
175 Puntius conchonius	Canchan puti	1	0.202	0.218	0.142	1.591	1.547	1.025	0.738	0.261	0.297	8 888	305 1	1757	0.674	0.688	10407	2010	. 010	107-0	101 066	000.1
178 Puntius phurunio	Phutani puri	0.013	0.005	0.106	0.100	0.171	0.048	0.001	0.819	0.154	0.111	0.275	0.933	2.436	2.428	0.767	0.216	201.0	1125 0	01/70	200.040	0.600
49 Clarias batrachus	Magur	1	0.827	0.645	0.164	1.618	'	0.386	0.342	1.447	12.913	1	0.282	0.294	1	0.226	0.436	1 7 5 4	0 360	LLL C	1.18 060	20200
209 Wallagu attu	Boal	1.620	3.688	8.009	5.751	7.520	0.573	6.824	4.029	3.411	1	1	1	1	1	0.079	0.217	4.419	0.147	1 842	X2C LCE	0 748
75 Esomus danricus	Darkina	0.338	0.314	160.0	0.136	0.286	0.205	1.616	1.056	0.287	1.176	2.409	0.492	0.154	0.164	1.400	0.610	CCF 0	0 607	0 173	PC7 100	04770
	Khalisha	ŀ.	ŧ	0.022	0.105	1	0.141	0.005	0.999	1.187	0.733	2.554	0.643	1.433	0.169	0.782	0.787	0.070	0.064	0.131	261.907	0.599
_	Ayro	0.169	1	1	0.603	0.053	0.013	7.291	E	0.436	L	T	0.587	0.055	0.276	0.371	1.554	1	1	0.289	258.556	0.591
_	Potka	0.287	0.612	1.293	0.202	0.818	1	I.	0.076	t	1	0.022	660'0	0.297	1.057	0.818	0.272	0.404	0.211	0.700	245.679	0.561
_	Tara baim	1.363	0.433	0.473	0.304	1	1	0.082	2.806	0.333	0.051	0.410	3.682	1.167	0.442	0.362	0.571	0.224	0.424	0.086	238.787	0.546
_	Napit Kol	0.080	0.022	0.044	0.125	0.208	0.562	0.225	0.185	0.022	8.103	060.0	0.316	0.848	0.747	0.521	0.219	0.149	0.741	0.730	220.707	0.504
1 Amelypnarygoon mon	MOIB	2.276	0.803	0.513	0.048	0.678	1	0.051	0.059	0.150	0.013	3.311	0.786	0.165	160.0	0.571	0.052	1.785	0.684	0.340	207.928	0.475
_	The push	1		1 000	1	1/0.0	1	1	1	0.030	I	1	T	E	0.196	0.013	1.456	ı	0.109	1	192.448	0.440
	Mrinel	1000	110.0	010.0	C71.0	265.0	0.120	2.940	1.294	0.483	0.155	0.053	0.359	0.247	0.246	0.529	0.410	0.621	0.290	0.672	188.697	0.431
_	Raral haim	140.0	141.0	070.0	110.0	200.0	1		1 000 0	1	1	1	1	2.939	1.106	0.208	0.022	I.		0.695	184.357	0.421
	Nama Chanda	010.0	3 165	011.1	1 105	10000		10/-0	6/6.0	0.345	1	1	1	0.630	0.599	0.648	0.091	0.592		0.285	172.705	0.395
_	Gaiar	1	1	0.138	192.0	C111	-	-	0.430	471.U	050.0	167.0	0.487	0.778	0.278	0.400	0.226	0.080	0.766	0.452	140.351	0.321
136 Mystus tengara	Bajari tengra	1.581	1.135	1.196	1.682	0.925	0.053	0.175	0.261	4.225	0.085	2.578	0 100	- 0 636	120.0	200.0	9010 0	- 000		1.365	136.912	0.313
	Raik	0.888	0.095	0.192	0.023	0.025	а	а	1	1	1	I	1	1.066	0.250	0.198	0.074	1			P11 73	1151
	Golsha tengra	1	1	0.014	0.018	1.527	L	0.039	0.021	0.586	0.012	0.027	0.304	0.137	0.043	0.213	0.037	0.060	_	0.402	61 510	1410
	Darkina	0.220	0.025	0.636	0.240	0.007	1	1	T	0.464	0.142	0.044	1	1	0.252	0.146	0.014	0.048		0.480	60 793	0110
_	Giliputi	1	0.031	0.002	0.159	0.079	0.078	0.012	1.048	0.016	0.082	0.101	0.103	0.579	0.283	0.096	0.020	0.006		0.023	59.930	0.137
	Fulchela	0.614	0.720	0.051	0.156	1	1	0.021	I	1	0.051	1	0.109	0.268	0.196	0.230	0.035	0.094		0.019	56.877	0.130
	Cheka	0.035	0.041	1	0.328	1	1	Т	0.844	0.293	0.273	E	I.	ì	1	0.381	1	1	1	0.087	45.658	0.104
	Bata	0.017	0.265	0.039	I	ï	l	1	ł	1	1	1	1	1	0.435	0.034	1	I	t	I	42.865	0.098
131 Urecentoms nuotica	NIIOTICa	1 0000	1	1	1	1	1	1	1	1	I.	I.	ī	ı	I		0.017	0.082	1	0.389	42.229	0.097
	-	0 503	010.0	141.0	400.0	C0/.D	110.0	0.000	0.050	0.047	0.018	1	1	0.021	1		0.004	1		0.340	25.583	0.058
	_	131.0	7000	0000	170.0	404.4	l	I	1.600	1.145	1	0.007	0.014	1	1	_	1	1	_	1	24.456	0.056
		1111	0	ţ,	Ē	3.5	I	I	1	ī	1		C 111.11	1 1 1 1	6410	1000	2100					

Consider Internet Internet			``	Vear 1903						Ye	Year: 1993							Ycar	Year: 1994	(Ma	(Mar'93 - Feb'94	94)
Calantific	Banowli	And	Sen	Det	Nov	Dec	Ian	Feb	Mar	Apr	Mav	Jun	July	Aug	Sep	Oct N	Nov I	Dec	Jan	Feb 1	Kg	8
1	Cilver com	-	1		1	1	1	. 1	1	1	-	1	1.051	0.641		0.001	1	1	1	1	18.556	0.042
	University of the second secon	0.477	1.401	0 355	7.07 0	0.078	1	0.028	0.758	0.167	0.079	1	1	0.056	0.094	I	1	- 0	0.005	1	17.652	0.040
-	Valhatte	0100	0 226	0.071	1	1	1	1	1	1	1	1	1	0.572		0.058 0.000	8	1	0	0.011	17.600	0.040
_	Chala nuti	1	1	0.018	0.001	1	1	1	1	0.018	I	1	0.372	1	1	0.080	1	- 0	0.379	1	16.936	0.039
	Teri punti	0.204	0.580	3.768	1.228	0.024	0.020	1	1	0.059	1	1	0.030	0.216	1	0.061 0.0	0.033 0.	0.027 0.	0.031 0.	0.021	15.113	0.035
	Mola	1	1	1	I	I	1	1	1	1	I	1	1	ţ	I	- 0.116	16	1	1	4	13.619	0.031
-	Chanila	0.478	1	0.029	0.008	1	1	1	1	1	I	1	1	0.013	0.011 0	0.065 0.0	0.016 0.	0.033 0.	0.071	1	12.796	0.029
_	Guivan		1	01010	0 047	1	1	2	1	I	1	1	1	0.087	0.115	1	1	1	1	1	11.796	0.027
100 AORCHUYS SCOLUTAR	Variation	0 000	1	0000	0.018	0.208	0.059	0.034	0.035	0.177	1	0.083	0.131	0.031		0.005 0.0	0.049 0.	0.003 0.	0.005 0.	0.003	11.132	0.025
_	K halicha	0.541	0 744	FOL O	0.802	0.201	0.875	0.785	0.573	а	0.017	0.004	0.038	0.011	0.009	-	_	0.028	1	1	10.880	0.025
	A min	160.0	1	100.0	700.0	1000	-	1	1	0 010	0.002	0.073	0.010	1				1	1	1	7.682	0.018
	ndry			6 9	2000	-						1	1	1		0.050	1	1	1	1	4.248	0.010
	Kakra	1	1	I	I	1	1	1		1.00	1	1			i d	_	0000		1	5 3	3.470	0.008
	Gheso carp	U	1	1	1	I.	1	I.	I.	IS.	I.	1	1	1	1			1		1	076.6	00000
147 Ompok bimaculatus	Kani pabda	1	1	1	1	Ĩ	1	t	1	1	1	1	I.	I.	1	0.0 00.0	c10.0	5 I	c70.0	Í.	000.7	000.0
109 Lepidocephalus berdmorei	Puiya	L	1	1	1	0.001	I	1	1	1	1	0.186	ł	1			1	ı	1	1	2.368	0.005
28 Botia dario	Rani	0.429	0.003	0.032	1	1	1	I.	t.	I	I	I.	0.023	I.		0.006 0.0	0.000	I.	L.	ī	2.096	0.005
2 Ailia coila	Kajuli	1	1	1	1	1	•	ł	1	1	1	1	1	1	0.021	ì	1	1	1	L	1.964	0.001
139 Nemacheilus boria	Balichata	0.003	0.003	l	E	1	1	I.	0.011	Ŀ	0.119	0.081	I	1	1	0.004	1	1	1	0.005	1.939	0.004
198 Somileptes gongota	Gharpoia	1	1	1	1	1	1	1	1	1	1	0.119	ļ	1	1	1	1	ĩ	I,	T	1.523	0.003
51 Clupisoma garua	Ghaura	1	1	I	I	1	Ĩ.	1	1	1	1	1	J	1	1	- 0.0	0.012	1	1	1	1.387	0.003
89 Hilsa ilis ha	Ilish	1	4	1	1	1	1	1	I	L	1	1	ľ.	I.	E	I.	i	0	0.051	Ū.	0.883	0.002
217 Lepidocephalus thermalis	Puiya	1	1	1	1	1	0.266	1	1	0	1	ı	0.084	1	1	1	1	1		1	0.763	0.002
68 Danio devario	Chebli	1	0.004	1 C	T.	1	I.	1	I	Ē	t	1	1	1	1	1	1	1	0.029 0	0.005	0.654	0.001
144 Notoptorus chitala	Chital	0.007	0.001	1	ł	1	1	1	I	1	t	1	1	L	0.004	1	1	1	1	I.	0.327	0.001
81 Gagara youssouff	Gang tengra	1	1	1	1	1	1	1	I	i	1	1	1	0.013	0.001	1	1	1	1	1	0.264	0.001
	Bata	1	1	1	L	1	1	1	L	0.020	I.	i	I	1 100	L		1	I	1	I.	*C7-D	100.0
		1	1	1	1	i	1	(i i	1	1	I	I I	010.0	i	1	1	1	1	I.		100.0
	Kanpons	L	1	I.	1	1	1	I.	1	1	1	I	I	600.0	1	-			1			970000 0
	Phasa	I	1	I	1	1	I	1	E	1	0		1	Ú I	0000	-	2				_	0.00006
	Kalabata	1	1	1	1	I	I	l	1	I	I	I	I	I	0000	1	1 0000	I	1	1		
	Chep Chela	660.0	I	Ľ	1	1	1	I	1	I	I	I	I	1	I	1	8	1		1		
	Kunchu icha	1	1	1	601.0	1	t	1	I S	1	1	I	I	i	1	ï	1		t z	1	0	h K
	Chingri Thengus	0.843	0.069	1	1	1	i	1	1	1	1	1	1	1	1	1	1	1	I	1	ł	
	Longu	1	1	1	Î	L	1	0.026	I	I.	I	1	1	i	1	1	1	1	1	1	C	
173 Puntius cosuatis	Kosuati	I.	1	T	I.	0.057	1	1	1	1	1	1	ï	1	1	1	1	1	I	1	1	
101 Labeo boga	Bhangan	I	1	0.078	0.036	1	ſ	E	1	1	1	1	ł.	1	F.	1	1	I.	E	Í.	1	
138 Nandus nandus	Bheda	0.312	0.641	0.513	0.299	4.991	1.024	1.576	1	1	1	1	1	1	1	1	1	1	1	1	Ţ	
58 Corica soborna	Kachki	0.080	1	1	1	0.014	L	I	I.	I.	I.	1	1	L	1	ţ.	1	I.	15	I.	ţ.	
124 Monopterus cuchia	Kuchia	1	1	0.351	1	0.371	1	I	1	1	1	I	1	1	1	1	1	1	1	,	1	
_	African magur	ľ	1	L	1	0.038	I	I	1	1	1	1	1	1	1	1	1	1	1	t	ł	80
117 Machrobrachium styliferus	Gura icha	1	1	1	0.120	1	ţ	1	1	1	1	1	T	I.	1	1	ī	1	I.	1	I.	
45 Chelonodon Iluviarilis	Potka	1	1	1	1	1	0.168	1	1	1	1	i	1	1	1	1	1	1	1	1	1	0
	Chora chela	0.006	I	0.039	1	I.	£.	I.	1	1	1	I	I	1	I.	L,	1	I.	1	I.	I.	
	Piali	0.002	0.002	1	1	1	1	L	1	1	1	1	1	1	1	1	1	I	I	1	1	5 0
	Kachhim	ľ	0.267	1	1	1	1	L	1	1	I	1	1	ł	1	ł	1	1	I	1	1	3
	Bata	t	0000	1	I	1	I.	I	I	1	1	1	1	1	1		1	1	1	1	I	2
	Sephatia	1	1	0.167	1	1	۱ 	1	1	1	1	1	1	1	1	1	1	1	I.	1 3	1	M Si
	Pedanti	0.003	- 000	6.1	1			1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1	10 A
3 Atta punctata	Vajuu	-	55.5			ļ																

Table 6.8

300

Percentage Contribution to the total Floodplain Catch by Dominant Species Inside and Outside the Tangail CPP, August 1992 - February 1994.

Species Name	Outside	Inside	All floodplains/beel sites Sampled in NCR
Prawn spp.	19.8	20.3	19.6
Puntius sophore	14.7	16.3	15.2
Channa punctatus	9.2	10.5	11.4
Macrognathus pancalus	5.5	4.0	4.4
Colisa fasciatus	4.0	5.5	5.2
Lepidocephalus guntea	3.5	2.4	2.7
Catla catla	2.8	1.6	1.9
Chanda ranga	2.7	1.7	1.8
Glossogobius giurus	2.6	1.1	1.7
Labeo rohita	2.5	2.6	3.3
Puntius conchonius	2.3	<1	1.5
Macrognathus aculeatus	2.3	<1	1.3
Mystus vittatus	2.2	2.0	1.9
Wallagu attu	1.9	1.8	1.5
Colisa lalia	1.9	1.4	1.4
Mastacembelus armatus	1.5	<1	<1
Heteropneustes fossilis	1.3	2.8	2.8
Salmostoma phulo	1.3	<1	<1
Anabas testudineus	1.3	2.1	2.7
Cirrhinus mrigala	1.2	<1	<1
Xenentodon cancila	1.2	4.3	3.2
Esomus danricus	1.0	<1	<1
Channa striatus	<1	3.5	2.6
Notopterus notopterus	<1	2.1	<1
Cyprinus carpio	<1	1.2	<1
Channa orientalis	<1	1.1	<1

FAP 17: Supporting Volume No. 1

1

inside and outside the CPP, while the latter was relatively more abundant outside it (Table 6.8). The remaining dominant floodplain species are capable of surviving in small perennial water bodies during the dry season and are therefore categorised as floodplain residents. This pattern of species composition was also observed in several lower-lying and free-flooding sampling sites in the Manikgonj Thana to the south of Tangail and therefore appears to be typical of fisheries along the right bank of the Jamuna River and along the Dhaleswari-Kaliganga river system.

The single most important component of the annual catches everywhere consisted of small prawns comprising 20% of total catches. This study thus highlights the importance of this cheap, protein rich food resource which is captured by subsistence and professional fishermen alike.

"" 'June 1994

